118
Views
52
CrossRef citations to date
0
Altmetric
Review

Androgen receptor: role and novel therapeutic prospects in prostate cancer

Pages 1495-1508 | Published online: 10 Jan 2014

References

  • Caskey C, Pizzuti A, Fu Y-H, Fenwick R, Nelson D. Triplet repeat mutations in human disease. Science256, 784–789 (1992).
  • Griffin J. Androgen resistance – the clinical and molecular spectrum NEJM326, 611–618 (1992).
  • Huggins C, Hodges C. The effect of castration, of oestrogen and of androgen injections on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res.1, 293–297 (1941).
  • Mohler J, Gregory C, Ford OH et al. The androgen axis in recurrent prostate cancer. Clin. Cancer Res.10, 440–448 (2004).
  • Montgomery R, Mostaghel E, Vessella R et al. Maintance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res.68, 4447–4459 (2008).
  • Mostaghel E, Page S, Lin D et al. Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Res.67, 5033–5041 (2007).
  • Ryan C, Halabi S, Ou S, Vogelzang N, Kantoff P, Small E. Adrenal androgen levels as predictors of outcome in prostate cancer patients treated with ketoconazole plus antiandrogen withdrawal: results from a cancer and leukemia group B study. Clin. Cancer Res.13(7), 2030–2037 (2007).
  • Stanbrough M, Bubley G, Ross K et al. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res.66, 2815–2825 (2006).
  • Titus M, Schell M, Lin F, Tomer K, Mohler J. Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin. Cancer Res.11(13), 4653–4657 (2005).
  • Evans R. The steroid and thyroid hormone receptor super family. Science240, 889–895 (1988).
  • Pratt W, Toft D. Steroid receptor interactions with heat shock protein and immunophilin charperones. Endocr. Rev.18, 306–360 (1997).
  • Veldscholte J, Berrevoets C, Zegers N, van der Kwast TH, Grootegoed J, Mulder E. Hormone-induced dissociation of the androgen receptor-heat shock protein complex: use of a new monoclonal antibody to distinguish transformed from nontransformed receptors. Biochemistry31, 7422–7430 (1992).
  • Wilson J. Role of dihydrotestosterone in androgen action. Prostate Suppl.6, 88–92 (1996).
  • Dehm SM, Tindall DJ. Regulation of androgen receptor signaling in prostate cancer. Expert Rev. Anticancer Ther.5, 63–74 (2005).
  • Shang Y, Myers M, Brown M. Formation of the androgen receptor transcription complex. Mol. Cell9, 601–610 (2002).
  • Chang C-Y, McDonnell D. Androgen receptor-cofactor interactions as targets for new drug discovery. Trends Pharm. Sci.26, 225–228 (2005).
  • Mckenna J, Lanz R, O’Malley B. Nuclear receptor coregulators: cellular and molecular biology. Endocr. Rev.20(3), 321–344 (1999).
  • Dehm S, Tindall D. Molecular regulation of androgen action in prostate cancer. J. Cell. Biochem.99, 333–344 (2006).
  • Heinein C, Chang C. The roles of androgen receptors and androgen-binding proteins in nongenomic androgen actions. Mol. Endocrinol.16, 2181–2187 (2002).
  • Balk S, Knudsen K. AR, the cell cycle, and prostate cancer. Nucl. Recept. Signal.6, e001 (2008).
  • Ruizeveld de Winter JA, Trapman J, Vermey M, Mulder E, Zegers ND, van der Kwast TH. Androgen receptor expression in human tissues: an immunohistochemical study. J. Histochem. Cytochem.39, 927–936 (1991).
  • Li R, Wheeler T, Dai H, Frolov A, Thompson T, Ayali G. High level of andorgen receptor is associated with aggressive cliniopathologic features and decreased biochemical recurrence-free survival in prostate cancer patients treated with radical prostatectomy. Am. J. Surg. Path.28, 928–934 (2004).
