313
Views
52
CrossRef citations to date
0
Altmetric
Review

Immunotherapy opportunities in ovarian cancer

, , &
Pages 243-257 | Published online: 10 Jan 2014

References

  • Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics 2007. CA Cancer J. Clin.57(1), 43–66 (2007).
  • Coukos G, Rubin SC. Chemotherapy resistance in ovarian cancer: new molecular perspectives. Obstet. Gynecol.91(5 Pt 1), 783–792 (1998).
  • Ferrero JM, Weber B, Geay JF et al. Second-line chemotherapy with pegylated liposomal doxorubicin and carboplatin is highly effective in patients with advanced ovarian cancer in late relapse: a GINECO Phase II trial. Ann. Oncol.18(2), 263–268 (2007).
  • Schlienger K, Chu CS, Woo EY et al. TRANCE- and CD40 ligand-matured dendritic cells reveal MHC class I-restricted T cells specific for autologous tumor in late-stage ovarian cancer patients. Clin. Cancer Res.9(4), 1517–1527 (2003).
  • Goodell V, Salazar LG, Urban N et al. Antibody immunity to the p53 oncogenic protein is a prognostic indicator in ovarian cancer. J. Clin. Oncol.24(5), 762–768 (2006).
  • Santin AD, Hermonat PL, Ravaggi A et al. Phenotypic and functional analysis of tumor-infiltrating lymphocytes compared with tumor-associated lymphocytes from ascitic fluid and peripheral blood lymphocytes in patients with advanced ovarian cancer. Gynecol. Obstet. Invest.51(4), 254–261 (2001).
  • Negus RP, Stamp GW, Hadley J, Balkwill FR. Quantitative assessment of the leukocyte infiltrate in ovarian cancer and its relationship to the expression of C-C chemokines. Am. J. Pathol.150(5), 1723–1734 (1997).
  • Schondorf T, Engel H, Kurbacher CM et al. Immunologic features of tumor-infiltrating lymphocytes and peripheral blood lymphocytes in ovarian cancer patients. J. Soc. Gynecol. Investig.5(2), 102–107 (1998).
  • Hayashi K, Yonamine K, Masuko-Hongo K et al. Clonal expansion of T cells that are specific for autologous ovarian tumor among tumor-infiltrating T cells in humans. Gynecol. Oncol.74(1), 86–92 (1999).
  • Halapi E, Yamamoto Y, Juhlin C et al. Restricted T cell receptor V-β and J-β usage in T cells from interleukin-2-cultured lymphocytes of ovarian and renal carcinomas. Cancer Immunol. Immunother.36(3), 191–197 (1993).
  • Fisk B, Blevins TL, Wharton JT, Ioannides CG. Identification of an immunodominant peptide of HER-2/neu protooncogene recognized by ovarian tumor-specific cytotoxic T lymphocyte lines. J. Exp. Med.181(6), 2109–2117 (1995).
  • Kooi S, Freedman RS, Rodriguez-Villanueva J, Platsoucas CD. Cytokine production by T-cell lines derived from tumor-infiltrating lymphocytes from patients with ovarian carcinoma: tumor-specific immune responses and inhibition of antigen-independent cytokine production by ovarian tumor cells. Lymphokine Cytokine Res.12(6), 429–437 (1993).
  • Peoples GE, Goedegebuure PS, Smith R, Linehan DC, Yoshino I, Eberlein TJ. Breast and ovarian cancer-specific cytotoxic T lymphocytes recognize the same HER2/neu-derived peptide. Proc. Natl Acad. Sci. USA92(2), 432–436 (1995).
  • Peoples GE, Anderson BW, Fisk B, Kudelka AP, Wharton JT, Ioannides CG. Ovarian cancer-associated lymphocyte recognition of folate binding protein peptides. Ann. Surg. Oncol.5(8), 743–750 (1998).
  • Dadmarz RD, Ordoubadi A, Mixon A et al. Tumor-infiltrating lymphocytes from human ovarian cancer patients recognize autologous tumor in an MHC class II-restricted fashion. Cancer J. Sci. Am.2(5), 263 (1996).
  • Santin AD, Bellone S, Ravaggi A, Pecorelli S, Cannon MJ, Parham GP. Induction of ovarian tumor-specific CD8+ cytotoxic T lymphocytes by acid-eluted peptide-pulsed autologous dendritic cells. Obstet. Gynecol.96(3), 422–430 (2000).
  • Peoples GE, Schoof DD, Andrews JV, Goedegebuure PS, Eberlein TJ. T-cell recognition of ovarian cancer. Surgery114(2), 227–234 (1993).
  • Zhang L, Conejo-Garcia JR, Katsaros D et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med.348(3), 203–213 (2003).
  • Sato E, Olson SH, Ahn J et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc. Natl Acad. Sci. USA102(51), 18538–18543 (2005).
