302
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Current serological possibilities for the diagnosis of arthritis with special focus on proteins and proteoglycans from the extracellular matrix

, , &

References

  • Barbour KE, Helmick CG, Theis KA, et al. Prevalence of doctor-diagnosed arthritis and arthritis-attributable activity limitation – United States, 2010–2012. MMWR 2013;62(44):869-73
  • Lawrence RC, Felson DT, Helmick CG, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States, Part II. Arthritis Rheum 2008;58(1):26-35
  • Myasoedova E, Crowson CS, Kremers HM, et al. Is the incidence of rheumatoid arthritis rising? Results from Olmsted County, Minnesota, 1955-2007. Arthritis Rheum 2010;62(6):1576-82
  • Yasuda T, Poole AR. A fibronectin fragment induces type II collagen degradation by collagenase through an interleukin-1-mediated pathway. Arthritis Rheum 2002;46(1):138-48
  • Billinghurst RC, Wu W, Ionescu M, et al. Comparison of the degradation of type II collagen and proteoglycan in nasal and articular cartilages induced by interleukin-1 and the selective inhibition of type II collagen cleavage by collagenase. Arthritis Rheum 2000;43(3):664-72
  • van Meurs J, van Lent P, Stoop R, et al. Cleavage of aggrecan at the ASN341-PHE342 site coincides with the initiation of collagen damage in murine antigen-induced arthritis: a pivotal role for stromelysin 1 in matrix metalloproteinase activity. Arthritis Rheum 1999;42(10):2074-84
  • Mueller MB, Tuan RS. Anabolic/catabolic balance in pathogenesis of osteoarthritis: Identifying molecular targets. PM R 2011;3:S3-11
  • van Osch GJ, Brittberg M, Dennis JE, et al. Cartilage repair: past and future - lessons for regenerative medicine. J Cell Mol Med 2009;13:792-810
  • Scott DL, Wolfe F, Huizinga TW. Rheumatoid arthritis. Lancet 2010;376:1094-108
  • Shinmei M, Ito K, Matsuyama S, et al. Joint fluid carboxyl-terminal type II procollagen peptide as a marker of cartilage collagen biosynthesis. Osteoarthr Cartilage 1993;1:121-8
  • Fraser A, Fearon U, Billinghurst RC, et al. Turnover of type II collagen and aggrecan in cartilage matrix at the onset of inflammatory arthritis in humans: relationship to mediators of systemic and local inflammation. Arthritis Rheum 2003;48(11):3085-95
  • Olsen A, Sondergaard BC, Byrjalsen I, et al. Anabolic and catabolic function of chondrocyte ex vivo is reflected by the metabolic processing of type II collagen. Osteoarthr Cartilage 2007;15:335-42
  • Rousseau JC, Sandell LJ, Delmas PD, Garnero P. Development and clinical application in arthritis of a new immunoassay for serum type IIA procollagen NH2 propeptide. Methods Mol Med 2004;101:25-37
  • Chung L, Dinakarpandian D, Yoshida N, et al. Collagenase unwinds triple helical collagen prior to peptide bond hydrolysis. EMBO J 2004;23(15):3020-30
  • Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 2001;17:463-516
  • Dejica VM, Mort JS, Laverty S, et al. Cleavage of type II collagen by cathepsin K in human osteoarthritic cartilage. Am J Pathol 2008;173:161-9
  • Ishiguro N, Kojima T. Role of aggrecanase and MMP in cartilage degradation. Clin Calcium 2004;14(7):38-44
  • van den Steen PE, Proost P, Grillet B, et al. Cleavage of denatured natural collagen type II by neutrophil gelatinase B reveals enzyme specificity, post-translational modifications in the substrate, and the formation of remnant epitopes in rheumatoid arthritis. FASEB J 2002;16(3):379-89
  • Poole AR, Ionescu M, Fitzcharles MA, Billinghurst RC. The assessment of cartilage degradation in vivo: development of an immunoassay for the measurement in body fluids of type II collagen cleaved by collagenases. J Immunol Methods 2004;294:145-53
  • Billinghurst C, Dahlberg L, Ionescu M, et al. Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J Clin Invest 1997;99:1534-45
  • Hollander AP, Heathfield TF, Webber C, et al. Increased damage to type II collagen in osteoarthritic articular cartilage detected by a new immunoassay. J Clin Invest 1994;93:1722-32
  • Li Z, Yasuda Y, Li W, et al. Regulation of collagenase activities of human cathepsins by glycosaminoglycans. J Biol Chem 2004;279:5470-9
  • Downs JT, Lane CL, Nestor NB, et al. Analysis of collagenase-cleavage of type II collagen using a neoepitope ELISA. J Immunol Methods 2001;247:25-34
  • Christgau S, Garnero P, Fledelius C, et al. Collagen type II C-telopeptide fragments as an index of cartilage degradation. Bone 2001;29(3):209-15
  • Lohmander LS, Atley LM, Pietka TA, Eyre DR. The release of crosslinked peptides from type II collagen into human synovial fluid is increased soon after joint injury and in osteoarthritis. Arthritis Rheum 2003;48(11):3130-9
  • Dodge GR, Poole AR. Immunohistochemical detection and immunochemical analysis of type II collagen degradation in human normal, rheumatoid, and osteoarthritic articular cartilages and in explants of bovine articular cartilage cultured with interleukin 1. J Clin Invest 1989;83(2):647-61