  • Mari R, Wang Q, Tarabolous C et al. Prognostic value of the androgen receptor and its coactivators in prostate cancer patients with D1 prostate cancer. Anticancer Res.28, 425–430 (2008).
  • Ricciardelli C, Choong C, Vivekanadan S et al. AR levels in prostate cancer epithelium and peritumoral stromal cells identify non-organ confined disease. Prostate63, 19–28 (2005).
  • Palazzolo I, Gliozzi A, Rusmini P et al. The role of the polyglutamine tract in androgen receptor. J. Steroid Biochem. Mol. Biol.108(3–5), 245–253 (2008).
  • Sasaki M, Tanaka Y, Perinchery G et al. Methylation and inactivation of estrogen, progesterone, and androgen receptors in prostate cancer. J. Natl Cancer Inst.94(5), 384–390 (2002).
  • Giovannucci E, Stampfer M, Krithivas K et al. The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proc. Natl Acad. Sci. USA94, 3320–3323 (1997).
  • Irvine R, Yu M, Ross R, Coetzee G. The CAG and GGC microsatellites of the androgen receptor gene are in linkage disequilibrium in men with prostate cancer. Cancer Res.55, 1937–1940 (1995).
  • Sircar K, Gottlieb B, Alvarado C et al. Androgen receptor CAG repeat length contraction in diseased and non-diseased prostatic tissues. Prostate Cancer Prostatic Dis.10(4), 360–368 (2007).
  • Taplin ME, Balk SP. Androgen receptor: a key molecule in the progression of prostate cancer to hormone independence. J. Cell. Biochem.91, 483–490 (2004).
  • Balic I, Graham ST, Troyer DA et al. Androgen receptor length polymorphism associated with prostate cancer risk in Hispanic men. J. Urol.168(5), 2245–2248 (2002).
  • Chamberlain N, Driver E, Miesfeld R. The length and location of the CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res.22, 3181–3186 (1994).
  • Choong C, Kemppainen J, Zhou Z, Wilson E. Reduced androgen receptor gene expression with first exon CAG repeat expansion. Mol. Endocrinol.10, 1527–1535 (1996).
  • Lange E, Sarmer A, Ray A et al. The androgen receptor CAG and GGN repeat polymorphisms and prostate cancer susceptibility in African American men: results from the Flints Men’s Health Study. J. Hum. Genet.53, 220–226 (2008).
  • Zeeger M, Kiemeney L, Nieder A, Ostrer H. How strong is the association between CAG and GGN repeat length polymorphism in the androgen receptor gene and prostate cancer risk? Cancer Epidemiol. Biomarkers Prev.13, 1765–1771 (2004).
  • Eisenberger M, Blumenstein B, Crawford E, Miller G, McLeod D. Bilateral orchiectomy with or without flutamide for metastatic prostate cancer. NEJM339, 1036–1042 (1998).
  • Moul J, Wu H, Sun L et al. Early versus delayed hormonal therapy for prostate specific antigen only recurrence of prostate cancer after radical prostatectomy. J. Urol.171, 1141–1147 (2004).
  • Ross R, Oh W, Xie W et al. Inherited variation in the androgen pathway is associated with the efficacy of androgen-deprivation therapy in men with prostate cancer. J. Clin. Oncol.26(6), 842–847 (2008).
  • Bubendorf L, Kononen J, Koivisto P et al. Survey of gene amplifications during prostate cancer progression by high-throughout fluorescence in situ hybridization on tissue microarrays. Cancer Res.59, 803–806 (1999).
  • Edwards J, Krishna N, Grigor K, Bartlett J. Androgen receptor gene amplification and protein expression in hormone refractory prostate cancer. Br. J. Cancer89, 552–556 (2003).
  • Ford OH, Gregory C, Kim D, Smitherman AB, Mohler J. Androgen receptor gene amplification and protein expression in recurrent prostate cancer. J. Urol.170, 1817–1821 (2003).
  • Koivisto P, Kononen J, Palmberg C et al. Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res.57, 314–319 (1997).