  • Wolf D, Wolf AM, Rumpold H et al. The expression of the regulatory T cell-specific forkhead box transcription factor FoxP3 is associated with poor prognosis in ovarian cancer. Clin. Cancer Res.11(23), 8326–8331 (2005).
  • Hamanishi J, Mandai M, Iwasaki M et al. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc. Natl Acad. Sci. USA104(9), 3360–3365 (2007).
  • Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat. Med.10(9), 909–915 (2004).
  • Rosenberg SA. The identification of cancer antigens: impact on the development of cancer vaccines. Cancer J. (6 Suppl. 2), S142–S149 (2000).
  • Zeng G. MHC class II-restricted tumor antigens recognized by CD4+ T cells: new strategies for cancer vaccine design. J. Immunother.24(3), 195–204 (2001).
  • Novellino L, Castelli C, Parmiani G. A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol. Immunother.54(3), 187–207 (2005).
  • Harris JR, Markl J. Keyhole limpet hemocyanin (KLH): a biomedical review. Micron30(6), 597–623 (1999).
  • Ribas A, Butterfield LH, Glaspy JA, Economou JS. Current developments in cancer vaccines and cellular immunotherapy. J. Clin. Oncol.21(12), 2415–2432 (2003).
  • Todryk S, McLean C, Ali S et al. Disabled infectious single-cycle herpes simplex virus as an oncolytic vector for immunotherapy of colorectal cancer. Hum. Gene Ther.10(17), 2757–2768 (1999).
  • Ishida T, Chada S, Stipanov M et al. Dendritic cells transduced with wild-type p53 gene elicit potent anti-tumour immune responses. Clin. Exp. Immunol.117(2), 244–251 (1999).
  • Diao J, Smythe JA, Smyth C, Rowe PB, Alexander IE. Human PBMC-derived dendritic cells transduced with an adenovirus vectorinduce cytotoxic T-lymphocyte responses against a vector-encoded antigen in vitro.Gene Ther.6(5), 845–853 (1999).
  • Belardelli F, Ferrantini M, Parmiani G, Schlom J, Garaci E. International meeting on cancer vaccines: how can we enhance efficacy of therapeutic vaccines? Cancer Res.64(18), 6827–6830 (2004).
  • Inaba K, Turley S, Yamaide F et al. Efficient presentation of phagocytosed cellular fragments on the major histocompatibility complex class II products of dendritic cells. J. Exp. Med.188(11), 2163–2173 (1998).
  • Mackensen A, Herbst B, Chen JL et al. Phase I study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generated in vitro from CD34(+) hematopoietic progenitor cells. Int. J. Cancer86(3), 385–392 (2000).
  • Thurner B, Roder C, Dieckmann D et al. Generation of large numbers of fully mature and stable dendritic cells from leukapheresis products for clinical application. J. Immunol. Methods223(1), 1–15 (1999).
  • Finn OJ. Cancer vaccines: between the idea and the reality. Nat. Rev. Immunol.3(8), 630–634 (2003).
  • Paul S, Acres B, Limacher JM, Bonnefoy JY. Cancer vaccines: challenges and outlook in the field. IDrugs10(5), 324–328 (2007).
  • Tabi Z, Man S. Challenges for cancer vaccine development. Adv. Drug Deliv. Rev.58(8), 902–915 (2006).
  • Fong L, Engleman EG. Dendritic cells in cancer immunotherapy. Annu. Rev. Immunol.18, 245–273 (2000).
  • Jonuleit H, Giesecke-Tuettenberg A, Tuting T et al. A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int. J. Cancer93(2), 243–251 (2001).
  • McIlroy D, Gregoire M. Optimizing dendritic cell-based anticancer immunotherapy: maturation state does have clinical impact. Cancer Immunol. Immunother.52(10), 583–591 (2003).
  • Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J. Exp. Med.193(2), 233–238 (2001).
  • Conejo-Garcia JR, Benencia F, Courreges MC et al. Tumor-infiltrating dendritic cell precursors recruited by a β-defensin contribute to vasculogenesis under the influence of VEGF-A. Nat. Med.10(9), 950–958 (2004).
  • Conejo-Garcia JR, Buckanovich RJ, Benencia F et al. Vascular leukocytes contribute to tumor vascularization. Blood105(2), 679–681 (2005).
  • Curiel TJ, Cheng P, Mottram P et al. Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer. Cancer Res.64(16), 5535–5538 (2004).
  • Curiel TJ, Wei S, Dong H et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat. Med.9(5), 562–567 (2003).
  • Chomarat P, Banchereau J, Davoust J, Palucka AK. IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat. Immunol.1(6), 510–514 (2000).
  • Gabrilovich D, Ishida T, Oyama T et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo.Blood92(11), 4150–4166 (1998).
  • Gabrilovich DI, Ishida T, Nadaf S, Ohm JE, Carbone DP. Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin. Cancer Res.5(10), 2963–2970 (1999).