  • Jay GD, Elsaid KA, Zack J, et al. Lubricating ability of aspirated synovial fluid from emergency department patients with knee joint synovitis. J Rheumatol 2004;31(3):557-64
  • Conrozier T, Poole AR, Ferrand F, et al. Serum concentrations of type II collagen biomarkers (C2C, C1, 2C and CPII) suggest different pathophysiologies patients with hip osteoarthritis. Clin Exp Rheumatol 2008;26(3):430-6
  • Bay-Jensen AC, Wichuk S, Byrjalsen I, et al. circulating protein fragments of cartilage and connective tissue degradation are diagnostic and prognostic markers of rheumatoid arthritis and ankylosing spondylitis. PLoS One 2013;8(1):e54504
  • Nemirovskiy OV, Dufield DR, Sunyer T, et al. Discovery and development of a type II collagen neopeptide (TIINE) biomarker for matrix metalloproteinase activity: from in vitro to in vivo. Anal Biochem 2007;361(1):93-101
  • Hellio Le Graverand MP, Brandt KD, Mazzuca SA, et al. Association between concentrations of urinary type II collagen neoepitope (uTIINE) and joint space narrowing in patients with knee osteoarthritis. Osteoarthr Cartilage 2006;14(11):1189-95
  • Takahashi T, Naito S, Onoda J, et al. Development of a novel immunoassay for the measurement of type II collagen neoepitope generated by collagenase cleavage. Clin Chim Acta 2012;413(19-20):1591-9
  • Cahue S, Sharma L, Dunlop D, et al. The ratio of type II collagen breakdown to synthesis and its relationship with the progression of knee osteoarthritis. Osteoarthr Cartilage 2007;15(7):819-23
  • Deberg M, Labasse A, Christgau S, et al. New serum biochemical markers (Coll 2-1 and Coll 2-1 NO2) for studying oxidative-related type II collagen network degradation in patients with osteoarthritis and rheumatoid arthritis. Osteoarthr Cartilage 2005;13:258-65
  • Bay-Jensen AC, Liu Q, Byrjalsen I, et al. Enzyme-linked immunosorbent assay (ELISAs) for metalloproteinase derived type II collagen neoepitope, CIIM-Increased serum CIIM in subjects with severe radiographic osteoarthritis. Clin Biochem 2011;44:423-9
  • Siebuhr AS, Wang J, Karsdal MA, et al. Matrix metalloproteinase-dependent turnover of cartilage, synovial membrane, and connective tissue is elevated in rats with collagen induced arthritis. J Transl Med 2012;10:195
  • Charni-Ben Tabassi N, Desmarais S, Bay-Jensen AC, et al. The type II collagen fragments Helix-II and CTX-II reveal different enzymatic pathways of human cartilage collagen degradation. Osteoarthr Cartilage 2008;16(10):1183-91
  • Garnero P, Landewé R, Boers M, et al. Association of baseline levels of markers of bone and cartilage degradation with long-term progression of joint damage in patients with early rheumatoid arthritis: the COBRA study. Arthritis Rheum 2002;46(11):2847-56
  • Uysal H, Bockermann R, Nandakumar KS, et al. Structure and pathogenicity of antibodies specific for citrullinated collagen type II in experimental arthritis. JEM 2009;206(2):449-62
  • Caspi D, Anouk M, Golan I, et al. Synovial fluid levels of anti-cyclic citrullinated peptide antibodies and IgA rheumatoid factor in rheumatoid arthritis, psoriatic arthritis, and osteoarthritis. Arthritis Rheum 2006;55:53-6
  • Brink M, Hansson M, Mathsson L, et al. Multiplex analyses of antibodies against citrullinated peptides in individuals prior to development of rheumatoid arthritis. Arthritis Rheum 2013;65(4):899-910
  • Yoshida M, Tsuji M, Kurosaka D, et al. Autoimmunity to citrullinated type II collagen in rheumatoid arthritis. Mod Rheumatol 2006;16:276-81
  • Burkhardt H, Sehnert B, Bockermann R, et al. Humoral immune response to citrullinated collagen type II determinants in early rheumatoid arthritis. Eur J Immunol 2005;35:1643-52
  • Yoshida M, Tsuji M, Kurosaka D, et al. Autoimmunity to citrullinated type II collagen in rheumatoid arthritis. Mod Rheumatol 2006;16:276-81
  • Berntson L, Nordal E, Fasth A, et al. Anti-type II collagen antibodies, anti-CCP, IgA RF and IgM RF are associated with joint damage, assessed eight years after onset of juvenile idiopathic arthritis (JIA). Pediatric Rheumatol 2014;12:1–22
  • Mullazehi M, Wick MC, Klareskog L, van Vollenhoven R. Anti-type II collagen antibodies are associated with early radiographic destruction in rheumatoid arthritis. Arthritis Res Ther 2012;14(3):R100
  • Koivula M-K, Heliövaara M, Ramberg J, et al. Autoantibodies binding to citrullinated telopeptide of type II collagen and to cyclic citrullinated peptides predict synergistically the development of seropositive rheumatoid arthritis. Ann Rheum Dis 2007;66(11):1450-5
  • van Boekel MA, Vossenaar ER, van den Hoogen FH. Autoantibody systems in rheumatoid arthritis: specificity, sensitivity and diagnostic value. Arthritis Res 2002;4:87-93
