305
Views
43
CrossRef citations to date
0
Altmetric
Review

Autocrine motility factor receptor: a clinical review

, , &
Pages 207-217 | Published online: 10 Jan 2014

References

  • Arteaga CL, Moulder SL, Yakes FM. HER (erbB) tyrosine kinase inhibitors in the treatment of breast cancer. Semin. Oncol.29(3 Suppl. 11), 4–10 (2002).
  • Nabi IR, Raz A. Cell shape modulation alters glycosylation of a metastatic melanoma cell-surface antigen. Int. J. Cancer40(3), 396–402 (1987).
  • Fang S, Ferrone M, Yang C et al. The tumor autocrine motility factor receptor, gp78, is a ubiquitin protein ligase implicated in degradation from the endoplasmic reticulum. Proc. Natl Acad. Sci. USA98(25), 14422–14427 (2001).
  • Onishi Y, Tsukada K, Yokota J, Raz A. Overexpression of autocrine motility factor receptor (AMFR) in NIH3T3 fibroblasts induces cell transformation. Clin. Exp. Metastasis20(1), 51–58 (2003).
  • Tsutsumi S, Hogan V, Nabi IR, Raz A. Overexpression of the autocrine motility factor/phosphoglucose isomerase induces transformation and survival of NIH-3T3 fibroblasts. Cancer Res.63(1), 242–249 (2003).
  • Watanabe H, Nabi IR, Raz A. The relationship between motility factor receptor internalization and the lung colonization capacity of murine melanoma cells. Cancer Res.51(10), 2699–2705 (1991).
  • Korman HJ, Peabody JO, Cerny JC et al. Autocrine motility factor receptor as a possible urine marker for transitional cell carcinoma of the bladder. J. Urol.155(1), 347–349 (1996).
  • Kara M, Ohta Y, Tanaka Y, Oda M, Watanabe Y. Autocrine motility factor receptor expression in patients with stage I non-small cell lung cancer. Ann. Thorac. Surg.71(3), 944–948 (2001).
  • Takanami I, Takeuchi K. Autocrine motility factor-receptor gene expression in lung cancer. Jpn. J. Thorac. Cardiovasc. Surg.51(8), 368–373 (2003).
  • Takanami I, Takeuchi K, Watanabe H et al. Significance of autocrine motility factor receptor gene expression as a prognostic factor in non-small-cell lung cancer. Int. J. Cancer95(6), 384–387 (2001).
  • Kaynak K, Kara M, Oz B et al. Autocrine motility factor receptor expression implies an unfavourable prognosis in resected stage I pulmonary adenocarcinomas. Acta Chir. Belg.105(4), 378–382 (2005).
  • Maruyama K, Watanabe H, Shiozaki H et al. Expression of autocrine motility factor receptor in human esophageal squamous cell carcinoma. Int. J. Cancer64(5), 316–321 (1995).
  • Hirono Y, Fushida S, Yonemura Y et al. Expression of autocrine motility factor receptor correlates with disease progression in human gastric cancer. Br. J. Cancer74(12), 2003–2007 (1996).
  • Kawanishi K, Doki Y, Shiozaki H et al. Correlation between loss of E-cadherin expression and overexpression of autocrine motility factor receptor in association with progression of human gastric cancers. Am. J. Clin. Pathol.113(2), 266–274 (2000).
  • Nakamori S, Watanabe H, Kameyama M et al. Expression of autocrine motility factor receptor in colorectal cancer as a predictor for disease recurrence. Cancer74(7), 1855–1862 (1994).
  • Ohta Y, Minato H, Tanaka Y et al. Autocrine motility factor receptor expression associates with tumor progression in thymoma. Int. J. Oncol.17(2), 259–264 (2000).
  • Shimizu K, Tani M, Watanabe H et al. The autocrine motility factor receptor gene encodes a novel type of seven transmembrane protein. FEBS Lett.456(2), 295–300 (1999).
  • Nabi IR, Watanabe H, Raz A. Identification of B16-F1 melanoma autocrine motility-like factor receptor. Cancer Res.50(2), 409–414 (1990).
  • Silletti S, Watanabe H, Hogan V, Nabi IR, Raz A. Purification of B16-F1 melanoma autocrine motility factor and its receptor. Cancer Res.51(13), 3507–3511 (1991).
  • Watanabe H, Carmi P, Hogan V et al. Purification of human tumor cell autocrine motility factor and molecular cloning of its receptor. J. Biol. Chem.266(20), 13442–13448 (1991).