  • Ahonen CL, Doxsee CL, McGurran SM et al. Combined TLR and CD40 triggering induces potent CD8+ T cell expansion with variable dependence on type I IFN. J. Exp. Med.199(6), 775–784 (2004).
  • Gong J, Nikrui N, Chen D et al. Fusions of human ovarian carcinoma cells with autologous or allogeneic dendritic cells induce antitumor immunity. J. Immunol.165(3), 1705–1711 (2000).
  • Nair S, Boczkowski D, Moeller B, Dewhirst M, Vieweg J, Gilboa E. Synergy between tumor immunotherapy and antiangiogenic therapy. Blood102(3), 964–971 (2003).
  • Fricke I, Mirza N, Dupont J et al. Vascular endothelial growth factor-trap overcomes defects in dendritic cell differentiation but does not improve antigen-specific immune responses. Clin. Cancer Res.13(16), 4840–4848 (2007).
  • Murray JL, Przepiorka D, Ioannides CG. Clinical trials of HER-2/neu-specific vaccines. Semin. Oncol.27(6 Suppl. 11), 71–75; discussion 92–100 (2000).
  • Disis ML, Schiffman K. Cancer vaccines targeting the HER2/neu oncogenic protein. Semin. Oncol.28(6 Suppl. 18), 12–20 (2001).
  • Bookman MA, Darcy KM, Clarke-Pearson D, Boothby RA, Horowitz IR. Evaluation of monoclonal humanized anti-HER2 antibody, trastuzumab, in patients with recurrent or refractory ovarian or primary peritoneal carcinoma with overexpression of HER2: a Phase II trial of the Gynecologic Oncology Group. J. Clin. Oncol.21(2), 283–290 (2003).
  • Hellstrom I, Goodman G, Pullman J, Yang Y, Hellstrom KE. Overexpression of HER-2 in ovarian carcinomas. Cancer Res.61(6), 2420–2423 (2001).
  • Disis ML, Schiffman K, Guthrie K et al. Effect of dose on immune response in patients vaccinated with an HER-2/neu intracellular domain protein-based vaccine. J. Clin. Oncol.22(10), 1916–1925 (2004).
  • Disis ML, Goodell V, Schiffman K, Knutson KL. Humoral epitope-spreading following immunization with a HER-2/neu peptide based vaccine in cancer patients. J. Clin. Immunol.24(5), 571–578 (2004).
  • Reinartz S, Kohler S, Schlebusch H et al. Vaccination of patients with advanced ovarian carcinoma with the anti-idiotype ACA125: immunological response and survival (Phase Ib/II). Clin. Cancer Res.10(5), 1580–1587 (2004).
  • Berek JS. Immunotherapy of ovarian cancer with antibodies: a focus on oregovomab. Expert Opin. Biol. Ther.4(7), 1159–1165 (2004).
  • Berek JS, Taylor PT, Gordon A et al. Randomized, placebo-controlled study of oregovomab for consolidation of clinical remission in patients with advanced ovarian cancer. J. Clin. Oncol.22(17), 3507–3516 (2004).
  • Sabbatini PJ, Ragupathi G, Hood C et al. Pilot study of a heptavalent vaccine-keyhole limpet hemocyanin conjugate plus QS21 in patients with epithelial ovarian, fallopian tube, or peritoneal cancer. Clin. Cancer Res.13(14), 4170–4177 (2007).
  • Pothuri B, Leitao M, Barakat R et al. Genetic analysis of ovarian carcinoma histogenesis. Gynecol. Oncol.80, 277 (2001) (Abstract 277).
  • Shih Ie M, Kurman RJ. Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. Am. J. Pathol.164(5), 1511–1518 (2004).
  • Orsulic S, Li Y, Soslow RA, Vitale-Cross LA, Gutkind JS, Varmus HE. Induction of ovarian cancer by defined multiple genetic changes in a mouse model system. Cancer Cell1(1), 53–56 (2002).
  • Flesken-Nikitin A, Choi KC, Eng JP, Shmidt EN, Nikitin AY. Induction of carcinogenesis by concurrent inactivation of p53 and Rb1 in the mouse ovarian surface epithelium. Cancer Res.63(13), 3459–3463 (2003).
  • Vanderkwaak TJ, Alvarez RD. Immune directed therapy for ovarian carcinoma. Curr. Opin. Obstet. Gynecol.11(1), 29–34 (1999).
  • Hernando JJ, Park TW, Fischer HP et al. Vaccination with dendritic cells transfected with mRNA-encoded folate-receptor-α for relapsed metastatic ovarian cancer. Lancet Oncol.8(5), 451–454 (2007).
  • Hung CF, Tsai YC, He L, Wu TC. Control of mesothelin-expressing ovarian cancer using adoptive transfer of mesothelin peptide-specific CD8+ T cells. Gene Ther.14(12), 921–929 (2007).