  • Strollo R, Ponchel F, Malmström V, et al. Autoantibodies to post-translationally modified Type II collagen as potential biomarkers for rheumatoid arthritis. Arthritis Rheum 2013;65(7):1702-12
  • Kafienah W, Brömme D, Buttle DJ, et al. Human cathepsin K cleaves native type I and II collagens at the N-terminal end of the triple helix. Biochem J 1998;331:727-32
  • Li Z, Hou WS, Bromme D. Collagenolytic activity of cathepsin K is specifically modulated by cartilage-resident chondroitin sulfates. Biochemistry 2000;39:529-36
  • Leeming D, He Y, Veidal S, et al. A novel marker for assessment of liver matrix remodeling: an enzyme-linked immunosorbent assay (ELISA) detecting a MMP generated type I collagen neo-epitope (C1M). Biomarkers 2011;16:616-28
  • Siebuhr AS, Bay-Jensen AC, Leeming DJ, et al. Serological identification of fast progressors of structural damage with rheumatoid arthritis. Arthritis Res Ther 2013;15(4):R86
  • Barascuk N, Veidel SS, Larsen L, et al. A novel assay for extracellular matrix remodeling associated with liver fibrosis: an enzyme-linked immunosorbent assay (ELISA) for a MMP-9 proteolytically revealed neo-epitope of type III collagen. Clin Biochem 2010;43:899-904
  • Bay-Jensen A, Platt A, Byrjalsen I, et al. Effect of tocilizumab combined with methotrexate on circulating biomarkers of synovium, cartilage, and bone in the LITHE study. Semin Arthritis Rheum 2014;43:470-8
  • Pollock LE, Lalor P, Revell PA. Type IV collagen and laminin in the synovial intimal layer: an immunohistochemical study. Rheumatol Int 1990;9:277-80
  • Poduval P, Sillat T, Beklen A, et al. Type IV collagen α-chain composition in synovial lining from trauma patients and patients with rheumatoid arthritis. Arthritis Rheum 2007;56:3959-67
  • Petty RE, Hunt DW, Rosenberg AM. Antibodies to type IV collagen in rheumatic diseases. J Rheumatol 1986;13:246-53
  • Gay S, O’Sullivan FX, Gay RE, Koopman WJ. Humoral sensitivity to native collagen types I-VI in the arthritis of MRL/l mice. Clin Immunol Immunop 1987;45:63-9
  • Veidel SS, Larsen DV, Chen X, et al. MMP mediated type V collagen degradation (C5M) is elevated in ankylosing spondylitis. Clin Biochem 2012;45:541-6
  • Hambach L, Neureiter D, Zeiler G, et al. Severe disturbance of the distribution and expression of type VI collagen chains in osteoarthritic articular cartilage. Arthritis Rheum 1998;41:986-96
  • Soder S, Hambach L, Lissner R, et al. Ultrastructural localization of type VI collagen in normal adult and osteoarthritic human articular cartilage. Osteoarthr Cartilage 2002;10:464-70
  • DiCesare PE, Mörgelin M, Carlson CS, et al. Cartilage oligomeric matrix protein: isolation and characterization from human articular cartilage. J Orthop Res 1995;13(3):422-8
  • Halasz K, Kassner A, Mörgelin M, Heinegård D. COMP acts as a catalyst in collagen fibrillogenesis. J Biol Chem 2007;282:31166-73
  • Wong M, Siegrist M, Cao X. Cyclic compression of articular cartilage explants is associated with progressive consolidation and altered expression pattern of extracellular matrix proteins. Matrix Biol 1999;18:391-9
  • Giannoni P, Siegrist M, Hunziker EB, Wong M. The mechanosensitivity of cartilage oligomeric matrix protein (COMP). Biorheology 2002;40(1-3):101-9
  • Lohmander LS, Saxne T, Heinegard DK. Release of cartilage oligomeric matrix protein (COMP) into joint fluid after knee injury and in osteoarthritis. Ann Rheum Dis 1994;53(1):8-13
  • Neidhart M, Hauser N, Paulsson M, et al. Small fragments of cartilage oligomeric matrix protein in synovial fluid and serum as markers for cartilage degradation. Br J Rheumatol 1997;36(11):1151-60
  • Hunter DJ, Li J, LaValley M, et al. Cartilage markers and their association with cartilage loss on magnetic resonance imaging in knee osteoarthritis: the Boston Osteoarthritis Knee Study. Arthritis Res Ther 2007;9(5):R108
  • Skoumal M, Haberhauer G, Feyertag J, et al. Serum levels of cartilage oligomeric matrix protein (COMP): a rapid decrease in patients with active rheumatoid arthritis undergoing intravenous steroid treatment. Rheumatol Int 2006;26(11):1001-4
  • Saxne T, Heinegard D. Cartilage oligomeric matrix protein: a novel marker of cartilage turnover detectable in synovial fluid and blood. Rheumatology 1992;31:583-91
  • Andersson ML, Petersson IF, Karlsson KE, et al. Diurnal variation in serum levels of cartilage oligomeric matrix protein in patients with knee osteoarthritis or rheumatoid arthritis. Ann Rheum Dis 2006;65:1490-4
  • Neidhart M, Muller-Ladner U, Frey W, et al. Increased serum levels of non-collagenous matrix proteins (cartilage oligomeric matrix protein and melanoma inhibitory activity) in marathon runners. Osteoarthr Cartilage 2000;8:222-9
  • Skoumal M, Kolarz G, Klingler A. Serum levels of cartilage oligomeric matrix protein: a predicting factor and a valuable parameter for disease management in rheumatoid arthritis. Scand J Rheumatol 2003;32:156-61
