456
Views
41
CrossRef citations to date
0
Altmetric
Reviews

Nucleic acid detection technologies and marker molecules in bacterial diagnostics

, &

References

  • Jasson V, Jacxsens L, Luning P, et al. Alternative microbial methods: an overview and selection criteria. Food Microbiol 2010;27(6):710-30
  • Barken K, Haagensen J, Tolker-Nielsen T. Advances in nucleic acid-based diagnostics of bacterial infections. Clin Chim Acta 2007;384(1-2):1-11
  • Kostic T, Francois P, Bodrossy L, Schrenzel J. Oligonucleotide and DNA microarrays: versatile tools for rapid bacterial diagnostics. In: Zourob M, Elwary S, Turner A, editors. Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems. Springer, New York, NY, US; 2008. p. 629-58
  • Lazcka O, Del Campo F, Muñoz F. Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron 2007;22(7):1205-17
  • Velusamy V, Arshak K, Korostynska O, et al. An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv 2010;28(2):232-54
  • Yang S, Rothman RE. Review PCR-based diagnostics for infectious diseases : uses, limitations, and future applications in acute-care settings. Lancet Infect Dis 2004;4:337-48
  • Andreotti P, Ludwig G, Peruski A, et al. Immunoassay of infectious agents. Biotechniques 2003;35(4):850-9
  • Banada PP, Bhunia AK. Antibodies and immunoassays for detection of bacterial pathogens. In: Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems. Springer, New York, NY, US; 2008. p. 567-602
  • Ludwig W. Nucleic acid techniques in bacterial systematics and identification. Int J Food Microbiol 2007;120(3):225-36
  • O’Connor L, Glynn B. Recent advances in the development of nucleic acid diagnostics. Expert Rev Med Devices 2010;7(4):529-39
  • Sibley C, Peirano G, Church D. Molecular methods for pathogen and microbial community detection and characterization: Current and potential application in diagnostic microbiology. Infect Genet Evol 2012;12(3):505-21
  • Birch L, Dawson C, Cornett J, Keer J. A comparison of nucleic acid amplification techniques for the assessment of bacterial viability. Lett Appl Microbiol 2001;33(4):296-301
  • Keer J, Birch L. Molecular methods for the assessment of bacterial viability. J Microbiol Methods 2003;53(2):175-83
  • DeLong E, Wickham G, Pace N. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 1989;243(4896):1360-3
  • Amann R, Krumholz L, Stahl D. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 1990;172(2):762-70
  • Amann R, Fuchs B, Behrens S. The identification of microorganisms by fluorescence in situ hybridisation. Curr Opin Biotechnol 2001;12(3):231-6
  • Kempf V, Trebesius K, Autenrieth I. Fluorescent In situ hybridization allows rapid identification of microorganisms in blood cultures. J Clin Microbiol 2000;38(2):830-8
  • Peters R, Savelkoul P, Simoons-Smit A, et al. Faster Identification of Pathogens in Positive Blood Cultures by Fluorescence In Situ Hybridization in Routine Practice. J Clin Microbiol 2006;44(1):119-23
  • Schmid M, Lehner A, Stephan R, et al. Development and application of oligonucleotide probes for in situ detection of thermotolerant Campylobacter in chicken faecal and liver samples. Int J Food Microbiol 2005;105(2):245-55
  • Amann R, Fuchs B. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Rev Microbiol 2008;6(5):339-48
  • Wagner M, Haider S. New trends in fluorescence in situ hybridization for identification and functional analyses of microbes. Curr Opin Biotechnol 2012;23(1):96-102
  • Saiki RK, Scharf S, Faloona F, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 1985;230(4732):1350-4
  • Espy M, Uhl J, Sloan L, et al. Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin Microbiol Rev 2006;19(1):165-256
  • Postollec F, Falentin H, Pavan S, et al. Recent advances in quantitative PCR (qPCR) applications in food microbiology. Food Microbiol 2011;28(5):848-61