  • Hung CF, Calizo R, Tsai YC, He L, Wu TC. A DNA vaccine encoding a single-chain trimer of HLA-A2 linked to human mesothelin peptide generates anti-tumor effects against human mesothelin-expressing tumors. Vaccine25(1), 127–135 (2007).
  • Odunsi K, Jungbluth AA, Stockert E et al. NY-ESO-1 and LAGE-1 cancer-testis antigens are potential targets for immunotherapy in epithelial ovarian cancer. Cancer Res.63(18), 6076–6083 (2003).
  • Stockert E, Jager E, Chen YT et al. A survey of the humoral immune response of cancer patients to a panel of human tumor antigens. J. Exp. Med.187(8), 1349–1354 (1998).
  • Jager E, Gnjatic S, Nagata Y et al. Induction of primary NY-ESO-1 immunity: CD8+ T lymphocyte and antibody responses in peptide-vaccinated patients with NY-ESO-1+ cancers. Proc. Natl Acad. Sci. USA97(22), 12198–12203 (2000).
  • Odunsi K, Qian F, Matsuzaki J et al. Vaccination with an NY-ESO-1 peptide of HLA class I/II specificities induces integrated humoral and T cell responses in ovarian cancer. Proc. Natl Acad. Sci. USA104(31), 12837–12842 (2007).
  • Gordan JD, Vonderheide RH. Universal tumor antigens as targets for immunotherapy. Cytotherapy4(4), 317–327 (2002).
  • Vonderheide RH, Hahn WC, Schultze JL, Nadler LM. The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity10(6), 673–639 (1999).
  • Counter CM, Hirte HW, Bacchetti S, Harley CB. Telomerase activity in human ovarian carcinoma. Proc. Natl Acad. Sci. USA91(8), 2900–2904 (1994).
  • Scardino A, Gross DA, Alves P et al. HER-2/neu and hTERT cryptic epitopes as novel targets for broad spectrum tumor immunotherapy. J. Immunol.168(11), 5900–5906 (2002).
  • Vonderheide RH. Prospects and challenges of building a cancer vaccine targeting telomerase. Biochimie90(1), 173–180 (2008).
  • Luby TM, Cole G, Baker L, Kornher JS, Ramstedt U, Hedley ML. Repeated immunization with plasmid DNA formulated in poly(lactide-co-glycolide) microparticles is well tolerated and stimulates durable T cell responses to the tumor-associated antigen cytochrome P450 1B1. Clin. Immunol.112(1), 45–53 (2004).
  • Otto K, Andersen MH, Eggert A et al. Lack of toxicity of therapy-induced T cell responses against the universal tumour antigen survivin. Vaccine23(7), 884–889 (2005).
  • Andersen MH, Thor SP. Survivin – a universal tumor antigen. Histol. Histopathol.17(2), 669–675 (2002).
  • Berd D, Kairys J, Dunton C, Mastrangelo MJ, Sato T, Maguire HC Jr. Autologous, hapten-modified vaccine as a treatment for human cancers. Semin. Oncol.25(6), 646–653 (1998).
  • Hodi FS, Mihm MC, Soiffer RJ et al. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc. Natl Acad. Sci. USA100(8), 4712–4717 (2003).
  • Austin FC, Boone CW. Virus augmentation of the antigenicity of tumor cell extracts. Adv. Cancer Res.30, 301–345 (1979).
  • Melcher A, Todryk S, Hardwick N, Ford M, Jacobson M, Vile RG. Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression. Nat. Med.4(5), 581–587 (1998).
  • Schirrmacher V, Ahlert T, Probstle T et al. Immunization with virus-modified tumor cells. Semin. Oncol.25(6), 677–696 (1998).
  • Arroyo PJ, Bash JA, Wallack MK. Active specific immunotherapy with vaccinia colon oncolysate enhances the immunomodulatory and antitumor effects of interleukin-2 and interferon a in a murine hepatic metastasis model. Cancer Immunol. Immunother.31(5), 305–311 (1990).
  • Bash JA, Wallack MK. Vaccinia virus oncolysates in the treatment of malignant melanoma. Cancer Treat. Res.43, 177–190 (1988).
  • Sinkovics JG. Viral oncolysates as human tumor vaccines. Int. Rev. Immunol.7(4), 259–287 (1991).
  • Freedman RS, Ioannides CG, Mathioudakis G, Platsoucas CD. Novel immunologic strategies in ovarian carcinoma. Am. J. Obstet. Gynecol.167(5), 1470–1478 (1992).
  • Ioannides CG, Den Otter W. Concepts in immunotherapy of cancer: introduction. in vivo5(6), 551–552 (1991).