  • Månsson B, Carey D, Alini M, et al. Cartilage and bone metabolism in rheumatoid arthritis: differences between rapid and slow progression of disease identified by serum markers of cartilage metabolism. J Clin Invest 1995;95(3):1071-7
  • Vilim V, Lenz ME, Vytasek R, et al. Characterization of monoclonal antibodies recognizing different fragments of cartilage oligomeric matrix protein in human body fluids. Arch Biochem Biophys 1997;341(1):8-16
  • Clark AG, Jordan JM, Vilim V, et al. Serum cartilage oligomeric matrix protein reflects osteoarthritis presence and severity. Arthritis Rheum 1999;42:2356-64
  • Petersson IF, Boegard T, Dahlstrom J, et al. Bone scan and serum markers of bone and cartilage in patients with knee pain and osteoarthritis. Osteoarthr Cartilage 1998;6:33-9
  • El-Arman MM, El-Fayoumi G, El-Shal E, et al. Aggrecan and Cartilage Oligomeric Matrix Protein in Serum and Synovial Fluid of Patients with Knee Osteoarthritis. HSS J 2010;6(2):171-6
  • Forslind K, Eberhardt K, Jonsson A, Saxne T. Increased serum concentrations of cartilage oligomeric matrix protein. A prognostic marker in early rheumatoid arthritis. Br J Rheumatol 1992;31:593-8
  • Vilim V, Vytásek R, Olejárová M, et al. Serum cartilage oligomeric matrix protein reflects the presence of clinically diagnosed synovitis in patients with knee osteoarthritis. Osteoarthr Cartilage 2001;9:612-18
  • Jordan JM, Luta G, Stabler T, et al. Ethnic and sex differences in serum levels of cartilage oligomeric matrix protein: the Johnston County Osteoarthritis Project. Arthritis Rheum 2003;48:675-81
  • Lai Y, Yu XP, Zhang Y, et al. Enhanced COMP catabolism detected in serum of patients with arthritis and animal disease models through a novel capture ELISA. Osteoarthr Cartilage 2012;20(8):854-62
  • Stracke JO, Fosang AJ, Last K, et al. Matrix metalloproteinases 19 and 20 cleave aggrecan and cartilage oligomeric matrix protein (COMP). FEBS Lett 2000;478(1-2):52-6
  • Dickinson SC, Vankemmelbeke MN, Buttle DJ, et al. Cleavage of cartilage oligomeric matrix protein (thrombospondin-5) by matrix metalloproteinases and a disintegrin and metalloproteinase with thrombospondin motifs. Matrix Biol 2003;22(3):267-78
  • Sedlacek R, Mauch S, Kolb B, et al. Matrix metalloproteinase MMP-19 (RASI-1) is expressed on the surface of activated peripheral blood mononuclear cells and is detected as an autoantigen in rheumatoid arthritis. Immunobiology 1998;198(4):408-23
  • Konttinen YT, Ainola M, Vallcala H, et al. Analysis of 16 different matrix metalloproteinases (MMP-1 to MMP-20) in the synovial membrane: different profiles in trauma and rheumatoid arthritis. Ann Rheum Dis 1999;58(11):691-7
  • Ganu V, Goldberg R, Peppard J, et al. Inhibition of interleukin-1α-induced articular cartilage oligomeric matrix protein degradation in bovine articular cartilage by matrix metalloproteinase inhibitors. Arthritis Rheum 1998;41:2143-51
  • Ganu V, Melton R, Wang W. Matrix metalloproteinase inhibitor CGS 27023A protects COMP and proteoglycan in the bovine articular cartilage but not the release of their fragments from cartilage after prolonged stimulation in vitro with IL-1alpha. Ann New York Acad Sci 1999;878:607-11
  • Liu CJ, Kong W, Xu K, et al. ADAMTS-12 associates with and degrades cartilage oligomeric matrix protein. J Biol Chem 2006;281(23):15800-8
  • Pankov R, Yamada KM. Fibronectin at a glance. J Cell Sci 2002;115:3861-3
  • Stoffels JM, Zhao C, Baron W. Fibronectin in tissue regeneration: timely assembly of the scaffold is necessary to complete the build. Cell Mol Life Sci 2013;70:4243-53
  • Brown RA, Jones KL. The synthesis and accumulation of fibronectin by human articular cartilage. J Rheumatol 1990;17:65-72
  • Xie DL, Meyers R, Homandberg GA. Fibronectin fragments in osteoarthritic synovial fluid. J Rheumatol 1992;19:1448-52
  • Shiozawa S, Ziff M. Immunoelectron microscopic demonstration of fibronectin in rheumatoid pannus and at the cartilage-pannus junction. Ann Rheum Dis 1983;42:254-63
  • Shiozawa S, Yoshihara R, Kuroki Y, et al. Pathogenic importance of fibronectin in the superficial region of articular cartilage as a local factor for the induction of pannus extension on rheumatoid articular cartilage. Ann Rheum Dis 1992;51:869-73
  • Vartio T, Vaheri A, Von Essen R. Fibronectin in synovial fluid and tissue in rheumatoid arthritis. Eur J Clin Invest 1981;11:207-12
  • Shiozawa K, Hino K, Shiozawa S. Alternatively spliced EDA-containing fibronectin in synovial fluid as a predictor of rheumatoid joint destruction. Rheumatology 2001;40:739-42
  • Homandberg GA, Hui F. High concentrations of fibronectin fragments cause short-term catabolic effects in cartilage tissue while lower concentrations cause continuous anabolic effects. Arch Biochem Biophys 1994;311:213-18
  • Homandberg GA, Meyers R, Xie DL. Fibronectin fragments cause chondrolysis of bovine articular cartilage slices in culture. J Biol Chem 1992;267:3597-604
