151
Views
10
CrossRef citations to date
0
Altmetric
Review

Immunotherapy against angiogenesis-associated targets: evidence and implications for the treatment of malignant glioma

, , , , , , , , & show all
Pages 717-732 | Published online: 10 Jan 2014

References

  • Davis FG, McCarthy BJ, Berger MS. Centralized databases available for describing primary brain tumor incidence, survival, and treatment: Central Brain Tumor Registry of the United States; Surveillance, Epidemiology, and End Results; and National Cancer Data Base. Neuro. Oncol.1(3), 205–211 (1999).
  • Sathornsumetee S, Reardon DA, Desjardins A, Quinn JA, Vredenburgh JJ, Rich JN. Molecularly targeted therapy for malignant glioma. Cancer110(1), 13–24 (2007).
  • Hoffman S, Propp JM, McCarthy BJ. Temporal trends in incidence of primary brain tumors in the United States, 1985–1999. Neuro. Oncol.8(1), 27–37 (2006).
  • Wesseling P, Ruiter DJ, Burger PC. Angiogenesis in brain tumors; pathobiological and clinical aspects. J. Neurooncol.32(3), 253–265 (1997).
  • Giese A, Bjerkvig R, Berens ME, Westphal M. Cost of migration: invasion of malignant gliomas and implications for treatment. J. Clin. Oncol.21(8), 1624–1636 (2003).
  • Giese A, Westphal M. Treatment of malignant glioma: a problem beyond the margins of resection. J. Cancer Res. Clin. Oncol.127(4), 217–225 (2001).
  • Dandy WE. Removal of right cerebral hemisphere for certain tumors with hemiplegia. J. Am. Med. Assoc.90, 823–825 (1928).
  • Wong ET, Hess KR, Gleason MJ et al. Outcomes and prognostic factors in recurrent glioma patients enrolled onto Phase II clinical trials. J. Clin. Oncol.17(8), 2572–2578 (1999).
  • Stupp R, Mason WP, van den Bent MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med.352(10), 987–996 (2005).
  • Hess KR, Wong ET, Jaeckle KA et al. Response and progression in recurrent malignant glioma. Neuro. Oncol.1(4), 282–288 (1999).
  • Imperato JP, Paleologos NA, Vick NA. Effects of treatment on long-term survivors with malignant astrocytomas. Ann. Neurol.28(6), 818–822 (1990).
  • Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT. Angiogenesis in brain tumours. Nat. Rev. Neurosci.8(8), 610–622 (2007).
  • Jain RK. Barriers to drug delivery in solid tumors. Sci. Am.271(1), 58–65 (1994).
  • Kunwar S, Chang SM, Prados MD et al. Safety of intraparenchymal convection-enhanced delivery of cintredekin besudotox in early-phase studies. Neurosurg. Focus20(4), E15 (2006).
  • Sampson JH, Akabani G, Friedman AH et al. Comparison of intratumoral bolus injection and convection-enhanced delivery of radiolabeled antitenascin monoclonal antibodies. Neurosurg. Focus20(4), E14 (2006).
  • Sampson JH, Brady ML, Petry NA et al. Intracerebral infusate distribution by convection-enhanced delivery in humans with malignant gliomas: descriptive effects of target anatomy and catheter positioning. Neurosurgery60(2 Suppl. 1), ONS89–ONS98 (2007).
  • Raghavan R, Brady ML, Rodriguez-Ponce MI, Hartlep A, Pedain C, Sampson JH. Convection-enhanced delivery of therapeutics for brain disease, and its optimization. Neurosurg. Focus20(4), E12 (2006).
  • Sathornsumetee S, Rich JN. New approaches to primary brain tumor treatment. Anticancer Drugs17(9), 1003–1016 (2006).
  • Boehm T, Folkman J, Browder T, O’Reilly MS. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature390(6658), 404–407 (1997).
  • Folkman J, Kalluri R. Cancer without disease. Nature427(6977), 787 (2004).
  • Sharma RR, Weichselbaum RR. Angiogenesis inhibition: the next frontier in multimodal therapy for glioblastoma multiforme. Nat. Clin. Pract. Oncol.4(8), 454–455 (2007).
  • Tonra JR, Hicklin DJ. Targeting the vascular endothelial growth factor pathway in the treatment of human malignancy. Immunol. Invest.36(1), 3–23 (2007).