  • Bodansky O. Serum phosphohexose isomerase in cancer. II. As an index of tumor growth in metastatic carcinoma of the breast. Cancer7(6), 1200–1226 (1954).
  • Schwartz MK. Enzymes in cancer. Clin. Chem.19(1), 10–22 (1973).
  • Liotta LA, Mandler R, Murano G et al. Tumor cell autocrine motility factor. Proc. Natl Acad. Sci. USA83(10), 3302–3306 (1986).
  • Benlimame N, Simard D, Nabi IR. Autocrine motility factor receptor is a marker for a distinct membranous tubular organelle. J. Cell Biol.129(2), 459–471 (1995).
  • Benlimame N, Le PU, Nabi IR. Localization of autocrine motility factor receptor to caveolae and clathrin-independent internalization of its ligand to smooth endoplasmic reticulum. Mol. Biol. Cell9(7), 1773–1786 (1998).
  • Goetz JG, Nabi IR. Interaction of the smooth endoplasmic reticulum and mitochondria. Biochem. Soc. Trans.34(Pt 3), 370–373 (2006).
  • Wang HJ, Benlimame N, Nabi I. The AMF-R tubule is a smooth ilimaquinone-sensitive subdomain of the endoplasmic reticulum. J. Cell. Sci.110(Pt 24), 3043–3053 (1997).
  • Ye Y, Shibata Y, Kikkert M et al. Inaugural article: Recruitment of the p97 ATPase and ubiquitin ligases to the site of retrotranslocation at the endoplasmic reticulum membrane. Proc. Natl Acad. Sci. USA102(40), 14132–14138 (2005).
  • Song BL, Sever N, DeBose-Boyd RA. Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase. Mol. Cell.19(6), 829–840 (2005).
  • Liang JS, Kim T, Fang S et al. Overexpression of the tumor autocrine motility factor receptor Gp78, a ubiquitin protein ligase, results in increased ubiquitinylation and decreased secretion of apolipoprotein B100 in HepG2 cells. J. Biol. Chem.278(26), 23984–23988 (2003).
  • Lee JN, Song B, DeBose-Boyd RA, Ye J. Sterol-regulated degradation of Insig-1 mediated by the membrane-bound ubiquitin ligase gp78. J. Biol. Chem.281(51), 39308–39315 (2006).
  • Tsai YC, Mendoza A, Mariano JM et al. The ubiquitin ligase gp78 promotes sarcoma metastasis by targeting KAI1 for degradation. Nat. Med.13(12), 1504–1509 (2007).
  • Kojic LD, Joshi B, Lajoie P et al. Raft-dependent endocytosis of autocrine motility factor is phosphatidylinositol 3-kinase-dependent in breast carcinoma cells. J. Biol. Chem.282(40), 29305–29313 (2007).
  • Le PU, Guay G, Altschuler Y, Nabi IR. Caveolin-1 is a negative regulator of caveolae-mediated endocytosis to the endoplasmic reticulum. J. Biol. Chem.277(5), 3371–3379 (2002).
  • Le PU, Nabi IR. Distinct caveolae-mediated endocytic pathways target the Golgi apparatus and the endoplasmic reticulum. J. Cell. Sci.116(Pt 6), 1059–1071 (2003).
  • Nabi IR, Le PU. Caveolae/raft-dependent endocytosis. J. Cell Biol.161(4), 673–677 (2003).
  • Lajoie P, Nabi IR. Regulation of raft-dependent endocytosis. J. Cell. Mol. Med.11(4), 644–653 (2007).
  • Kanbe K, Chigira M, Watanabe H. Effects of protein kinase inhibitors on the cell motility stimulated by autocrine motility factor. Biochim. Biophys. Acta.1222(3), 395–399 (1994).
  • Tsutsumi S, Gupta SK, Hogan V, Collard JG, Raz A. Activation of small GTPase Rho is required for autocrine motility factor signaling. Cancer Res.62(15), 4484–4490 (2002).
  • Tsutsumi S, Yanagawa T, Shimura T, Kuwano H, Raz A. Autocrine motility factor signaling enhances pancreatic cancer metastasis. Clin. Cancer Res.10(22), 7775–7784 (2004).
  • Silletti S, Paku S, Raz A. Tumor autocrine motility factor responses are mediated through cell contact and focal adhesion rearrangement in the absence of new tyrosine phosphorylation in metastatic cells. Am. J. Pathol.148(5), 1649–1660 (1996).
  • Torimura T, Ueno T, Kin M et al. Autocrine motility factor enhances hepatoma cell invasion across the basement membrane through activation of b1 integrins. Hepatology34(1), 62–71 (2001).