  • Sofat N. Analysing the role of endogenous matrix molecules in the development of osteoarthritis. Int J Exp Pathol 2009;90:463-79
  • Homandberg GA, Meyers R, Williams JM. Intra-articular injection of fibronectin fragments causes severe depletion of cartilage proteoglycans in vivo. J Rheumatol 1993;20:1378-82
  • Williams JM, Zhang J, Kang H, et al. The effects of hyaluronic acid on fibronectin fragment mediated depletion of cartilage chondrolysis in skeletally mature rabbits. Osteoarthr Cartilage 2003;11:44-9
  • Peters JH, Carsons S, Yoshida M, et al. Electrophoretic characterization of species of fibronectin bearing sequences from the N-terminal heparin-binding domain in synovial fluid samples from patients with osteoarthritis and rheumatoid arthritis. Arthritis Res Ther 2003;5:R329-39
  • Zack MD, Arner EC, Anglin CP, et al. Identification of fibronectin neoepitopes present in human osteoarthritic cartilage. Arthritis Rheum 2006.54:2912-22
  • Zack MD, Malfait AM, Skepner AP, et al. ADAM-8 isolated from human osteoarthritic chondrocytes cleaves fibronectin at Ala(271). Arthritis Rheum 2009;60:2704-13
  • Przybysz M, Borysewicz K, Katnik-Prastowska I. Differences between the early and advanced stages of rheumatoid arthritis in the expression of EDA-containing fibronectin. Rheumatol Int 2009;29:1397-401
  • Shinde AV, Bystroff C, Wang C, et al. Identification of the peptide sequences within the EIIIA (EDA) segment of fibronectin that mediate integrin alpha9beta1-dependent cellular activities. J Biol Chem 2008;283:2858-70
  • Fan X, Tang LL. Aberrant and alternative splicing in skeletal system disease. Gene 2013;528:21-6
  • Chevalier X, Claudepierre P, Groult N, et al. Presence of ED-A containing fibronectin in human articular cartilage from patients with osteoarthritis and rheumatoid arthritis. J Rheumatol 1996;23:1022-30
  • Kriegsmann J, Berndt A, Hansen T, et al. Expression of fibronectin splice variants and oncofetal glycosylated fibronectin in the synovial membranes of patients with rheumatoid arthritis and osteoarthritis. Rheumatol Int 2004;24:25-33
  • Miyamoto K, Sugihara K, Abe Y, et al. Novel plasma-separation dilayer gellan-gellan-sulfate adsorber for direct removal of extra domain A containing fibronectin from the blood of rheumatoid arthritis patients. Int J Biol Macromol 2002;30:197-204
  • MacLeod JN, Burton-Wurster N, Gu DN, Lust G. Fibronectin mRNA splice variant in articular cartilage lacks bases encoding the V, III-15, and I-10 protein segments. J Biol Chem 1996;271:18954-60
  • Burton-Wurster N, Borden C, Lust G, MacLeod JN. Expression of the (V+C)(-) fibronectin isoform is tightly linked to the presence of a cartilaginous matrix. Matrix Biol 1998;17:193-203
  • Steffey MA, Miura N, Todhunter RJ, et al. The potential and limitations of cartilage-specific (V+C)(-) fibronectin and cartilage oligomeric matrix protein as osteoarthritis biomarkers in canine synovial fluid. Osteoarthr Cartilage 2004;12:818-25
  • van Beers JJ, Willemze A, Stammen-Vogelzangs J, et al. Anti-citrullinated fibronectin antibodies in rheumatoid arthritis are associated with human leukocyte antigen-DRB1 shared epitope alleles. Arthritis Res Ther 2012;14:R35
  • Jay GD, Tantravahi U, Britt DE, et al. Homology of lubricin and superficial zone protein (SZP): products of megakaryocyte stimulating factor (MSF) gene expression by human synovial fibroblasts and articular chondrocytes localised to chromosome 1q25. J Ortho Res 2001;19:677-87
  • Schumacher BL, Block JA, Schmid TM, et al. A novel proteoglycan synthesized and secreted by chondrocytes of the superficial zone of articular cartilage. Arch Biochem Biophys 1994;311:144-52
  • Lord MS, Estrella RP, Chuang CY, et al. Not all lubricin isoforms are substituted with a glycosaminoglycan chain. Conn Tiss Res 2012;53:132-41
  • Elsaid KA, Jay GD, Chichester CO. Reduced expression and proteolytic susceptibility of lubricin/superficial zone protein may explain early elevation in the coefficient of friction in the joints of rats with antigen-induced arthritis. Arthritis Rheum 2007;56:108-16
  • Rhee DK, Marcelino J, Baker M, et al. The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth. J Clin Invest 2005;115:622-31
  • Flannery CR, Hughes CE, Schumacher BL, et al. Articular cartilage superficial zone protein (SZP) is homologous to megakaryocyte stimulating factor precursor and is a multifunctional proteoglycan with potential growth-promoting, cytoprotective, and lubricating properties in cartilage metabolism. Biochem Bioph Res Co 1999;254:535-41
  • Swann DA, Radin EL. The molecular basis of articular lubrication. I. Purification and properties of a lubricating fraction from bovine synovial fluid. J Biol Chem 1972;247:8069-73
  • Nugent-Derfus GE, Chan AH, Schumacher BL, Sah RL. PRG4 exchange between the articular cartilage surface and synovial fluid. J Ortho Res 2007;25:1269-76