  • Uhl J, Adamson S, Vetter E, et al. Comparison of lightcycler PCR, rapid antigen immunoassay, and culture for detection of group a streptococci from throat swabs. J Clin Microbiol 2003;41(1):242-9
  • Thurman K, Warner A, Cowart K, et al. Detection of Mycoplasma pneumoniae, Chlamydia pneumoniae, and Legionella spp. in clinical specimens using a single-tube multiplex real-time PCR assay. Diagn Microbiol Infect Dis 2011;70(1):1-9
  • Klein P, Juneja V. Sensitive detection of viable Listeria monocytogenes by reverse transcription-PCR. Appl Environ Microbiol 1997;63(11):4441-8
  • Fey A, Eichler S, Flavier S, et al. Establishment of a real-time PCR-based approach for accurate quantification of bacterial RNA targets in water, using salmonella as a model organism. Appl Environ Microbiol 2004;70(6):3618-23
  • Weile J, Knabbe C. Current applications and future trends of molecular diagnostics in clinical bacteriology. Anal Bioanal Chem 2009;394(3):731-42
  • Schuller M, Sloots TP, James GS, et al., editors. PCR for clinical microbiology. Springer, Netherlands, NL; 2010
  • Maurer J. Rapid detection and limitations of molecular techniques. Annu Rev Food Sci Technol 2011;2:259-79
  • Compton J. Nucleic acid sequence-based amplification. Nature 1991;350(6313):91-2
  • Mader A, Riehle U, Brandstetter T, et al. Microarray-based amplification and detection of RNA by nucleic acid sequence based amplification. Anal Bioanal Chem 2010;397(8):3533-41
  • Loens K, Beck T, Goossens H, et al. Development of conventional and real-time NASBA for the detection of Legionella species in respiratory specimens. J Microbiol Methods 2006;67(3):408-15
  • O’Grady J, Lacey K, Glynn B, et al. tmRNA--a novel high-copy-number RNA diagnostic target--its application for Staphylococcus aureus detection using real-time NASBA. FEMS Microbiol Lett 2009;301(2):218-23
  • Scheler O, Kaplinski L, Glynn B, et al. Detection of NASBA amplified bacterial tmRNA molecules on SLICSel designed microarray probes. BMC Biotechnol 2011;11(1):17
  • Chang C-C, Chen C-C, Wei S-C, et al. Diagnostic devices for isothermal nucleic acid amplification. Sensors 2012;12(6):8319-37
  • Severgnini M, Cremonesi P, Consolandi C, et al. Advances in DNA microarray technology for the detection of foodborne pathogens. Food Bioprocess Technol 2011;4(6):936-53
  • Miller M, Tang Y-W. Basic concepts of microarrays and potential applications in clinical microbiology. Clin Microbiol Rev 2009;22(4):611-33
  • Leski T, Malanoski A, Stenger D, Lin B. Target amplification for broad spectrum microbial diagnostics and detection. Future Microbiol 2010;5(2):191-203
  • Chandler D, Newton G, Small J, Daly D. Sequence versus structure for the direct detection of 16S rRNA on planar oligonucleotide microarrays. Appl Environ Microbiol 2003;69(5):2950-8
  • Small J, Call D, Brockman F, et al. Direct Detection of 16S rRNA in Soil Extracts by Using Oligonucleotide Microarrays. Appl Environ Microbiol 2001;67(10):4708-16
  • Kaplinski L, Scheler O, Parkel S, et al. Detection of tmRNA molecules on microarrays at low temperatures using helper oligonucleotides. BMC Biotechnol 2010;10:34
  • Anthony R, Brown T, French G. Rapid diagnosis of bacteremia by universal amplification of 23S ribosomal DNA followed by hybridization to an oligonucleotide array. J Clin Microbiol 2000;38(2):781-8
  • Volokhov D, Rasooly A, Chumakov K, Chizhikov V. Identification of Listeria Species by Microarray-Based Assay. J Clin Microbiol 2002;40(12):4720-8
  • Panicker G, Call D, Krug M, Bej A. Detection of Pathogenic Vibrio spp. in Shellfish by Using Multiplex PCR and DNA Microarrays. Appl Environ Microbiol 2004;70(12):7436-44
  • Weber D, Sahm K, Polen T, et al. Oligonucleotide microarrays for the detection and identification of viable beer spoilage bacteria. J Appl Microbiol 2008;105(4):951-62