  • Timar J, Trikha M, Szekeres K et al. Autocrine motility factor signals integrin-mediated metastatic melanoma cell adhesion and invasion. Cancer Res.56(8), 1902–1908 (1996).
  • Haga A, Funasaka T, Niinaka Y, Raz A, Nagase H. Autocrine motility factor signaling induces tumor apoptotic resistance by regulations Apaf-1 and Caspase-9 apoptosome expression. Int. J. Cancer107(5), 707–714 (2003).
  • Haga A, Niinaka Y, Raz A. Phosphohexose isomerase/autocrine motility factor/neuroleukin/maturation factor is a multifunctional phosphoprotein. Biochim. Biophys. Acta.1480(1–2), 235–244 (2000).
  • Tamura M, Ohta Y, Oda M, Watanabe G. Peripherally located occult lung cancer with AMFR expression. Ann. Thorac. Cardiovasc. Surg.9(3), 184–187 (2003).
  • Ohta Y, Tanaka Y, Hara T et al. Clinicopathological and biological assessment of lung cancers with pleural dissemination. Ann. Thorac. Surg.69(4), 1025–1029 (2000).
  • Taniguchi K, Yonemura Y, Nojima N et al. The relation between the growth patterns of gastric carcinoma and the expression of hepatocyte growth factor receptor (c-met), autocrine motility factor receptor, and urokinase-type plasminogen activator receptor. Cancer82(11), 2112–2122 (1998).
  • Wang W, Yang LY, Yang ZL, Peng JX, Yang JQ. Elevated expression of autocrine motility factor receptor correlates with overexpression of RhoC and indicates poor prognosis in hepatocellular carcinoma. Dig. Dis. Sci.52(3), 770–775 (2007).
  • Nagai Y, Ishikawa O, Miyachi Y, Watanabe H. Expression of autocrine motility factor receptor in cutaneous malignant melanoma. Dermatology192(1), 8–11 (1996).
  • Timar J, Raso E, Dome B et al. Expression and function of the AMF receptor by human melanoma in experimental and clinical systems. Clin. Exp. Metastasis19(3), 225–232 (2002).
  • Jiang WG, Raz A, Douglas-Jones A, Mansel RE. Expression of autocrine motility factor (AMF) and its receptor, AMFR, in human breast cancer. J. Histochem. Cytochem.54(2), 231–241 (2006).
  • Otto T, Birchmeier W, Schmidt U et al. Inverse relation of E-cadherin and autocrine motility factor receptor expression as a prognostic factor in patients with bladder carcinomas. Cancer Res.54(12), 3120–3123 (1994).
  • Endo K, Shirai A, Furukawa M, Yoshizaki T. Prognostic value of cell motility activation factors in patients with tongue squamous cell carcinoma. Hum. Pathol.37(8), 1111–1116 (2006).
  • Wiseman SM, Masoudi H, Niblock P et al. Anaplastic thyroid carcinoma: expression profile of targets for therapy offers new insights for disease treatment. Ann. Surg. Oncol.14(2), 719–729 (2007).
  • Sakamoto H, Nakayama Y, Ohtani K, Seiki M, Satoh K. Pulmonary metastatic lesion of endolymphatic stromal myosis expresses metastasis-related genes but not invasion-related matrix type metalloproteinase. Cancer Lett.112(2), 245–249 (1997).
  • Yelian FD, Liu A, Todt JC et al. Expression and function of autocrine motility factor receptor in human choriocarcinoma. Gynecol. Oncol.62(2), 159–165 (1996).
  • Guenther R, Krenn V, Morawietz L et al. Giant cell tumors of the bone: molecular profiling and expression analysis of Ephrin A1 receptor, Claudin 7, CD52, FGFR3 and AMFR. Pathol. Res. Pract.201(10), 649–663 (2005).
  • Niinaka Y, Haga A, Negishi A et al. Regulation of cell motility via high and low affinity autocrine motility factor (AMF) receptor in human oral squamous carcinoma cells. Oral Oncol.38(1), 49–55 (2002).
  • Goetz JG, Genty H, St-Pierre P et al. Reversible interactions between smooth domains of the endoplasmic reticulum and mitochondria are regulated by physiological cytosolic Ca2+ levels. J. Cell. Sci.120(Pt 20), 3553–3564 (2007).
  • Sjoblom T, Jones S, Wood LD et al. The consensus coding sequences of human breast and colorectal cancers. Science314(5797), 268–274 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.