  • Jones AR, Chen S, Chai DH, et al. Modulation of lubricin biosynthesis and tissue surface properties following cartilage mechanical injury. Arthritis Rheum 2009;60(1):133-42
  • Estrella RP, Whitelock JM, Packer NH, et al. The glycosylation of human synovial lubricin: Implications for its role in inflammation. Biochem J 2010;429(2):359-67
  • Buckwalter JA, Roughley PJ, Rosenberg LC. Age-related changes in cartilage proteoglycans: quantitative electron microscopic studies. Microsc Res Techniq 1994;28(5):398-408
  • Maroudas A, Bayliss MT, Uchitel-Kaushansky N, et al. Aggrecan turnover in human articular cartilage: use of aspartic acid racemization as a marker of molecular age. Arch Biochem Biophys 1998;350(1):61-71
  • Arner EC, Decicco CP, Cherney R, Tortorella MD. Cleavage of native cartilage aggrecan by neutrophil collagenase (MMP-8) is distinct from endogenous cleavage by aggrecanase. J Biol Chem 1997;272(14):9294-9
  • Hughes CE, Caterson B, Fosang AJ, et al. Monoclonal antibodies that specifically recognize neoepitope sequences generated by ‘aggrecanase’ and matrix metalloproteinase cleavage of aggrecan: application to catabolism in situ and in vitro. Biochem J 1995;305(3):799-804
  • Tortorella MD, Malfait AM, Deccico C, Arner E. The role of ADAM-TS4 (aggrecanase-1) and ADAM-TS5 (aggrecanase-2) in a model of cartilage degradation. Osteoarthr Cartilage 2001;9(6):539-52
  • Arner EC. Aggrecanase-mediated cartilage degradation. Current Opin Pharmacol 2002;2(3):322-9
  • Nagase H, Kashiwagi M. Aggrecanases and cartilage matrix degradation. Arthritis Res Ther 2003;5(2):94-103
  • Lark MW, Gordy JT, Weidner JR, et al. Cell-mediated catabolism of aggrecan: evidence that cleavage at the “aggrecanase” site (Glu373-Ala374) is a primary event in proteolysis of the interglobular domain. J Biol Chem 1995;270(6):2550-6
  • Tortorella MD, Pratta M, Liu RQ, et al. Sites of aggrecan cleavage by recombinant human aggrecanase-1 (ADAMTS-4). J Biol Chem 2000;275:18566-73
  • Pratta MA, Tortorella MD, Arner EC. Age-related changes in aggrecan glycosylation affect cleavage by aggrecanase. J Biol Chem 2000;275(50):39096-102
  • Yamanishi Y, Boyle DL, Clark M, et al. Expression and regulation of aggrecanase in arthritis: the role of TGFbeta1. J Immunol 2002;168:1405-12
  • Sandy JD, Flannery CR, Neame PJ, Lohmander LS. The structure of aggrecan fragments in human synovial fluid. Evidence for the involvement in osteoarthritis of a novel proteinase which cleaves the Glu 373-Ala 374 bond of the interglobular domain. J Clin Invest 1992;89(5):1512-16
  • Sztrolovics R, Alini M, Roughley PJ, Mort JS. Aggrecan degradation in human intervertebral disc and articular cartilage. Biochem J 1997;326(1):235-41
  • Lohmander LS, Neame PJ, Sandy JD. The structure of aggrecan fragments in human synovial fluid: evidence that aggrecanase mediates cartilage degradation in inflammatory joint disease, joint injury, and osteoarthritis. Arthritis Rheum 1993;36(9):1214-22
  • Sandy JD, Verscharen C. Analysis of aggrecan in human knee cartilage and synovial fluid indicates that aggrecanase (ADAMTS) activity is responsible for the catabolic turnover and loss of whole aggrecan whereas other protease activity is required for C-terminal processing in vivo. Biochem J 2001;358(3):615-26
  • Little CB, Meeker CT, Golub SB, et al. Blocking aggrecanase cleavage in the aggrecan interglobular domain abrogates cartilage erosion and promotes cartilage repair. J Clin Invest 2007;117(6):1627-36
  • Flannery CR, Lark MW, Sandy JD. Identification of a stromelysin cleavage site within the interglobular domain of human aggrecan. Evidence for proteolysis at this site in vivo in human articular cartilage. J Biol Chem 1992;267:1008-14
  • Fosang AJ, Last K, Knäuper V, et al. Degradation of cartilage aggrecan by collagenase-3 (MMP-13). FEBS Lett 1996;380(1-2):17-20
  • Fosang AJ, Last K, Knauper V, et al. Fibroblast and neutrophil collagenases cleave at two sites in the cartilage aggrecan interglobular domain. Biochem J 1993;295(1):273-6
  • Fosang AJ, Neame PJ, Last K, et al. The interglobular domain of cartilage aggrecan is cleaved by PUMP, gelatinases, and cathepsin B. J Biol Chem 1992;267(27):19470-4
  • Fosang AJ, Last K, Maciewicz RA. Aggrecan is degraded by matrix metalloproteinases in human arthritis: evidence that matrix metalloproteinase and aggrecanase activities can be independent. J Clin Invest 1996;98(10):2292-9
  • Lark MW, Bayne EK, Flanagan J, et al. Aggrecan degradation in human cartilage: evidence for both matrix metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints. J Clin Invest 1997;100(1):93-106
  • Dean DD, Martel-Pelletier J, Pelletier J-P, et al. Evidence for metalloproteinase and metalloproteinase inhibitor imbalance in human osteoarthritic cartilage. J Clin Invest 1989;84:678-85