  • Augustin HG. Translating angiogenesis research into the clinic: the challenges ahead. Br. J. Radiol.76(Spec. No 1), S3–S10 (2003).
  • Neri D, Bicknell R. Tumour vascular targeting. Nat. Rev. Cancer5(6), 436–446 (2005).
  • Shih T, Lindley C. Bevacizumab: an angiogenesis inhibitor for the treatment of solid malignancies. Clin. Ther.28(11), 1779–1802 (2006).
  • Vredenburgh JJ, Desjardins A, Herndon JE 2nd et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin. Cancer Res.13(4), 1253–1259 (2007).
  • Gilboa E. The promise of cancer vaccines. Nat. Rev. Cancer4(5), 401–411 (2004).
  • Folkman J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med.285(21), 1182–1186 (1971).
  • Lamszus K, Heese O, Westphal M. Angiogenesis-related growth factors in brain tumors. Cancer Treat. Res.117, 169–190 (2004).
  • Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug Discov.6(4), 273–286 (2007).
  • Kirsch M, Schackert G, Black PM. Anti-angiogenic treatment strategies for malignant brain tumors. J. Neurooncol.50(1–2), 149–163 (2000).
  • Black WC, Welch HG. Advances in diagnostic imaging and overestimations of disease prevalence and the benefits of therapy. N. Engl. J. Med.328(17), 1237–1243 (1993).
  • Naumov GN, Bender E, Zurakowski D et al. A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J. Natl Cancer Inst.98(5), 316–325 (2006).
  • Takano S, Yoshii Y, Kondo S et al. Concentration of vascular endothelial growth factor in the serum and tumor tissue of brain tumor patients. Cancer Res.56(9), 2185–2190 (1996).
  • Bao S, Wu Q, Sathornsumetee S et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res.66(16), 7843–7848 (2006).
  • Singh SK, Hawkins C, Clarke ID et al. Identification of human brain tumour initiating cells. Nature432(7015), 396–401 (2004).
  • Weidner N. Intratumor microvessel density as a prognostic factor in cancer. Am. J. Pathol.147(1), 9–19 (1995).
  • Burrows FJ, Thorpe PE. Eradication of large solid tumors in mice with an immunotoxin directed against tumor vasculature. Proc. Natl Acad. Sci. USA90(19), 8996–9000 (1993).
  • Klagsbrun M, Knighton D, Folkman J. Tumor angiogenesis activity in cells grown in tissue culture. Cancer Res.36(1), 110–114 (1976).
  • Lopes MB. Angiogenesis in brain tumors. Microsc. Res. Tech.60(2), 225–230 (2003).
  • Leon SP, Folkerth RD, Black PM. Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer77(2), 362–372 (1996).
  • Boucher Y, Salehi H, Witwer B, Harsh GR, Jain RK. Interstitial fluid pressure in intracranial tumours in patients and in rodents. Br. J. Cancer75(6), 829–836 (1997).
  • Carmeliet P, Ferreira V, Breier G et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature380(6573), 435–439 (1996).
  • Ke LD, Shi YX, Im SA, Chen X, Yung WK. The relevance of cell proliferation, vascular endothelial growth factor, and basic fibroblast growth factor production to angiogenesis and tumorigenicity in human glioma cell lines. Clin. Cancer Res.6(6), 2562–2572 (2000).
  • Shibuya M. Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. J. Biochem. Mol. Biol.39(5), 469–478 (2006).
  • Chaudhry IH, O’Donovan DG, Brenchley PE, Reid H, Roberts IS. Vascular endothelial growth factor expression correlates with tumour grade and vascularity in gliomas. Histopathology39(4), 409–415 (2001).
  • Oka N, Soeda A, Inagaki A et al. VEGF promotes tumorigenesis and angiogenesis of human glioblastoma stem cells. Biochem. Biophys. Res. Commun.360(3), 553–559 (2007).
  • Mazure NM, Chen EY, Yeh P, Laderoute KR, Giaccia AJ. Oncogenic transformation and hypoxia synergistically act to modulate vascular endothelial growth factor expression. Cancer Res.56(15), 3436–3440 (1996).
  • Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J. Clin. Oncol.20(21), 4368–4380 (2002).