  • Schirrmacher V. Clinical trials of antitumor vaccination with an autologous tumor cell vaccine modified by virus infection: improvement of patient survival based on improved antitumor immune memory. Cancer Immunol. Immunother.54(6), 587–598 (2004).
  • Mobus V, Horn S, Stock M, Schirrmacher V. Tumor cell vaccination for gynecological tumors. Hybridoma12(5), 543–547 (1993).
  • Albert ML, Pearce SF, Francisco LM et al. Immature dendritic cells phagocytose apoptotic cells via avb5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J. Exp. Med.188(7), 1359–1368 (1998).
  • Hernando JJ, Park TW, Kubler K, Offergeld R, Schlebusch H, Bauknecht T. Vaccination with autologous tumour antigen-pulsed dendritic cells in advanced gynaecological malignancies: clinical and immunological evaluation of a Phase I trial. Cancer Immunol. Immunother.51(1), 45–52 (2002).
  • Homma S, Sagawa Y, Ito M, Ohno T, Toda G. Cancer immunotherapy using dendritic/tumour-fusion vaccine induces elevation of serum anti-nuclear antibody with better clinical responses. Clin. Exp. Immunol.144(1), 41–47 (2006).
  • Dudley ME, Wunderlich JR, Robbins PF et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science298(5594), 850–854 (2002).
  • Dudley ME, Wunderlich JR, Yang JC et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J. Clin. Oncol.23(10), 2346–2357 (2005).
  • Freedman RS, Platsoucas CD. Immunotherapy for peritoneal ovarian carcinoma metastasis using ex vivo expanded tumor infiltrating lymphocytes. Cancer Treat. Res.82, 115–146 (1996).
  • Freedman RS, Tomasovic B, Templin S et al. Large-scale expansion in interleukin-2 of tumor-infiltrating lymphocytes from patients with ovarian carcinoma for adoptive immunotherapy. J. Immunol. Methods167(12), 145–160 (1994).
  • Dang Y, Knutson KL, Goodell V et al. Tumor antigen-specific T-cell expansion is greatly facilitated by in vivo priming. Clin. Cancer Res.13(6), 1883–1891 (2007).
  • Fujita K, Ikarashi H, Takakuwa K et al. Prolonged disease-free period in patients with advanced epithelial ovarian cancer after adoptive transfer of tumor-infiltrating lymphocytes. Clin. Cancer Res.1(5), 501–507 (1995).
  • Canevari S, Stoter G, Arienti F et al. Regression of advanced ovarian carcinoma by intraperitoneal treatment with autologous T lymphocytes retargeted by a bispecific monoclonal antibody. J. Natl Cancer Inst.87(19), 1463–1469 (1995).
  • Lamers CH, Bolhuis RL, Warnaar SO, Stoter G, Gratama JW. Local but no systemic immunomodulation by intraperitoneal treatment of advanced ovarian cancer with autologous T lymphocytes re-targeted by a bi-specific monoclonal antibody. Int. J. Cancer73(2), 211–219 (1997).
  • June CH, Ledbetter JA, Linsley PS, Thompson CB. Role of the CD28 receptor in T-cell activation. Immunol. Today11(6), 211–216 (1990).
  • June CH, Ledbetter JA, Gillespie MM, Lindsten T, Thompson CB. T-cell proliferation involving the CD28 pathway is associated with cyclosporine-resistant interleukin 2 gene expression. Mol. Cell. Biol.7(12), 4472–4481 (1987).
  • Levine BL, Ueda Y, Craighead N, Huang ML, June CH. CD28 ligands CD80 (B71-) and CD86 (B72-) induce long-term autocrine growth of CD4+ T cells and induce similar patterns of cytokine secretion in vitro.Int. Immunol.7(6), 891–904 (1995).
  • Levine BL, Bernstein WB, Connors M et al. Effects of CD28 costimulation on long-term proliferation of CD4+ T cells in the absence of exogenous feeder cells. J. Immunol.159(12), 5921–5930 (1997).
  • Pawelec G, Rehbein A, Haehnel K, Merl A, Adibzadeh M. Human T-cell clones in long-term culture as a model of immunosenescence. Immunol. Rev.160, 31–42 (1997).
  • Weng NP, Levine BL, June CH, Hodes RJ. Human naive and memory T lymphocytes differ in telomeric length and replicative potential. Proc. Natl Acad. Sci. USA92(24), 11091–11094 (1995).
  • Levine BL, Bernstein W, Craighead N et al.Ex vivo replicative potential of adult human peripheral blood CD4+ T cells. Transplant Proc.29(4), 2028 (1997).
  • Weng N, Levine BL, June CH, Hodes RJ. Regulation of telomerase RNA template expression in human T lymphocyte development and activation. J. Immunol.158(7), 3215–3220 (1997).