  • Martel-Pelletier J, Cloutier J-M, Pelletier J-P. In vivo effects of antirheumatic drugs on neutral collagenolytic proteases in human rheumatoid arthritis cartilage and synovium. J Rheumatol 1988;15:1198-204
  • Ilic MZ, Handley CJ, Robinson HC, Meng Tuck M. Mechanism of catabolism of aggrecan by articular cartilage. Arch Biochem Biophys 1992;294(1):115-22
  • Caterson B, Flannery CR, Hughes CE, Little CB. Mechanisms of proteoglycan metabolism that lead to cartilage destruction in the pathogenesis of arthritis. Drug Today 1999;35(4-5):397-402
  • Little CB, Flannery CR, Hughes CE, et al. Aggrecanase versus matrix metalloproteinases in the catabolism of the interglobular domain of aggrecan in vitro. Biochem J 1999;344(1):61-8
  • Karsdal MA, Madsen SH, Christiansen C, et al. Cartilage degradation is fully reversible in the presence of aggrecanase but not matrix metalloproteinase activity. Arthritis Res Ther 2008;10(3):R63
  • Little CB, Hughes CE, Curtis CL, et al. Matrix metalloproteinases are involved in C-terminal and interglobular domain processing of cartilage aggrecan in late stage cartilage degradation. Matrix Biol 2002;21(3):271-88
  • Handley CJ, Tuck Mok M, Ilic MZ, et al. Cathepsin D cleaves aggrecan at unique sites within the interglobular domain and chondroitin sulfate attachment regions that are also cleaved when cartilage is maintained at acid pH. Matrix Biol 2001;20(8):543-53
  • Hou WS, Li Z, Büttner FH, et al. Cleavage site specificity of cathepsin K toward cartilage proteoglycans and protease complex formation. Biol Chem 2003;384(6):891-7
  • Dodge GR, Boesler EW, Jimenez SA. Expression of the basement membrane heparan sulfate proteoglycan (perlecan) in human synovium and in cultured human synovial cells. Lab Invest 1995;73:649-57
  • Kaneko H, Futami I, et al. Synovial perlecan is required for osteophyte formation in knee osteoarthritis. Matrix Biol 2013;32:178-87
  • Tesche F, Miosge N. Perlecan in late stages of osteoarthritis of the human knee joint. Osteoarthr Cartilage 2004;12:852-62
  • Melrose J, Roughley P, Knox S, et al. The structure, location, and function of perlecan, a prominent pericellular proteoglycan of fetal, postnatal, and mature hyaline cartilages. J Biol Chem 2006;281:36905-14
  • Melrose J, Smith S, Cake M, et al. Perlecan displays variable spatial and temporal immunolocalisation patterns in the articular and growth plate cartilages of the ovine stifle joint. Histochem Cell Biol 2005;123:561-71
  • Melrose J, Hayes AJ, Whitelock JM. Perlecan, the "jack of all trades" proteoglycan of cartilaginous weight-bearing connective tissues. Bioessays 2008;30:457-69
  • Arikawa-Hirasawa E, Wilcox WR, Le AH, et al. Dyssegmental dysplasia, Silverman-Handmaker type, is caused by functional null mutations of the perlecan gene. Nat Genet 2001;27:431-4
  • Arikawa-Hirasawa E, Wilcox WR, Yamada Y. Dyssegmental dysplasia, Silverman-Handmaker type: unexpected role of perlecan in cartilage development. Am J Med Genet 2001;106:254-7
  • Costell M, Carmona R, Gustafsson E, et al. Hyperplastic conotruncal endocardial cushions and transposition of great arteries in perlecan-null mice. Circ Res 2002;91:158-64
  • Knudson CB, Knudson W. Cartilage proteoglycans. Semin Cell Dev Biol 2001;12:69-78
  • Tesche F, Miosge N. New aspects of the pathogenesis of osteoarthritis: the role of fibroblast-like chondrocytes in late stages of the disease. Histol Histopathol 2005;20:329-37
  • Enghild JJ, Thøgersen IB, Pizzo SV, Salvesen G. Analysis of inter-α-trypsin inhibitor and a novel trypsin inhibitor, pre-α-trypsin inhibitor, from human plasma. Polypeptide chain stoichiometry and assembly by glycan. J Biol Chem 1989;264:15975-1981
  • Enghild JJ, Salvesen G, Thogersen IB, et al. Presence of the protein-glycosaminoglycan-protein covalent cross-link in the inter-α-inhibitor-related proteinase inhibitor heavy chain 2/bikunin. J Biol Chem 1993;268:8711-16
  • Enghild JJ, Salvesen G, Hefta SA, et al. Chondroitin 4-sulfate covalently cross-links the chains of the human blood protein pre-alpha-inhibitor. J Biol Chem 1991;266:747-51
  • Grazio S, Razdorov G, Erjavec I, et al. Differential expression of proteins with heparin affinity in patients with rheumatoid and psoriatic arthritis: a preliminary study. Clin Exp Rheumatol 2013;31(5):665-71
  • Brackertz D, Hagmann J, Kueppers F. Proteinase inhibitors in rheumatoid arthritis. Ann Rheum Dis 1975;34:225-30
  • Hadler NM, Johnson AM, Spitznagel JK, Quinet RJ. Protease inhibitors in inflammatory synovial effusions. Ann Rheum Dis 1981;40(1):55-9
  • Ahmadzadeh N, Shingu M, Nobunaga M, Yasuda M. Correlation of metal-binding proteins and proteinase inhibitors with immunological parameters in rheumatoid synovial fluids. Clin Exp Rheumatol 1990;8(6):547-51
  • Lord MS, Day AJ, Youssef P, et al. Sulfation of the bikunin chondroitin sulfate chain determines heavy chain-hyaluronan complex formation. J Biol Chem 2013;288:22930-41
