208
Views
22
CrossRef citations to date
0
Altmetric
Review

Multifunctional nanoparticles for prostate cancer therapy

, , , , , & show all
Pages 211-221 | Published online: 10 Jan 2014

References

  • Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics. CA Cancer J. Clin.57(1), 43–66 (2007).
  • Rubin MA. Targeted therapy of cancer: new roles for pathologists–prostate cancer. Mod. Pathol.21(2), S44–S55 (2008).
  • Gao J, Arnold JT, Isaacs JT. Conversion from a paracrine to an autocrine mechanism of androgen-stimulated growth during malignant transformation of prostatic epithelial cells. Cancer Res.61(13), 5038–5044 (2001).
  • Culig Z, Hobisch A, Cronauer MV et al. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res.54(20), 5474–5478 (1994).
  • Yeh S, Lin HK, Kang HY, Thin TH, Lin MF, Chang C. From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc. Natl Acad. Sci. USA96(10), 5458–5463 (1999).
  • Damber JE, Aus G. Prostate cancer. Lancet371(9625), 1710–1721 (2008).
  • Smith JR, Freije D, Carpten JD et al. Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genome-wide search. Science274(5291), 1371–1374 (1996).
  • Deutsch E, Maggiorella L, Eschwege P et al. Environmental, genetic, and molecular features of prostate cancer. Lancet Oncol.5(5), 303–313 (2004).
  • Porkka KP, Visakorpi T. Molecular mechanisms of prostate cancer. Eur. Urol.45(6), 683–691 (2004).
  • Dong JT. Prevalent mutations in prostate cancer. J. Cell Biochem.97(3), 433–447 (2006).
  • Edwards SM, Eeles RA. Unravelling the genetics of prostate cancer. Am. J. Med. Genet. C. Semin. Med. Genet.129(1), 65–73 (2004).
  • Tomlins SA, Rhodes DR, Perner S et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science310(5748), 644–648 (2005).
  • Maitland NJ, Collins AT. Prostate cancer stem cells: a new target for therapy. J. Clin. Oncol.26(17), 2862–2870 (2008).
  • Balk SP, Knudsen KE. AR, the cell cycle, and prostate cancer. Nucl. Recept. Signal.6(1), 1–12 (2008).
  • Wadih A, Trepel M, Zetter BR, Pasqualini R. Innovations in prostate cancer research. Cancer Res.68(3), 635–638 (2008).
  • Miller DC, Gruber SB, Hollenbeck BK, Montie JE, Wei JT. Incidence of initial local therapy among men with lower-risk prostate cancer in the united states. J. Natl Cancer Inst.98(16), 1134–1141 (2006).
  • Patel HR, Amodeo A, Joseph JV. Salvage laparoscopic surgery in advanced prostate cancer: is it possible or beneficial? Expert Rev. Anticancer Ther.8(9), 1509–1513 (2008).
  • Aus SG. Cryosurgery for prostate cancer. J. Urol.180(5), 1882–1883 (2008).
  • D’amico AV, Whittington R, Malkowicz SB et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA280(11), 969–974 (1998).
  • Bittner N, Merrick GS, Wallner KE, Butler WM. Interstitial brachytherapy should be standard of care for treatment of high-risk prostate cancer. Oncology22(9), 995–1004 (2008).
  • Wo J, Zietman AL. Why does androgen deprivation enhance the results of radiation therapy? Urol. Oncol.26(5), 522–529 (2008).
  • Chalasani V, Iansavichene AE, Lock M, Izawa JI. Salvage radiotherapy following radical prostatectomy. Int. J. Urol. (2008) (Epub ahead of print).
  • Tharp M, Hardacre M, Bennett R, Jones WT, Stuhldreher D, Vaught J. Prostate high-dose-rate brachytherapy as salvage treatment of local failure after previous external or permanent seed irradiation for prostate cancer. Brachytherapy7(3), 231–236 (2008).
  • EL Hayek OR, Alfer WJ, Reggio E et al. Prostate cryoablation: prospective analysis comparing high-and low-risk prostate cancer outcomes. Urol. Int.81(2), 186–190 (2008).
  • Sahoo SK, Ma W, Labhasetwar V. Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer. Int. J. Cancer112(2), 335–340 (2004).