  • Scheler O, Glynn B, Parkel S, et al. Fluorescent labeling of NASBA amplified tmRNA molecules for microarray applications. BMC Biotechnol 2009;9:45
  • Dunbar S. Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Clin Chim Acta 2006;363(1-2):71-82
  • Gastaldelli M, Stefani E, Lettini A, Pozzato N. Multiplexed typing of Mycobacterium avium subsp. paratuberculosis types I, II, and III by Luminex xMAP suspension array. J Clin Microbiol 2011;49(1):389-91
  • Schweighardt A, Battaglia A, Wallace M. Detection of Anthrax and Other Pathogens Using a Unique Liquid Array Technology. J Forensic Sci 2013; In press
  • Mikhailovich V, Gryadunov D, Kolchinsky A, et al. DNA microarrays in the clinic: infectious diseases. Bioessays 2008;30(7):673-82
  • Dalma-Weiszhausz D, Warrington J, Tanimoto E, Miyada C. The affymetrix GeneChip platform: an overview. Methods Enzymol 2006;410(06):3-28
  • Wilson W, Strout C, DeSantis T, et al. Sequence-specific identification of 18 pathogenic microorganisms using microarray technology. Mol Cell Probes 2002;16(2):119-27
  • Gardner S, Jaing C, McLoughlin K, Slezak T. A microbial detection array (MDA) for viral and bacterial detection. BMC Genomics 2010;11(1):668
  • Berthet N, Dickinson P, Filliol I, et al. Massively parallel pathogen identification using high-density microarrays. Microb Biotechnol 2008;1(1):79-86
  • Biosensors World Congress. Available from: www.biosensors-congress.elsevier.com
  • Arora P, Sindhu A, Dilbaghi N, Chaudhury A. Biosensors as innovative tools for the detection of food borne pathogens. Biosens Bioelectron 2011;28(1):1-12
  • O’Sullivan C, Guilbault G. Commercial quartz crystal microbalances – theory and applications. Biosens Bioelectron 1999;14(8-9):663-70
  • Mo X-T, Zhou Y-P, Lei H, Deng L. Microbalance-DNA probe method for the detection of specific bacteria in water. Enzyme Microb Technol 2002;30:583-9
  • Wu V, Chen S-H, Lin C-S. Real-time detection of Escherichia coli O157:H7 sequences using a circulating-flow system of quartz crystal microbalance. Biosens Bioelectron 2007;22(12):2967-75
  • Hwang K, Lee S, Eom K, et al. Nanomechanical microcantilever operated in vibration modes with use of RNA aptamer as receptor molecules for label-free detection of HCV helicase. Biosens Bioelectron 2007;23(4):459-65
  • McKendry R, Zhang J, Arntz Y, et al. Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proc Natl Acad Sci USA 2002;99(15):9783-8
  • Palchetti I, Mascini M. Amperometric biosensors for pathogenic bacteria detection. In: Zourob M, Elwary S, Turner A, editors. Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems. Springer, New York, NY, US; 2008. p. 299-312
  • Wu J, Chumbimuni-Torres K, Galik M, et al. Potentiometric detection of DNA hybridization using enzyme-induced metallization and a silver ion selective electrode. Anal Chem 2009;81(24):10007-12
  • Kaatz M, Schulze H, Ciani I, et al. Alkaline phosphatase enzymatic signal amplification for fast, sensitive impedimetric DNA detection. Analyst 2012;137(1):59-63
  • Corrigan D, Schulze H, Henihan G, et al. Impedimetric detection of single-stranded PCR products derived from methicillin resistant Staphylococcus aureus (MRSA) isolates. Biosens Bioelectron 2012;34(1):178-84
  • Luo C, Tang H, Cheng W, et al. A sensitive electrochemical DNA biosensor for specific detection of Enterobacteriaceae bacteria by Exonuclease III-assisted signal amplification. Biosens Bioelectron 2013;48:132-7
  • Tudos A, Schasfoort R. Introduction to surface plasmon resonance. In: Handbook of surface plasmon resonance. 2008. p. 1-14
  • Cooper M. Label-free screening of bio-molecular interactions. Anal Bioanal Chem 2003;377(5):834-42