  • Ranieri G, Patruno R, Ruggieri E, Montemurro S, Valerio P, Ribatti D. Vascular endothelial growth factor (VEGF) as a target of bevacizumab in cancer: from the biology to the clinic. Curr. Med. Chem.13(16), 1845–1857 (2006).
  • Johansson M, Brannstrom T, Bergenheim AT, Henriksson R. Spatial expression of VEGF-A in human glioma. J. Neurooncol.59(1), 1–6 (2002).
  • Ziemer LS, Koch CJ, Maity A, Magarelli DP, Horan AM, Evans SM. Hypoxia and VEGF mRNA expression in human tumors. Neoplasia3(6), 500–508 (2001).
  • Chan AS, Leung SY, Wong MP et al. Expression of vascular endothelial growth factor and its receptors in the anaplastic progression of astrocytoma, oligodendroglioma, and ependymoma. Am. J. Surg. Pathol.22(7), 816–826 (1998).
  • Hatva E, Kaipainen A, Mentula P et al. Expression of endothelial cell-specific receptor tyrosine kinases and growth factors in human brain tumors. Am. J. Pathol.146(2), 368–378 (1995).
  • Plate KH, Breier G, Weich HA, Mennel HD, Risau W. Vascular endothelial growth factor and glioma angiogenesis: coordinate induction of VEGF receptors, distribution of VEGF protein and possible in vivo regulatory mechanisms. Int. J. Cancer59(4), 520–529 (1994).
  • Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat. Med.9(6), 669–676 (2003).
  • Hattori K, Heissig B, Wu Y et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat. Med.8(8), 841–849 (2002).
  • Gerber HP, Condorelli F, Park J, Ferrara N. Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia. J. Biol. Chem.272(38), 23659–23667 (1997).
  • Gupta K, Kshirsagar S, Li W et al. VEGF prevents apoptosis of human microvascular endothelial cells via opposing effects on MAPK/ERK and SAPK/JNK signaling. Exp. Cell Res.247(2), 495–504 (1999).
  • Zadeh G, Guha A. Neoangiogenesis in human astrocytomas: expression and functional role of angiopoietins and their cognate receptors. Front. Biosci.8, 128–137 (2003).
  • Guo P, Imanishi Y, Cackowski FC et al. Up-regulation of angiopoietin-2, matrix metalloprotease-2, membrane type 1 metalloprotease, and laminin 5 γ2 correlates with the invasiveness of human glioma. Am. J. Pathol.166(3), 877–890 (2005).
  • Mahabeleshwar GH, Feng W, Reddy K, Plow EF, Byzova TV. Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis. Circ. Res.101(6), 570–580 (2007).
  • Ruegg C, Mariotti A. Vascular integrins: pleiotropic adhesion and signaling molecules in vascular homeostasis and angiogenesis. Cell Mol. Life Sci.60(6), 1135–1157 (2003).
  • Thorgeirsson UP, Lindsay CK, Cottam DW, Gomez DE. Tumor invasion, proteolysis, and angiogenesis. J. Neurooncol.18(2), 89–103 (1994).
  • Li WP, Anderson CJ. Imaging matrix metalloproteinase expression in tumors. Q. J. Nucl. Med.47(3), 201–208 (2003).
  • Kuijper S, Turner CJ, Adams RH. Regulation of angiogenesis by Eph-ephrin interactions. Trends Cardiovasc. Med.17(5), 145–151 (2007).
  • Osada H, Tokunaga T, Nishi M et al. Overexpression of the neuropilin 1 (NRP1) gene correlated with poor prognosis in human glioma. Anticancer Res.24(2B), 547–552 (2004).
  • Godard S, Getz G, Delorenzi M et al. Classification of human astrocytic gliomas on the basis of gene expression: a correlated group of genes with angiogenic activity emerges as a strong predictor of subtypes. Cancer Res.63(20), 6613–6625 (2003).
  • Duda DG, Jain RK, Willett CG. Antiangiogenics: the potential role of integrating this novel treatment modality with chemoradiation for solid cancers. J. Clin. Oncol.25(26), 4033–4042 (2007).
  • Batchelor TT, Sorensen AG, di Tomaso E et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell11(1), 83–95 (2007).
  • Gatto B. Monoclonal antibodies in cancer therapy. Curr. Med. Chem. Anticancer Agents4(5), 411–414 (2004).
  • Kew Y, Levin VA. Advances in gene therapy and immunotherapy for brain tumors. Curr. Opin. Neurol.16(6), 665–670 (2003).
  • Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity21(2), 137–148 (2004).
  • Seaman S, Stevens J, Yang MY, Logsdon D, Graff-Cherry C, St Croix B. Genes that distinguish physiological and pathological angiogenesis. Cancer Cell11(6), 539–554 (2007).
  • Charalambous C, Chen TC, Hofman FM. Characteristics of tumor-associated endothelial cells derived from glioblastoma multiforme. Neurosurg. Focus20(4), E22 (2006).
  • Holmgren L, O’Reilly MS, Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat. Med.1(2), 149–153 (1995).
  • Folkins C, Man S, Xu P, Shaked Y, Hicklin DJ, Kerbel RS. Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res.67(8), 3560–3564 (2007).
  • Yang MY, Zetler PM, Prins RM, Khan-Farooqi H, Liau LM. Immunotherapy for patients with malignant glioma: from theoretical principles to clinical applications. Expert Rev. Neurother.6(10), 1481–1494 (2006).
  • Boskovitz A, Wikstrand CJ, Kuan CT, Zalutsky MR, Reardon DA, Bigner DD. Monoclonal antibodies for brain tumour treatment. Expert Opin. Biol. Ther.4(9), 1453–1471 (2004).
  • Hou J, Tian L, Wei Y. Cancer immunotherapy of targeting angiogenesis. Cell Mol. Immunol.1(3), 161–166 (2004).
  • Takano S, Kamiyama H, Tsuboi K, Matsumura A. Angiogenesis and antiangiogenic therapy for malignant gliomas. Brain Tumor Pathol.21(2), 69–73 (2004).
  • Prewett M, Huber J, Li Y et al. Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res.59(20), 5209–5218 (1999).
  • Rubenstein JL, Kim J, Ozawa T et al. Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia2(4), 306–314 (2000).
  • Wang Y, Fei D, Vanderlaan M, Song A. Biological activity of bevacizumab, a humanized anti-VEGF antibody in vitro. Angiogenesis7(4), 335–345 (2004).
  • Klement G, Baruchel S, Rak J et al. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J. Clin. Invest.105(8), R15–R24 (2000).
  • Lamszus K, Brockmann MA, Eckerich C et al. Inhibition of glioblastoma angiogenesis and invasion by combined treatments directed against vascular endothelial growth factor receptor-2, epidermal growth factor receptor, and vascular endothelial-cadherin. Clin. Cancer Res.11(13), 4934–4940 (2005).
  • Kunkel P, Ulbricht U, Bohlen P et al. Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res.61(18), 6624–6628 (2001).
  • Kim KJ, Li B, Winer J et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature362(6423), 841–844 (1993).
  • Stefanik DF, Fellows WK, Rizkalla LR et al. Monoclonal antibodies to vascular endothelial growth factor (VEGF) and the VEGF receptor, FLT-1, inhibit the growth of C6 glioma in a mouse xenograft. J. Neurooncol.55(2), 91–100 (2001).
  • Yang H, Chopp M, Zhang X et al. Using behavioral measurement to assess tumor progression and functional outcome after antiangiogenic treatment in mouse glioma models. Behav Brain Res,182(1), 42–50 (2007).
  • Manning EA, Ullman JG, Leatherman JM et al. A vascular endothelial growth factor receptor-2 inhibitor enhances antitumor immunity through an immune-based mechanism. Clin. Cancer Res.13(13), 3951–3959 (2007).
  • Yuan F, Chen Y, Dellian M, Safabakhsh N, Ferrara N, Jain RK. Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc. Natl Acad. Sci. USA93(25), 14765–14770 (1996).
  • Lee CG, Heijn M, di Tomaso E et al. Anti-vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res.60(19), 5565–5570 (2000).
  • Shen J, Vil MD, Zhang H et al. An antibody directed against PDGF receptor β enhances the antitumor and the anti-angiogenic activities of an anti-VEGF receptor 2 antibody. Biochem. Biophys. Res. Commun.357(4), 1142–1147 (2007).
  • Winkler F, Kozin SV, Tong RT et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell6(6), 553–563 (2004).
  • Kozin SV, Boucher Y, Hicklin DJ, Bohlen P, Jain RK, Suit HD. Vascular endothelial growth factor receptor-2-blocking antibody potentiates radiation-induced long-term control of human tumor xenografts. Cancer Res.61(1), 39–44 (2001).