  • Linja M, Savinainen K, Saramaki O, Tammela T, Vessella R, Visakorpi T. Amplification and over expression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res.61, 3550–3555 (2001).
  • Visakorpi T, Hyytinen E, Koivisto P et al.In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat. Genet.9, 401–406 (1995).
  • Palmberg C, Koivisto P, Tammela TI, Kallioniemi O-P, Visakorpi T. Androgen receptor gene amplification at primary progression predicts response to combined androgen blockade as second line therapy for advanced prostate cancer. J. Urol.164, 1992–1995 (2000).
  • Veldscholte J, Kuiper G, Jenster G et al. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem. Biophys. Res. Commun.173, 534–540 (1990).
  • Gottlieb B, Beitel L, Wu J, Trifiro M. The androgen receptor gene mutations database (ARDB): 2004 update. Hum. Mutat.23, 527–533 (2004).
  • Gelmann E. Molecular biology of the androgen receptor. J. Clin. Oncol.20, 3001–3015 (2002).
  • Taplin M, Bubley G, Ko Y et al. Selection for androgen receptor mutations in prostate cancer treated with androgen antagonist. Cancer Res.59, 2511–2515 (1999).
  • Fenton M, Shuster T, Furtig A et al. Functional characterization of mutant androgen receptors from androgen independent prostate cancer. Clin. Cancer Res.3, 1383–1388 (1997).
  • Joyce R, Fenton M, Rode P et al. High dose bicalutamide for androgen independent prostate cancer: effect of prior hormonal therapy. J. Urol.159, 149–153 (1998).
  • Taplin ME, Rajeshkumar B, Halabi S et al. Androgen receptor mutations in androgen-independent prostate cancer: Cancer and Leukemia Group B Study 9663. J. Clin. Oncol.21, 2673–2678 (2003).
  • Miyamto H, Rahman M, Chang C. Molecular basis for antiandrogen withdrawal syndrome. J. Cell. Biochem.91, 3–12 (2004).
  • Culig Z, Hobisch A, Cronauer M et al. Mutant androgen receptor detected in an advanced-stage prostate carcinoma is activated by adrenal androgen and progesterone. Mol. Endocrinol.7, 1541–1550 (1993).
  • Culig Z, Hobisch A, Cronauer M et al. Activation of two mutant androgen receptors from human prostatic carcinoma by adrenal androgens and metabolic derivatives of testosterone. Cancer Detect. Prev.20, 68–75 (1996).
  • Zhao X, Malloy P, Krishnan A et al. Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nat. Med.6, 703–706 (2000).
  • Buchanan G, Yang M, Harris J et al. Mutations at the boundary of the hinge and ligand binding domain of the androgen receptor confer increased transactivation function. Mol. Endocrinol.15, 46–56 (2001).
  • Ceraline J, Cruchant M, Erdmann E et al. constitutive activation of the androgen receptor by a point mutation in the hinge region: a new mechanism for androgen-independent growth in prostate cancer. Int. J. Cancer108, 152–157 (2004).
  • Gregory C, He B, Johnson R et al. A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res.61, 4315–4319 (2001).
  • Halkidou K, Gnanapragasam V, Mehta P et al. Expression of Tip60, an androgen receptor coactivator, and its role in prostate cancer development. Oncogene22, 2466–2477 (2003).
  • Papaioannou M, Reeb C, Asim M, Dotzlaw H, Baniahmad A. Co-activator and co-repressor interplay on the human androgen receptor. Andrologia37, 211–213 (2005).
  • Ueda T, Bruchovsky N, Sadar M. Activation of the androgen receptor N-terminal domain by interleukin-6 via MAPK and STAT3 signal transduction pathways. J. Biol. Chem.277, 7076–7085 (2002).
  • Grossmann M, Huang H, Tindall D. Androgen receptor signaling in androgen-refractory prostate cancer. J. Natl Cancer Inst.93, 1687–1697 (2001).