  • Wang J, Luo Y, Zhang B, et al. Rapid label-free identification of mixed bacterial infections by surface plasmon resonance. J Transl Med 2011;9(1):85
  • Nelson BP, Grimsrud T, Liles M, et al. Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal Chem 2001;73(1):1-7
  • Bailey R, Washburn A, Qavi A, et al. A robust silicon photonic platform for multiparameter biological analysis. In: Proceedings of SPIE. 2009. p. 72200N-72200N–6
  • Genalyte, Inc. Available from: www.genalyte.com
  • Scheler O, Kindt J, Qavi A, et al. Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators. Biosens Bioelectron 2012;36(1):56-61
  • Woo P, Lau S, Teng J, et al. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin Microbiol Infect 2008;14(10):908-34
  • Guschin D, Mobarry B, Proudnikov D, et al. Oligonucleotide microchips as genosensors for determinative and environmental studies in microbiology. Appl Environ Microbiol 1997;63(6):2397-402
  • Salipante S, Sengupta D, Hoogestraat D, et al. Molecular Diagnosis of Actinomadura madurae infection by 16S rRNA Deep Sequencing. J Clin Microbiol 2013;51(12):4262-5
  • Petti CA. Detection and identification of microorganisms by gene amplification and sequencing. Clin Infect Dis 2007;44(8):1108-14
  • Glazunova O, Raoult D, Roux V. Partial sequence comparison of the rpoB, sodA, groEL and gyrB genes within the genus Streptococcus. Int J Syst Evol Microbiol 2009;59(Pt 9):2317-22
  • Yamamoto S, Harayama S. PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of pseudomonas putida strains. Appl Environ Microbiol 1995;61(10):3768
  • Weng F, Chiou C, Lin P, Yang S. Application of recA and rpoB sequence analysis on phylogeny and molecular identification of Geobacillus species. J Appl Microbiol 2009;107(2):452-64
  • Schönhuber W, Le Bourhis G, Tremblay J, et al. Utilization of tmRNA sequences for bacterial identification. BMC Microbiol 2001;1:20
  • Mollet C, Drancourt M, Raoult D. rpoB sequence analysis as a novel basis for bacterial identification. Mol Microbiol 1997;26(5):1005-11
  • Martens M, Weidner S, Linke B, et al. A prototype taxonomic microarray targeting the rpsA housekeeping gene permits species identification within the rhizobial genus Ensifer. Syst Appl Microbiol 2007;30(5):390-400
  • Case R, Boucher Y, Dahllöf I, et al. Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Appl Environ Microbiol 2007;73(1):278-88
  • Kilian M, Poulsen K, Blomqvist T, et al. Evolution of Streptococcus pneumoniae and its close commensal relatives. PLoS ONE 2008;3(7):e2683
  • Hong B-X, Jiang L-F, Hu Y-S, et al. Application of oligonucleotide array technology for the rapid detection of pathogenic bacteria of foodborne infections. J Microbiol Methods 2004;58(3):403-11
  • Milyutina I, Bobrova V, Matveeva E, et al. Intragenomic heterogeneity of the 16S rRNA-23S rRNA internal transcribed spacer among Pseudomonas syringae and Pseudomonas fluorescens strains. FEMS Microbiol Lett 2004;239(1):17-23
  • Gürtler V. The role of recombination and mutation in 16S-23S rDNA spacer rearrangements. Gene 1999;238(1):241-52
  • García-Martínez J, Bescós I, Rodríguez-Sala J, Rodríguez-Valera F. RISSC: a novel database for ribosomal 16S-23S RNA genes spacer regions. Nucleic Acids Res 2001;29(1):178-80
  • Lenz O, Beran P, Fousek J, Mráz I. A microarray for screening the variability of 16S-23S rRNA internal transcribed spacer in Pseudomonas syringae. J Microbiol Methods 2010;82(1):90-4
  • Keiler K, Shapiro L, Williams K. tmRNAs that encode proteolysis-inducing tags are found in all known bacterial genomes: a two-piece tmRNA functions in Caulobacter. Proc Natl Acad Sci USA 2000;97(14):7778-83
  • Lee S, Bailey S, Apirion D. Small stable RNAs from Escherichia coli: evidence for the existence of new molecules and for a new ribonucleoprotein particle containing 6S RNA. J Bacteriol 1978;133(2):1015-23