  • Thompson JA, Figlin RA, Sifri-Steele C, Berenson RJ, Frohlich MW. A Phase I trial of CD3/CD28-activated T cells (Xcellerated T cells) and interleukin-2 in patients with metastatic renal cell carcinoma. Clin. Cancer Res.9(10 Pt 1), 3562–3570 (2003).
  • Mitsuyasu RT, Anton PA, Deeks SG et al. Prolonged survival and tissue trafficking following adoptive transfer of CD4z gene-modified autologous CD4(+) and CD8(+) T cells in human immunodeficiency virus-infected subjects. Blood96(3), 785–793 (2000).
  • Zhou J, Dudley ME, Rosenberg SA, Robbins PF. Persistence of multiple tumor-specific T-cell clones is associated with complete tumor regression in a melanoma patient receiving adoptive cell transfer therapy. J. Immunother.28(1), 53–62 (2005).
  • Hurteau JA, Blessing JA, DeCesare SL, Creasman WT. Evaluation of recombinant human interleukin-12 in patients with recurrent or refractory ovarian cancer: a gynecologic oncology group study. Gynecol. Oncol.82(1), 7–10 (2001).
  • Lenzi R, Rosenblum M, Verschraegen C et al. Phase I study of intraperitoneal recombinant human interleukin 12 in patients with Mullerian carcinoma, gastrointestinal primary malignancies, and mesothelioma. Clin. Cancer Res.8(12), 3686–3695 (2002).
  • Berek JS, Markman M, Stonebraker B et al. Intraperitoneal interferon-α in residual ovarian carcinoma, a Phase II gynecologic oncology group study. Gynecol. Oncol.75(1), 10–14 (1999).
  • Berek JS, Welander C, Schink JC, Grossberg H, Montz FJ, Zigelboim J. A Phase I–II trial of intraperitoneal cisplatin and a-interferon in patients with persistent epithelial ovarian cancer. Gynecol. Oncol.40(3), 237–243 (1991).
  • Markman M, Belinson J, Webster K et al. Phase 2 trial of interferonβ as second-line treatment of ovarian cancer, fallopian tube cancer, or primary carcinoma of the peritoneum. Oncology66(5), 343–346 (2004).
  • Ohta M, Mitomi T, Kimura M, Habu S, Katsuki M. Anomalies in transgenic mice carrying the human interleukin-2 gene. Tokai J. Exp. Clin. Med.15(4), 307–315 (1990).
  • Recchia F, Saggio G, Cesta A et al. Interleukin-2 and 13-cis retinoic acid as maintenance therapy in advanced ovarian cancer. Int. J. Oncol.27(4), 1039–1046 (2005).
  • Edwards RP, Gooding W, Lembersky BC et al. Comparison of toxicity and survival following intraperitoneal recombinant interleukin-2 for persistent ovarian cancer after platinum: twenty-four-hour versus 7-day infusion. J. Clin. Oncol.15(11), 3399–3407 (1997).
  • Kuss I, Rabinowich H, Gooding W, Edwards R, Whiteside TL. Expression of ζ z in T cells prior to interleukin-2 therapy as a predictor of response and survival in patients with ovarian carcinoma. Cancer Biother. Radiopharm.17(6), 631–640 (2002).
  • Wei S, Kryczek I, Edwards RP et al. Interleukin-2 administration alters the CD4+FOXP3+ T-cell pool and tumor trafficking in patients with ovarian carcinoma. Cancer Res.67(15), 7487–7494 (2007).
  • Pujade-Lauraine E, Guastalla JP, Colombo N et al. Intraperitoneal recombinant interferon-γ in ovarian cancer patients with residual disease at second-look laparotomy. J. Clin. Oncol.14(2), 343–350 (1996).
  • Windbichler GH, Hausmaninger H, Stummvoll W et al. Interferon-g in the first-line therapy of ovarian cancer: a randomized Phase III trial. Br. J. Cancer82(6), 1138–1144 (2000).
  • Liu M, Acres B, Balloul JM et al. Gene-based vaccines and immunotherapeutics. Proc. Natl Acad. Sci. USA101(Suppl. 2), 14567–14571 (2004).
  • Sterman DH, Gillespie CT, Carroll RG et al. Interferon b adenoviral gene therapy in a patient with ovarian cancer. Nat. Clin. Pract.3(11), 633–639 (2006).
  • Xystrakis E, Dejean AS, Bernard I et al. Identification of a novel natural regulatory CD8 T-cell subset and analysis of its mechanism of regulation. Blood104(10), 3294–3301 (2004).
  • Gilliet M, Liu YJ. Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J. Exp. Med.195(6), 695–704 (2002).
  • Wei S, Kryczek I, Zou L et al. Plasmacytoid dendritic cells induce CD8+ regulatory T cells in human ovarian carcinoma. Cancer Res.65(12), 5020–5026 (2005).
  • Bluestone JA, Abbas AK. Natural versus adaptive regulatory T cells. Nat. Rev. Immunol.3(3), 253–257 (2003).