  • Ford C, Skiba N, Bae H et al. Molecular basis for interactions of G proteins bg subunits with effectors. Science280, 1271–1274 (1998).
  • Kasbohm E, Guo R, Yowell C et al. Androgen receptor activation by Gs signaling in prostate cancer cells. J. Biol. Chem.280, 11583–11589 (2005).
  • Waxman J, Wass J, Hendry W et al. Treatment with gonadotropin-releasing hormone analogue in advanced prostatic cancer. BMJ286, 1309–1312 (1983).
  • Anderson J. The role of antiandrogen monotherapy in the treatment of prostate cancer. BJU Int.91, 455–461 (2003).
  • Small E, Ryan C. The case for secondary hormonal therapies in the chemotherapy age. J. Urol.176, S66–S71 (2006).
  • Gao W, Dalton J. Pharmacokinetics and pharmacodynamics of nonsteroidal androgen receptor ligands. Pharm. Res.23, 1641–1658 (2006).
  • Nakabayaski M, Regan M, Lifsey D et al. Efficacy of nilutamide as secondary hormone therapy in androgen independent prostate cancer. BJU Int.96, 783–786 (2005).
  • Scher H, Liebetz C, Kelly W et al. Bicalutamide for advanced prostate cancer: the natural versus treated history of disease. J. Clin. Oncol.15, 2928–2938 (1997).
  • Bohl C, Gao W, Miller D, Bell C, Dalton J. Structural basis for antagonism and resistance of bicalutamide in prostate cancer. Proc. Natl Acad. Sci. USA102, 6201–6206 (2005).
  • Small E, Halabi S, Dawson N et al. Antiandrogen withdrawal alone or in combination with ketoconazole in androgen-independent prostate cancer patients: a Phase III trial (CALGB 9583). J. Clin. Oncol.22, 1025–1033 (2004).
  • Pomerantz M, Manola J, Taplin M et al. Phase II study of low dose and high dose conjugated estrogen for androgen independent prostate cancer. J. Urol.177, 2146–2150 (2007).
  • D’Amico A, Kantoff P, Chen M. Aspirin and hormone therapy for prostate cancer. NEJM357(26), 2737–2738 (2007).
  • Bhanalaph T, Varkarakis M, Murphy G. Current status of bilateral adrenalectomy on advanced prostate carcinoma. Ann. Surg.179, 17–23 (1974).
  • Attard G, Belldegrun AS, deBono JS. Selective blockade of androgenic steroid synthesis by novel lyase inhibitors as a therapeutic strategy for treating metastatic prostate cancer. BJU Int.96, 1241–1246 (2005).
  • Miller W, Auchus R, Geller D. The regulation of 17, 20 lyase activity. Steroids62, 133–142 (1997).
  • Danila D, Rathkopf D, Fleisher M et al. Preliminary Phase II results of abiraterone acetate in patients with castration-resistant metastatic prostate cancer after failure of docetaxel-based chemotherapy. Genitourinary Cancers Symposium Proceedings Book. American Society of Clinical Oncology, VA, USA 97 (2008) (Abstract 3).
  • Reid A, Attard G, Molife R et al. Selective CYP17 inhibition with abiraterone acetate (AA) results in a high response rate (RR) in castration-resistant prostate cancer (CRPC) confirming the continued importance of targeting androgen receptor (AR) signaling. Genitourinary Cancers Symposium Proceedings Book. American Society of Clinical Oncology, VA, USA 120 (2008) (Abstract 50).
  • Thompson I, Goodman P, Tangen D et al. The influence of finasteride on the development of prostate cancer. NEJM349, 215–224 (2003).
  • Andriole G, Humphrey P, Ray P et al. Effect of the dual 5-reductase inhibitor dutasteride on markers of tumor regression in prostate cancer. J. Urol.172, 915–919 (2004).
  • Eisenberger M, Laufer M, Vogelzang N et al. Phase I and clinical pharmacology of a type I and II, 5-a-reductase inhibitor (LY320236) in prostate cancer: elevation of estradiol as possible mechanism of action. Urology63, 114–119 (2004).