  • Glynn B, Lacey K, Reilley J, et al. Quantification of Bacterial tmRNA using in vitro Transcribed RNA Standards and Two-Step qRT-PCR. Res J Biol Sci 2007;2(5):564-70
  • Mignard S, Flandrois J-P. Identification of Mycobacterium using the EF-Tu encoding (tuf) gene and the tmRNA encoding (ssrA) gene. J Med Microbiol 2007;56(Pt 8):1033-41
  • Wang L-T, Lee F-L, Tai C-J, Kasai H. Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA-DNA hybridization in the Bacillus subtilis group. Int J Syst Evol Microbiol 2007.57(Pt 8): 1846-50
  • Huang C-H, Chang M-T, Huang L. Use of novel species-specific PCR primers targeted to DNA gyrase subunit B (gyrB) gene for species identification of the Cronobacter sakazakii and Cronobacter dublinensis. Mol Cell Probes 2013.27(1):15-18
  • Ko K, Hong S-K, Lee K-H, et al. Detection and identification of Legionella pneumophila by PCR-restriction fragment length polymorphism analysis of the RNA polymerase gene (rpoB). J Microbiol Methods [Internet]. 2003.54(3):325-37. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0167701203000654
  • Lee MJ, Jang SJ, Li XM, et al. Comparison of rpoB gene sequencing, 16S rRNA gene sequencing, gyrB multiplex PCR, and the VITEK2 system for identification of Acinetobacter clinical isolates. Diagn Microbiol Infect Dis 2014.78(1):29-34
  • Zhou G, Wen S, Liu Y, et al. Development of a DNA microarray for detection and identification of Legionella pneumophila and ten other pathogens in drinking water. Int J Food Microbiol 2011;145(1):293-300
  • Peterson G, Bai J, Nagaraja T, Narayanan S. Diagnostic microarray for human and animal bacterial diseases and their virulence and antimicrobial resistance genes. J Microbiol Methods 2010;80(3):223-30
  • Strommenger B, Schmidt C, Werner G, et al. DNA microarray for the detection of therapeutically relevant antibiotic resistance determinants in clinical isolates of Staphylococcus aureus. Mol Cell Probes 2007;21(3):161-70
  • Kim H-J, Park S-H, Lee T-H, et al. Microarray detection of food-borne pathogens using specific probes prepared by comparative genomics. Biosens Bioelectron 2008;24(2):238-46
  • Calistri A, Salata C, Parolin C, Palù G. New generation sequencing in pathogen discovery and microbial surveillance. Expert Rev Anti Infect Ther 2013;11(9):877-9
  • Boers S, van der Reijden W, Jansen R. High-throughput multilocus sequence typing: bringing molecular typing to the next level. PLoS One 2012;7(7):e39630
  • Dunne W, Westblade L, Ford B. Next-generation and whole-genome sequencing in the diagnostic clinical microbiology laboratory. Eur J Clin Microbiol Infect Dis 2012;31(8):1719-26
  • Joseph S, Read T. Bacterial population genomics and infectious disease diagnostics. Trends Biotechnol 2010;28(12):611-18
  • Sherry N, Porter J, Seemann T, et al. Outbreak investigation using high-throughput genome sequencing within a diagnostic microbiology laboratory. J Clin Microbiol 2013;51(5):1396-401
  • Shallom S, Weeks J, Galindo C, et al. A species independent universal bio-detection microarray for pathogen forensics and phylogenetic classification of unknown microorganisms. BMC Microbiol 2011;11(1):132
  • Roche Diagnostics Corporation. Available from: www.roche-applied-science.com
  • Cepheid. Available from: www.cepheid.com
  • Siemens Healthcare. Available from: www.medical.siemens.com
  • BioHelix Corp. Available from: www.biohelix.com
  • Eiken Chemical Co., Ltd. Available from: www.loopamp.eiken.co.jp
  • DiaSorin. Available from: www.diasorin.com
  • Biomerieux Clinical Diagnostics. Available from: www.biomerieux-diagnostics.com
  • TwistDx Ltd. Available from: www.twistdx.co.uk
  • Becton, Dickinson and Co. Available from: www.bd.com
  • Hologic Gen-Probe, Inc. Available from: www.gen-probe.com

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.