  • Sakaguchi S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol.22, 531–562 (2004).
  • Read S, Powrie F. CD4(+) regulatory T cells. Curr. Opin. Immunol.13(6), 644–649 (2001).
  • Woo EY, Chu CS, Goletz TJ et al. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res.61(12), 4766–4772 (2001).
  • Woo EY, Yeh H, Chu CS et al. Cutting edge: regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J. Immunol.168(9), 4272–4276 (2002).
  • Curiel TJ, Coukos G, Zou L et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med.10(9), 942–949 (2004).
  • Golgher D, Jones E, Powrie F, Elliott T, Gallimore A. Depletion of CD25+ regulatory cells uncovers immune responses to shared murine tumor rejection antigens. Eur. J. Immunol.32(11), 3267–3275 (2002).
  • Sutmuller RP, van Duivenvoorde LM, van Elsas A et al. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J. Exp. Med.194(6), 823–832 (2001).
  • Jones E, Dahm-Vicker M, Simon AK et al. Depletion of CD25+ regulatory cells results in suppression of melanoma growth and induction of autoreactivity in mice. Cancer Immun.2, 1 (2002).
  • Benencia F, Coukos G. T regulatory cell depletion can boost DC-based vaccines. Cancer Biol. Ther.4(6), 218–223 (2005).
  • Prasad SJ, Farrand KJ, Matthews SA, Chang JH, McHugh RS, Ronchese F. Dendritic cells loaded with stressed tumor cells elicit long-lasting protective tumor immunity in mice depleted of CD4+CD25+ regulatory T cells. J. Immunol.174(1), 90–98 (2005).
  • Frankel AE, Fleming DR, Hall PD et al. A Phase II study of DT fusion protein denileukin diftitox in patients with fludarabine-refractory chronic lymphocytic leukemia. Clin. Cancer Res.9(10 Pt 1), 3555–3561 (2003).
  • Kreitman RJ, Batra JK, Seetharam S, Chaudhary VK, FitzGerald DJ, Pastan I. Single-chain immunotoxin fusions between anti-Tac and Pseudomonas exotoxin: relative importance of the two toxin disulfide bonds. Bioconjug. Chem.4(2), 112–120 (1993).
  • Powell DJ Jr, Felipe-Silva A, Merino MJ et al. Administration of a CD25-directed immunotoxin, LMB-2, to patients with metastatic melanoma induces a selective partial reduction in regulatory T cells in vivo. J. Immunol.179(7), 4919–4928 (2007).
  • Mahnke K, Schonfeld K, Fondel S et al. Depletion of CD4+CD25+ human regulatory T cells in vivo: kinetics of Treg depletion and alterations in immune functions in vivo and in vitro. Int. J. Cancer120(12), 2723–2733 (2007).
  • Berd D, Sato T, Maguire HC Jr, Kairys J, Mastrangelo MJ. Immunopharmacologic analysis of an autologous, hapten-modified human melanoma vaccine. J. Clin. Oncol.22(3), 403–415 (2004).
  • Machiels JP, Reilly RT, Emens LA et al. Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice. Cancer Res.61(9), 3689–3697 (2001).
  • Klebanoff CA, Khong HT, Antony PA, Palmer DC, Restifo NP. Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol.26(2), 111–117 (2005).
  • North RJ. Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells. J. Exp. Med.155(4), 1063–1074 (1982).
  • Awwad M, North RJ. Cyclophosphamide-induced immunologically mediated regression of a cyclophosphamide-resistant murine tumor: a consequence of eliminating precursor L3T4+ suppressor T-cells. Cancer Res.49(7), 1649–1654 (1989).
  • Curti BD, Ochoa AC, Powers GC et al. Phase I trial of anti-CD3-stimulated CD4+ T cells, infusional interleukin-2, and cyclophosphamide in patients with advanced cancer. J. Clin. Oncol.16(8), 2752–2760 (1998).
  • Berd D, Maguire HC Jr, Mastrangelo MJ. Induction of cell-mediated immunity to autologous melanoma cells and regression of metastases after treatment with a melanoma cell vaccine preceded by cyclophosphamide. Cancer Res.46(5), 2572–2577 (1986).
  • Prell RA, Gearin L, Simmons A, Vanroey M, Jooss K. The anti-tumor efficacy of a GM-CSF-secreting tumor cell vaccine is not inhibited by docetaxel administration. Cancer Immunol. Immunother.55(10), 1285–1293 (2006).
  • Tsuda N, Chang DZ, Mine T et al. Taxol increases the amount and T cell activating ability of self-immune stimulatory multimolecular complexes found in ovarian cancer cells. Cancer Res.67(17), 8378–8387 (2007).
  • Coleman S, Clayton A, Mason MD, Jasani B, Adams M, Tabi Z. Recovery of CD8+ T-cell function during systemic chemotherapy in advanced ovarian cancer. Cancer Res.65(15), 7000–7006 (2005).