  • Hadaschik BA, Gleave ME. Therapeutic options for hormone-refractory prostate cancer in 2007. Urol. Oncol.25(5), 413–419 (2007).
  • Yuan F. Transvascular drug delivery in solid tumors. Semin. Radiat. Oncol.8(3), 164–175 (1998).
  • Wang A, Gu F, Zhang L et al. Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opin. Biol. Ther.8(8), 1063–1070 (2008).
  • Liu B, Conrad F, Cooperberg MR, Kirpotin DB, Marks JD. Mapping tumor epitope space by direct selection of single-chain Fv antibody libraries on prostate cancer cells. Cancer Res.64(2), 704–710 (2004).
  • Farokhzad OC, Sangyong J, Langer R. Aptamer and cancer nanotechnology. In: Nanotechnology for Cancer Therapy. Amiji MM (Ed.). CRC Press Publisher, MA, USA 289–313 (2006).
  • Hattori Y, Maitani Y. Folate-linked lipid-based nanoparticles for targeted gene delivery. Curr. Drug Deliv.2(3), 243–252 (2005).
  • Weissleder R, Kelly K, Sun EY, Shtatland T, Josephson L. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat. Biotechnol.23(11), 1418–1423 (2005).
  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol.2(12), 751–760 (2007).
  • Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polymeric nanospheres. Science263(5153), 1600–1603 (1994).
  • Gref R, Luck M, Quellec P et al. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf. B Biointerfaces18(3–4), 301–313 (2000).
  • Gu F, Zhang L, Teply BA et al. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc. Natl Acad. Sci. USA105(7), 2586–2591 (2008).
  • Cheng J, Teply BA, Sherifi I et al. Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials28(5), 869–876 (2007).
  • Levy-Nissenbaum E, Radovic-Moreno AF, Wang AZ, Langer R, Farokhzad OC. Nanotechnology and aptamers: applications in drug delivery. Trends Biotechnol.26(8), 442–449 (2008).
  • Ng EW, Shima DT, Calias P, Cunningham ET, Guyer DR, Adamis AP. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat. Rev. Drug Discov.5(2), 123–132 (2006).
  • Green LS, Jellinek D, Bell C et al. Nuclease-resistant nucleic acid ligands to vascular permeability factor/vascular endothelial growth factor. Chem. Biol.2(10), 683–695 (1995).
  • Jackson MW, Roberts JS, Heckford SE et al. A potential autocrine role for vascular endothelial growth factor in prostate cancer. Cancer Res.62(3), 854–859 (2002).
  • Latil A, Bieche I, Pesche S. VEGF overexpression in clinically localized prostate tumors and neuropilin-1 overexpression in metastatic forms. Int. J. Cancer.89(2), 167–171 (2000).
  • Chu TC, Marks JW 3rd, Lavery LA. Aptamer: toxin conjugates that specifically target prostate tumor cells. Cancer Res.66(12), 5989–5992 (2006).
  • Zhang L, Chan JM, Gu FX et al. Self assembled lipid-polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano.2(8), 1696–1702 (2008).
  • Abouelfadel Z, Crawford ED. Leuprorelin depot injection: patient considerations in the management of prostatic cancer. Ther. Clin. Risk Manag.4(2), 513–526 (2008).
  • Jang SH, Wientjes MG, LuD, Au JLS. Drug delivery and transport to solid tumors. Pharm. Res.20(9), 1337–1350 (2003).
  • Stern JM, Stanfield J, Kabbani W, Hsieh JT, Cadeddu JA. Selective prostate cancer thermal ablation with laser activated gold nanoshells. J. Urol.179(2), 748–753 (2008).
  • Martina MS, Fortin JP, Fournier L et al. Magnetic targeting of rhodamine-labeled superparamagnetic liposomes to solid tumors: in vivo tracking by fibered confocal fluorescence microscopy. Mol. Imaging6(2), 140–146 (2007).
  • Theodossiou TA, Galanou MC, Paleos CM. Novel amiodarone–doxorubicin cocktail liposomes enhance doxorubicin retention and cytotoxicity in DU145 human prostate carcinoma cells. J. Med. Chem.51(19), 6067–6074 (2008).