  • Lyden D, Hattori K, Dias S et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat. Med.7(11), 1194–1201 (2001).
  • Youssoufian H, Hicklin DJ, Rowinsky EK. Review: monoclonal antibodies to the vascular endothelial growth factor receptor-2 in cancer therapy. Clin. Cancer Res.13(18), S5544–S5548 (2007).
  • Pope WB, Lai A, Nghiemphu P, Mischel P, Cloughesy TF. MRI in patients with high-grade gliomas treated with bevacizumab and chemotherapy. Neurology66(8), 1258–1260 (2006).
  • Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science307(5706), 58–62 (2005).
  • Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res.64(11), 3731–3736 (2004).
  • Gilbertson RJ, Rich JN. Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat. Rev. Cancer7(10), 733–736 (2007).
  • Donnenberg VS, Donnenberg AD. Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J. Clin. Pharmacol.45(8), 872–877 (2005).
  • Calabrese C, Poppleton H, Kocak M et al. A perivascular niche for brain tumor stem cells. Cancer Cell11(1), 69–82 (2007).
  • Bao S, Wu Q, McLendon RE et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature444(7120), 756–760 (2006).
  • Wachsberger PR, Burd R, Cardi C et al. VEGF trap in combination with radiotherapy improves tumor control in u87 glioblastoma. Int. J. Radiat. Oncol. Biol Phys.67(5), 1526–1537 (2007).
  • Jinushi M, Dranoff G. Triggering tumor immunity through angiogenesis targeting. Clin. Cancer Res.13(13), 3762–3764 (2007).
  • Monsky WL, Mouta Carreira C, Tsuzuki Y, Gohongi T, Fukumura D, Jain RK. Role of host microenvironment in angiogenesis and microvascular functions in human breast cancer xenografts: mammary fat pad versus cranial tumors. Clin. Cancer Res.8(4), 1008–1013 (2002).
  • Keyes KA, Mann L, Teicher B, Alvarez E. Site-dependent angiogenic cytokine production in human tumor xenografts. Cytokine21(2), 98–104 (2003).
  • Rustamzadeh E, Low WC, Vallera DA, Hall WA. Immunotoxin therapy for CNS tumor. J. Neurooncol.64(1–2), 101–116 (2003).
  • Fecci PE, Sampson JH. Clinical immunotherapy for brain tumors. Neuroimaging Clin. N. Am.12(4), 641–664 (2002).
  • Moosmayer D, Berndorff D, Chang CH et al. Bispecific antibody pretargeting of tumor neovasculature for improved systemic radiotherapy of solid tumors. Clin. Cancer Res.12(18), 5587–5595 (2006).
  • Wyss MT, Spaeth N, Biollaz G et al. Uptake of 18F-fluorocholine, 18F-FET, and 18F-FDG in C6 gliomas and correlation with 131I-SIP(L19), a marker of angiogenesis. J. Nucl. Med.48(4), 608–614 (2007).
  • Spaeth N, Wyss MT, Pahnke J et al. Radioimmunotherapy targeting the extra domain B of fibronectin in C6 rat gliomas: a preliminary study about the therapeutic efficacy of iodine-131-labeled SIP(L19). Nucl. Med. Biol.33(5), 661–666 (2006).
  • Santimaria M, Moscatelli G, Viale GL et al. Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin. Cancer Res.9(2), 571–579 (2003).
  • Wild R, Dhanabal M, Olson TA, Ramakrishnan S. Inhibition of angiogenesis and tumour growth by VEGF121-toxin conjugate: differential effect on proliferating endothelial cells. Br. J. Cancer83(8), 1077–1083 (2000).
  • Han J, Yang L, Puri RK. Analysis of target genes induced by IL-13 cytotoxin in human glioblastoma cells. J. Neurooncol.72(1), 35–46 (2005).
  • Hsu AR, Cai W, Veeravagu A et al. Multimodality molecular imaging of glioblastoma growth inhibition with vasculature-targeting fusion toxin VEGF121/rGel. J. Nucl. Med.48(3), 445–454 (2007).
  • Ramakrishnan S, Olson TA, Bautch VL, Mohanraj D. Vascular endothelial growth factor-toxin conjugate specifically inhibits KDR/flk-1-positive endothelial cell proliferation in vitro and angiogenesis in vivo. Cancer Res.56(6), 1324–1330 (1996).