  • Hodi FS, Dranoff G. Combinatorial cancer immunotherapy. Adv. Immunol.90, 341–368 (2006).
  • Korman AJ, Peggs KS, Allison JP. Checkpoint blockade in cancer immunotherapy. Adv. Immunol.90, 297–339 (2006).
  • Phan GQ, Yang JC, Sherry RM et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl Acad. Sci. USA100(14), 8372–8377 (2003).
  • Peggs KS, Quezada SA, Korman AJ, Allison JP. Principles and use of anti-CTLA4 antibody in human cancer immunotherapy. Curr. Opin. Immunol.18(2), 206–213 (2006).
  • Beck KE, Blansfield JA, Tran KQ et al. Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte-associated antigen 4. J. Clin. Oncol.24(15), 2283–2289 (2006).
  • Ito F, Li Q, Shreiner AB et al. Anti-CD137 monoclonal antibody administration augments the antitumor efficacy of dendritic cell-based vaccines. Cancer Res.64(22), 8411–8419 (2004).
  • Greenwald RJ, Freeman GJ, Sharpe AH. The B7 Family Revisited. Annu. Rev. Immunol.23, 515–548 (2005).
  • Yamazaki T, Akiba H, Iwai H et al. Expression of programmed death 1 ligands by murine T cells and APC. J. Immunol.169(10), 5538–5545 (2002).
  • Okazaki T, Tanaka Y, Nishio R et al. Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat. Med.9(12), 1477–1483 (2003).
  • Blank C, Gajewski TF, Mackensen A. Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy. Cancer Immunol. Immunother.54(4), 307–314 (2005).
  • Dong H, Chen L. B7-H1 pathway and its role in the evasion of tumor immunity. J. Mol. Med.81(5), 281–287 (2003).
  • Hirano F, Kaneko K, Tamura H et al. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res.65(3), 1089–1096 (2005).
  • Simon I, Katsaros D, Rigault de la Longrais I et al. B7-H4 is over-expressed in early-stage ovarian cancer and is independent of CA125 expression. Gynecol. Oncol.106(2), 334–341 (2007).
  • Tringler B, Liu W, Corral L et al. B7-H4 overexpression in ovarian tumors. Gynecol. Oncol.100(1), 44–52 (2006).
  • Kryczek I, Wei S, Zhu G et al. Relationship between B7-H4, regulatory T cells, and patient outcome in human ovarian carcinoma. Cancer Res.67(18), 8900–8905 (2007).
  • Kryczek I, Zou L, Rodriguez P et al. B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J. Exp. Med.203(4), 871–881 (2006).
  • Suntharalingam G, Perry MR, Ward S et al. Cytokine storm in a Phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med.355(10), 1018–1028 (2006).
  • Tai YT, Li X, Tong X et al. Human anti-CD40 antagonist antibody triggers significant antitumor activity against human multiple myeloma. Cancer Res.65(13), 5898–5906 (2005).
  • Lodge A, Yu P, Nicholl MB et al. CD40 ligation restores cytolytic T lymphocyte response and eliminates fibrosarcoma in the peritoneum of mice lacking CD4+ T cells. Cancer Immunol. Immunother.55(12), 1542–1552 (2006).
  • Lum HD, Buhtoiarov IN, Schmidt BE et al. In vivo CD40 ligation can induce T-cell-independent antitumor effects that involve macrophages. J. Leukoc. Biol.79(6), 1181–1192 (2006).
  • Shorts L, Weiss JM, Lee JK et al. Stimulation through CD40 on mouse and human renal cell carcinomas triggers cytokine production, leukocyte recruitment, and antitumor responses that can be independent of host CD40 expression. J. Immunol.176(11), 6543–6552 (2006).
  • Vonderheide RH. Prospect of targeting the CD40 pathway for cancer therapy. Clin. Cancer Res.13(4), 1083–1088 (2007).
  • Vonderheide RH, Flaherty KT, Khalil M et al. Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J. Clin. Oncol.25(7), 876–883 (2007).
  • Melichar B, Patenia R, Gallardo S, Melicharova K, Hu W, Freedman RS. Expression of CD40 and growth-inhibitory activity of CD40 ligand in ovarian cancer cell lines. Gynecol. Oncol.104(3), 707–713 (2007).
  • Gallagher NJ, Eliopoulos AG, Agathangelo A, Oates J, Crocker J, Young LS. CD40 activation in epithelial ovarian carcinoma cells modulates growth, apoptosis, and cytokine secretion. Mol. Pathol.55(2), 110–120 (2002).
  • Philip R, Murthy S, Krakover J et al. Shared immunoproteome for ovarian cancer diagnostics and immunotherapy: potential theranostic approach to cancer. J. Proteome Res.6(7), 2509–2517 (2007).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.