  • Kawai N, Futakuchi M, Yoshida T et al. Effect of heat therapy using magnetic nanoparticles conjugated with cationic liposomes on prostate tumor in bone. Prostate68(7), 784–792 (2008).
  • Stauffer PR. Evolving technology for thermal therapy of cancer. Int. F. Hyperthermia21(8), 731–744 (2005).
  • Johannsen M, Gneveckow U, Taymoorian K et al. Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective Phase I trial. Int. J. Hyperthermia23(3), 315–323 (2007).
  • Lehmann J, Natarajan A, Denardo GL et al. Nanoparticle thermotherapy and external beam radiation therapy for human prostate cancer cells. Cancer Biother. Radiopharm.23(2), 265–271 (2008).
  • Ito A, Shinkai M, Honda H, Kobayashi T. Medical application of functionalized magnetic nanoparticles. J. Biosci. Bioeng.100(1), 1–11 (2005).
  • Wilhelm C, Fortin JP, Gazeau P. Tumour cell toxicity of intracellular hyperthermia mediated by magnetic nanoparticles. J. Nanosci. Nanotechnol.7(8), 2933–2937 (2007).
  • Dass CR, Burton MA. Lipoplexes and tumours. A review. J. Pharm. Pharmacol.51(7), 755–770 (1999).
  • Djavan B, Nasu Y. Prostate cancer gene therapy – what have we learned and where are we going? Rev. Urol.3(4), 179–186 (2001).
  • Fujiwara T, Cai DW, Georges RN, Mukhopadhyay T, Grimm EA, Roth JA. Therapeutic effect of a retroviral wild-type p53 expression vector in an orthotopic lung cancer model.J. Natl Cancer Inst.86(19), 1458–1462 (1994).
  • Gotoh A, Kao C, Ko SC, Hamada K, Liu TJ, Chung LW. Cytotoxic effects of recombinant adenovirus p53 and cell cycle regulator genes (p21 WAF1/C1P1 and p16CDKN4) in human prostate cancers. J. Urol.158(2), 636–641 (1997).
  • Steinberg J, Oyasu R, Lang S et al. Intracellular levels of SGP-2(clusterin) correlate with tumor grade in prostate cancer. Clin. Cancer Res.3(10), 1707–1711 (1997).
  • Zellweger T, Chi K, Miyake H et al. Enhanced radiation sensitivity in prostate cancer by inhibition of the cell survival protein clusterin. Clin. Cancer Res.8(10), 3276–3284 (2002).
  • Chi KN, Eisenhauer E, Fazli L et al. Phase I pharmacokinetic and pharmacodynamic study of OGX-011, a 2>29>methoxyethyl antisense oligonucleotide to clusterin, in patients with localized prostate cancer. J. Natl Cancer Inst.97(17), 1287–1296 (2005).
  • Fan H, Villegas C, Huang A et al. The mammalian ribonucleotide reductase R2 component cooperates with a variety of oncogenes in mechanisms of cellular transformation. Cancer Res.58(8), 1650–1653 (1998).
  • Sridhar SS, Canil CM, Hotte SJ et al. A Phase II study of the antisense oligonucleotide GTI-2040 plus docetaxel and prednisone as first line treatment in hormone refractory prostate cancer (HRPC). J. Clin. Oncol.24(18S), 13015 (2006).
  • Concannon CG, Gorman AM, Samali A. On the role of Hsp27 in regulating apoptosis. Apoptosis8(1), 61–70 (2003).
  • Schwab G, Chavany C, Duroux I et al. Antisense oligonucleotides adsorbed to polyalkylcyanoacrylate nanoparticles specifically inhibit mutated Ha-ras-mediated cell proliferation and tumorigenicity in nude mice. Proc. Natl Acad. Sci. USA91(22), 10460–10464 (1994).
  • Peng W, Anderson DG, Bao Y et al. Nanoparticulate delivery of suicide DNA to murine prostate and prostate tumors. Prostate67(8), 855–862 (2007).
  • Chumakova OV, Liopo AV, Andreev VG et al. Composition of PLGA and PEI/DNA nanoparticles improves ultrasound-mediated gene delivery in solid tumors in vivo. Cancer Lett.261(2), 215–225 (2008).