  • Arora N, Masood R, Zheng T, Cai J, Smith DL, Gill PS. Vascular endothelial growth factor chimeric toxin is highly active against endothelial cells. Cancer Res.59(1), 183–188 (1999).
  • King GD, Curtin JF, Candolfi M, Kroeger K, Lowenstein PR, Castro MG. Gene therapy and targeted toxins for glioma. Curr. Gene Ther.5(6), 535–557 (2005).
  • Ochiai H, Archer GE, Herndon JE II et al. EGFRvIII-targeted immunotoxin induces antitumor immunity that is inhibited in the absence of CD4+ and CD8+ T cells. Cancer Immunol. Immunother. (2007).
  • Fricke I, Mirza N, Dupont J et al. Vascular endothelial growth factor-trap overcomes defects in dendritic cell differentiation but does not improve antigen-specific immune responses. Clin. Cancer Res.13(16), 4840–4848 (2007).
  • Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat. Med.10(9), 909–915 (2004).
  • Eskens FA, Verweij J. The clinical toxicity profile of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) targeting angiogenesis inhibitors; a review. Eur. J. Cancer42(18), 3127–3139 (2006).
  • St Croix B, Rago C, Velculescu V et al. Genes expressed in human tumor endothelium. Science289(5482), 1197–1202 (2000).
  • Carson-Walter EB, Watkins DN, Nanda A, Vogelstein B, Kinzler KW, St Croix B. Cell surface tumor endothelial markers are conserved in mice and humans. Cancer Res.61(18), 6649–6655 (2001).
  • Kochenderfer JN, Gress RE. A comparison and critical analysis of preclinical anticancer vaccination strategies. Exp. Biol. Med.232(9), 1130–1141 (2007).
  • Okaji Y, Tsuno NH, Saito S et al. Vaccines targeting tumour angiogenesis – a novel strategy for cancer immunotherapy. Eur. J. Surg. Oncol.32(4), 363–370 (2006).
  • Wei YQ, Wang QR, Zhao X et al. Immunotherapy of tumors with xenogeneic endothelial cells as a vaccine. Nat. Med.6(10), 1160–1166 (2000).
  • Okaji Y, Tsuno NH, Kitayama J et al. Vaccination with autologous endothelium inhibits angiogenesis and metastasis of colon cancer through autoimmunity. Cancer Sci.95(1), 85–90 (2004).
  • Plum SM, Holaday JW, Ruiz A, Madsen JW, Fogler WE, Fortier AH. Administration of a liposomal FGF-2 peptide vaccine leads to abrogation of FGF-2-mediated angiogenesis and tumor development. Vaccine19(9–10), 1294–1303 (2000).
  • Fu C, Bardhan S, Cetateanu ND et al. Identification of a novel membrane protein, HP59, with therapeutic potential as a target of tumor angiogenesis. Clin. Cancer Res.7(12), 4182–4194 (2001).
  • Liu JY, Wei YQ, Yang L et al. Immunotherapy of tumors with vaccine based on quail homologous vascular endothelial growth factor receptor-2. Blood102(5), 1815–1823 (2003).
  • Tan GH, Wei YQ, Tian L et al. Active immunotherapy of tumors with a recombinant xenogeneic endoglin as a model antigen. Eur. J. Immunol.34(7), 2012–2021 (2004).
  • Tan GH, Tian L, Wei YQ et al. Combination of low-dose cisplatin and recombinant xenogeneic endoglin as a vaccine induces synergistic antitumor activities. Int. J. Cancer112(4), 701–706 (2004).
  • Hou JM, Liu JY, Yang L et al. Combination of low-dose gemcitabine and recombinant quail vascular endothelial growth factor receptor-2 as a vaccine induces synergistic antitumor activities. Oncology69(1), 81–87 (2005).
  • Wada S, Tsunoda T, Baba T et al. Rationale for antiangiogenic cancer therapy with vaccination using epitope peptides derived from human vascular endothelial growth factor receptor 2. Cancer Res.65(11), 4939–4946 (2005).
  • Ishizaki H, Tsunoda T, Wada S, Yamauchi M, Shibuya M, Tahara H. Inhibition of tumor growth with antiangiogenic cancer vaccine using epitope peptides derived from human vascular endothelial growth factor receptor 1. Clin. Cancer Res.12(19), 5841–5849 (2006).