  • Brown T. Nonsteroidal selective androgen receptor modulators (SARMs): designer androgen with flexible structures provide clinical promise. Endocrinology145(12), 5420–5428 (2004).
  • Prostate Cancer Trialists’ Collaborative Group. Maximum androgen blockade in advanced prostate cancer: an overview of the randomized trials. Lancet355, 1491–1498 (2000).
  • Samson D, Seidenfeld J, Schmitt B et al. Systemic review and meta-analysis of monotherapy compared with combined androgen blockade for patients with advanced prostate carcinoma. Cancer95, 361–376 (2002).
  • Baek S, Ohgi K, Nelson C et al. Ligand specific allosteric regulation of coactivator functions of androgen receptor in prostate cancer cells. Proc. Natl Acad. Sci.USA1033100–3105 (2006).
  • Furr B. Casodex: preclinical studies and controversies. Ann. NY Acad. Sci.761, 79–96 (1995).
  • Salvati M, Balog A, Wei D et al. Identification of a novel class of androgen receptor antagonists based on the bicyclic-1H-isoindole-1,3(2H)-dione nucleus. Bioorg. Med. Chem. Lett.15, 389–393 (2005).
  • Ellwood Y, Wonguipat J, Sawyers C. Transgenic mouse model for rapid pharmocodynamic evaluation of antiandrogens. Cancer Res.66, 10513–10516 (2006).
  • Scher HI, Beer TM, Higano CS et al. Phase I/II study of MDV3100 in patients with progressive castration resistant prostate cancer. J. Clin. Oncol.26(Suppl. 15S), 26 (2008) (Abstract 5006).
  • Handratta V, Vasaitis T, Njar V et al. Novel C-17-heteroaryl steroidal CYP17 inhibitors/antiandrogens: synthesis, in vitro biological activity, pharmacokinetics and antitumor activity in the LAPC4 human prostate xenograft model. J. Med. Chem.48, 2972–2984 (2005).
  • Schayowitxz A, Sabnis G, Njar V, Brodie A. Synergistic effect of a novel antiandrogen, VN/124-1, and signal transduction inhibitors in prostate cancer progression to hormone independence in vitro. Mol. Cancer Ther.7, 121–132 (2008).
  • Hodgson M, Astapova I, Cheng S et al. The androgen receptor recruits nuclear receptor corepressor (N-CoR) in the presence of mifepristone via its N and C termini revealing a novel molecular mechanism for androgen receptor antagonists. J. Biol. Chem.280, 6511–6519 (2005).
  • Taplin M, Manola J, Oh W et al. A Phase II trial of mifepristone (RU-486) in castration-resistant prostate cancer with correlative assessment of androgen-related hormones. BJU Int.101, 1084–1089 (2008).
  • Powers M, Workman P. Targeting of multiple signaling pathways by heat shock protein 90 molecular chaperone inhibitors. Endocr. Relat. Cancer13, S125–S136 (2006).
  • Prodromou C, Pearl L. Structure and functional relationships of Hsp 90. Curr. Cancer Drug Targets3, 301–323 (2003).
  • Banerji U, O’Donnell A, Scurr M et al. Phase I pharmacokinetic and pharmacodynamic study of 17-Allylamino, 17-demethoxygeldannmycin in patients with advanced malignancies. J. Clin. Oncol.23, 4152–4161 (2005).
  • Solit D, Scher H, Rosen N. Hsp90 as a therapeutic target in prostate cancer. Semin. Oncol.30, 709–716 (2003).
  • Goetz M, Toft D, Reid J et al. Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. J. Clin. Oncol.23, 1978–1087 (2005).
  • Grem J, Morrison G, Guo X et al. Phase I and pharmacologic study of 17-(allylamino)-17-demethoxygeldanamycin in adult patients with solid tumors. J. Clin. Oncol.23, 1885–1893 (2005).