  • De Smedt SC, Demeester SCJ, Hennink WE. Cationic polymer based gene delivery systems. Pharm. Res.17(2), 113–126 (2000).
  • Prabha S, Labhasetwar V. Critical determinants in PLGA/PLA nanoparticle-mediated gene expression. Pharm. Res.21(2), 354–364 (2004).
  • Hattori Y, Maitani Y. Low-molecular-weight polyethylenimine enhanced gene transfer by cationic cholesterol-based nanoparticle vector. Biol. Pharm. Bull.30(9), 1773–1778 (2007).
  • Tsai H, Werber J, Davia MO et al. Reduced connexin 43 expression in high grade, human prostatic adenocarcinoma cells. Biochem. Biophys. Res. Commun.227(1), 64–69 (1996).
  • Takei Y, Kadomatsu K, Yuzawa Y et al. A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Res.64(10), 3365–3370 (2004).
  • Pal A, Ahmad A, Khan S et al. Systemic delivery of RafsiRNA using cationic cardiolipin liposomes silences Raf-1 expression and inhibits tumor growth in xenograft model of human prostate. Int. J. Oncol.26(4), 1087–1091 (2005).
  • Li SD, Chen YC, Hackett MJ, Huang L. Tumor-targeted delivery of siRNA by self-assembled nanoparticles. Mol. Ther.16(1), 163–169 (2008).
  • Teixeira AL, Ribeiro R, Cardoso D et al. Genetic polymorphism in EGFR is associated with prostate cancer aggressiveness and progression-free interval in androgen blockade-treated patients. Clin. Cancer Res.14(11), 3367–3371 (2008).
  • Lechardeur D, Lukacs GL. Intracellular barriers to non-viral gene transfer. Curr. Gene. Ther.2(2), 183–194 (2002).
  • Shubik P. Vascularization of tumors: a review. J. Cancer Res. Clin. Oncol.103(3), 211–226 (1982).
  • Heuser LS, Miller FN. Differential macromolecular leakage from the vasculature of tumors. Cancer57(3), 461–464 (1986).
  • Jain RK. Delivery of novel therapeutic agents in tumors: physiological barriers and strategies. J. Natl Cancer Inst.81(8), 570–576 (1989).
  • Netti PA, Berk DA, Swartz MA, Grodzinsky AJ, Jain RK. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res.60(9), 2497–2503 (2000).
  • Jain RK. Transport of molecules in the tumor interstitium: a review. Cancer Res.47(12), 3039–3051 (1987).
  • Moghimi SM. Passive targeting of solid tumor: pathophysiological principles and physicochemical aspects of delivery systems. In: Nanotechnology for Cancer Therapy. Amiji MM (Ed.). CRC Press Publisher, MA, USA 11–16 (2006).
  • Szebeni J, Muggia FM, Alving CR. Complement activation by cremophor EL as a possible contributor to hypersensitivity to paclitaxel: an in vitro study. J. Natl Cancer Inst.90(4), 300–306 (1998).
  • Moghimi SM, Hamad I, Andresen TL, Jorgensen K, Szebeni J. Methylation of the phosphate oxygen moiety of phospholipid-methoxy (polyethylene glycol)conjugate prevents PEGylated liposome-mediated complement activation and anaphylatoxin production. FASEB J.20(14), 2591–2593 (2006).
  • McNamara II JO, Andrechek ER, Wang Y et al. Cell type-specific delivery of siRNA with aptamer-siRNA chimeras. Nat. Biotechnol.24(8), 1005–1015 (2006).
  • Weng KC, Noble CO, Papahadjopoulos-Sternberg B et al. Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in vitroand in vivo. Nano Lett.8(9), 2851–2857 (2008).
  • Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol. Pharm.5(4), 487–495 (2008).
  • Salvador-Morales C, Basiuk EV, Green ML, Sim RB. Effects of covalent functionalization on the biocompatibility characteristics of multi-walled carbon nanotubes. J. Nanosci. Nanotechnol.8(5), 2347–2356 (2008).
  • Petrylak D. Therapeutic options in androgen-independent prostate cancer: building on docetaxel. BJU Int.96(2), 41–46 (2005).
  • Concannon CG, Gorman AM, Samali A. On the role of Hsp27 in regulating apoptosis. Apoptosis8(1), 61–70 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.