  • Reisfeld RA, Niethammer AG, Luo Y, Xiang R. DNA vaccines suppress tumor growth and metastases by the induction of anti-angiogenesis. Immunol. Rev.199, 181–190 (2004).
  • Luo Y, Markowitz D, Xiang R, Zhou H, Reisfeld RA. FLK-1-based minigene vaccines induce T cell-mediated suppression of angiogenesis and tumor protective immunity in syngeneic BALB/c mice. Vaccine25(8), 1409–1415 (2007).
  • Kaplan CD, Kruger JA, Zhou H, Luo Y, Xiang R, Reisfeld RA. A novel DNA vaccine encoding PDGFRβ suppresses growth and dissemination of murine colon, lung and breast carcinoma. Vaccine24(47–48), 6994–7002 (2006).
  • Bequet-Romero M, Ayala M, Acevedo BE et al. Prophylactic naked DNA vaccination with the human vascular endothelial growth factor induces an anti-tumor response in C57Bl/6 mice. Angiogenesis10(1), 23–34 (2007).
  • Feng KK, Zhao HY, Qiu H, Liu JX, Chen J. Combined therapy with flk1-based DNA vaccine and interleukin-12 results in enhanced antiangiogenic and antitumor effects. Cancer Lett.221(1), 41–47 (2005).
  • Su JM, Wei YQ, Tian L et al. Active immunogene therapy of cancer with vaccine on the basis of chicken homologous matrix metalloproteinase-2. Cancer Res.63(3), 600–607 (2003).
  • Holmgren L, Ambrosino E, Birot O et al. A DNA vaccine targeting angiomotin inhibits angiogenesis and suppresses tumor growth. Proc. Natl Acad. Sci. USA103(24), 9208–9213 (2006).
  • Li Y, Wang MN, Li H et al. Active immunization against the vascular endothelial growth factor receptor flk1 inhibits tumor angiogenesis and metastasis. J. Exp. Med.195(12), 1575–1584 (2002).
  • Hatano M, Kuwashima N, Tatsumi T et al. Vaccination with EphA2-derived T cell-epitopes promotes immunity against both EphA2-expressing and EphA2-negative tumors. J. Transl. Med.2(1), 40 (2004).
  • Nair S, Boczkowski D, Moeller B, Dewhirst M, Vieweg J, Gilboa E. Synergy between tumor immunotherapy and antiangiogenic therapy. Blood102(3), 964–971 (2003).
  • Cai W, Chen K, Li ZB, Gambhir SS, Chen X. Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J. Nucl. Med.48(11), 1862–1870 (2007).
  • Wang H, Cai W, Chen K et al. A new PET tracer specific for vascular endothelial growth factor receptor 2. Eur. J. Nucl. Med. Mol. Imaging34(12), 2001–2010 (2007).
  • Lyshchik A, Fleischer AC, Huamani J, Hallahan DE, Brissova M, Gore JC. Molecular imaging of vascular endothelial growth factor receptor 2 expression using targeted contrast-enhanced high-frequency ultrasonography. J. Ultrasound Med.26(11), 1575–1586 (2007).
  • Sathornsumetee S, Cao Y, Marcello JE et al. Tumor angiogenic and hypoxic profiles predict radiographic response and survival in malignant astrocytoma patients treated with bevacizumab and irinotecan. J. Clin. Oncol.26(2), 271–278 (2008).
  • Everson RG, Gromeier M, Sampson JH. Viruses in the treatment of malignant glioma. Expert Rev. Neurother.7(4), 321–324 (2007).
  • Eisenberger A, Elliott BM, Kaufman HL. Viral vaccines for cancer immunotherapy. Hematol. Oncol. Clin. North Am.20(3), 661–687 (2006).
  • Lyons JA, Sheahan BJ, Galbraith SE, Mehra R, Atkins GJ, Fleeton MN. Inhibition of angiogenesis by a Semliki Forest virus vector expressing VEGFR-2 reduces tumour growth and metastasis in mice. Gene Ther.14(6), 503–513 (2007).
  • Rad FH, Le Buanec H, Paturance S et al. VEGF kinoid vaccine, a therapeutic approach against tumor angiogenesis and metastases. Proc. Natl Acad. Sci. USA104(8), 2837–2842 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.