  • Hollingshead M, Alley M, Burger A et al.In vivo antitumor efficacy of 17-DMAG (17-diethylaminoethylamino-17-demethoxygeldanamycin hydrochloride), a water soluable geldanancycin derivative. Cancer Chemother. Pharmacol.56, 115–125 (2005).
  • Dobosy JR, Roberts JL, Fu VX, Jarrard DF. The expanding role of epigenetics in the development, diagnoiss and treatment of prostate cancer and benign prostateic hyperplasia. J. Urol.177, 822–831 (2007).
  • Minucci S, Pelicci G. Histone deacetylase inhibitiors and the promise of epigenetic (and more) treatments for cancer. Nat. Rev. Cancer6, 38–51 (2006).
  • Qian D, Kato Y, Shabbeer S et al. Targeting tumor angiogenesis with histone deacetylase inhibitors: the hydroxamic acid derivative LBH589. Clin. Cancer Res.12, 634–642 (2006).
  • Dashwood R, Ho E. Dietary histone deacetylase inhibitors: from cells to mice to man. Semin. Cancer Biol.17, 363–369 (2007).
  • Wedel S, Sparatore A, Soldato P et al. New histone deacetylase inhibitors as potential therapeutic tools for advanced prostate cancer. J. Cell Mol. Med. (2008). (Epub ahead of print).
  • Carducci M, Gilbert J, Bowling M et al. A Phase I clinical and pharmacological evaluation of sodium phenylbutyrate on an 120-h infusion schedule. Clin. Cancer Res.7, 3047–3055 (2001).
  • Kelly W, Richon V, O’Connor O et al. Phase I clinical trial of histone deactylase inhibitor: suberylanilide hydroxamic acid (SAHA). Clin. Cancer Res.9, 3578–3588 (2003).
  • Schayowitz A, Sabnis G, Njar V, Brodie A. Synergistic effect of a novel antiandrogen VN/124–1 and signal transduction inhibition in prostate cancer progression to hormone independence in vitro. Mol. Cancer Ther.7, 121–132 (2008).
  • Morris M, Reuter V, Kelly W et al. HER-2 profiling and targeting in prostate carcinoma. Cancer94, 980–986 (2002).
  • Nicholson B, Gulding K, Conaway M et al. Combined antiangiogenesis and androgen deprivation therapy for prostate cancer: a promising therapeutic application. Clin. Cancer Res.10, 8728–8734 (2004).
  • Cai Y, Lee Y, Li G et al. A new prostate cancer therapeutic approach: combination of androgen ablation with COX-2 inhibition. Int. J. Cancer123(1), 195–201 (2008).
  • Solit D, Egorin M, Valentin G et al. Phase I pharmacokinetic and pharmacodynamic trial of docetaxel and 17AAG (17-allylamino-17-demethoxygeladanamycin). J. Clin. Oncol.22(203), (2004) (Abstract 3032).
  • Sankaranarayanapillai M, Tong W, Maxwell D et al. Detection of histone deacetylase inhibition by nonivasive magnetic resonance spectroscopy. Mol. Cancer Ther.5, 1325–1334 (2006).
  • Marquis J, Hillier S, Dinaut A et al. Disruption of gene expression and induction of apoptosis in prostate cancer cells by a DNA-damaging agent tethered to an androgen receptor ligand. Chem. Biol.12, 779–787 (2005).
  • Haag P, Bektic J, Bartsch G, Klocker H, Eder I. Androgen receptor down regulation by small interference RNA induces cell growth inhibition in androgen sensitive as well as in androgen independent prostate cancer cells. J. Steroid Biochem. Mol. Biol.96, 251–258 (2005).
  • Gao W, Bohl C, Dalton J. Chemical and structural biology of androgen receptor. Chem. Rev.105, 3352–3370 (2005).
  • Page ST, Lin DW, Mostaghel EA et al. Matsumoto AM, Bremner WJ. Persistent intraprostatic androgen concentrations after medical castration in healthy men. J. Clin. Endocrinol. Metab.91, 3850–3856 (2006)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.