  • Zhuo L, Yoneda M, Zhao M, et al. Defect in SHAP-hyaluronan complex causes severe female infertility. A study by inactivation of the bikunin gene in mice. J Biol Chem 2001;276:7693-6
  • Fülöp C, Szántó S, Mukhopadhyay D, et al. Impaired cumulus mucification and female sterility in tumor necrosis factor-induced protein-6 deficient mice. Development 2003;130:2253-61
  • Rugg MS, Willis AC, Mukhopadhyay D, et al. Characterization of complexes formed between TSG-6 and inter-alpha-inhibitor that act as intermediates in the covalent transfer of heavy chains onto hyaluronan. J Biol Chem 2005;280:25674-86
  • Wisniewski HG, Burgess WH, Oppenheim JD. TSG-6, an arthritis-associated hyaluronan binding protein, forms a stable complex with the serum protein inter-α-inhibitor. Biochemistry 1994;33(23):7423-9
  • Wisniewski HG, Maier R, Lotz R, et al. TSG-6: a TNF-, IL-1-, and LPS-inducible secreted glycoprotein associated with arthritis. J Immunol 1993;151:6593-601
  • Bayliss MT, Howat SL, Dudhia J, et al. Up-regulation and differential expression of the hyaluronan-binding protein TSG-6 in cartilage and synovium in rheumatoid arthritis and osteoarthritis. Osteoarthr Cartilage 2001;9(1):42-8
  • Michalski C, Piva F, Balduyck M, et al. Preparation and properties of a therapeutic inter-alpha-trypsin inhibitor concentrate from human plasma. Vox Sang 1994;67:329-36
  • Matsuzaki H, Kobayashi H, Yagyu T, et al. Plasma bikunin as a favourable prognostic factor in ovarian cancer. J Clin Oncol 2005;23:1463-72
  • Zhuo L, Salustri A, Kimata K. A physiological function of serum proteoglycan bikunin: the chondroitin sulfate moiety plays a central role. Glycoconj J 2002;19(4-5):241-7
  • Kida D, Yoneda M, Miyaura S, et al. The SHAP-HA complex in sera from patients with rheumatoid arthritis and osteoarthritis. J Rheumatol 1999;26(6):1230-8
  • Yingsung W, Zhuo L, Mörgelin M, et al. Molecular heterogeneity of the SHAP-hyaluronan complex: isolation and characterization of the complex in synovial fluid from patients with rheumatoid arthritis. J Biol Chem 2003;278(35):32710-18
  • Zhao M, Yoneda M, Ohashi Y, et al. Evidence for the covalent binding of SHAP, heavy chains of inter-α-trypsin inhibitor, to hyaluronan. J Biol Chem 1995;270(44):26657-63
  • Day AJ, de la Motte CA. Hyaluronan cross-linking: a protective mechanism in inflammation? Trends Immunol 2005;26(12):637-43
  • Zhuo L, Kanamori A, Kannagi R, et al. SHAP potentiates the CD44-mediated leukocyte adhesion to the hyaluronan substratum. J Biol Chem 2006;281(29):20303-14
  • Chen L, Mao SJ, Larsen WJ. Identification of a factor in fetal bovine serum that stabilizes the cumulus extracellular matrix. A role for a member of the inter-α-trypsin inhibitor family. J Biol Chem 1992;267(17):12380-6
  • Ødum L, Nielsen HW. Human protein HC (α1microglobulin) and inter-α-trypsin inhibitor in connective tissue. Histochem J 1994;26(10):799-803
  • Bensouyad A, Hollander AP, Dularay B, et al. Concentrations of glycosaminoglycans in synovial fluids and their relation with immunological and inflammatory mediators in rheumatoid arthritis. Ann Rheum Dis 1990;49:301-7
  • Nishida Y, Knudson CB, Nietfeld JJ, et al. Antisense inhibition of hyaluronan synthase-2 in human articular chondrocytes inhibits proteoglycan retention and matrix assembly. J Biol Chem 1999;274:21893-9
  • Meyer K, Smyth EM, Dawson MH. The isolation of a mucopolysaccharide from synovial fluid. J Biol Chem 1939;128:319-27
  • Sundblad L. Glycosaminoglycans and glycoprotein in synovial fluid. In: Balazs EA, Jeanloz RW, editors. The Aminosugars. Volume IIA Academic Press; New York, London: 1965. p. 229-50
  • Balazs EA, Watson D, Duff IF, Roseman S. Hyaluronic acid in synovial fluid: I. Molecular parameters of hyaluronic acid in normal and arthritic human fluids. Arthritis Rheum 1967;10:357-76
  • Dahl LB, Dahl IM, Engström-Laurent A, Granath K. Concentration and molecular weight of sodium hyaluronate in synovial fluid from patients with rheumatoid arthritis and other arthropathies. Ann Rheum Dis 1985;44:817-22
  • Yamazaki K, Fukuda K, Matsukawa M, et al. Reactive oxygen species depolymerize hyaluronan: involvement of the hydroxyl radical. Pathophysiology 2003;9(4):215-20
  • Yoshioka Y, Kozawa E, Urakawa H, et al. Suppression of hyaluronan synthesis alleviates inflammatory responses in murine arthritis and in human rheumatoid synovial fibroblasts. Arthritis Rheum 2013;65(5):1160-70
  • Campo GM, Avenoso A, D’Ascola A, et al. 4-Mer hyaluronan oligosaccharides stimulate inflammation response in synovial fibroblasts in part via TAK-1 and in part via p38-MAPK. Curr Med Chem 2013;20(9):1162-72
  • Homandberg GA, Ding L, Guo D. Extracellular matrix fragments as regulators of cartilage metabolism in health and disease. Curr Rheumatol Rev 2007;3(3):183-96
  • Engström-Laurent A, Hallgren R. Circulating hyaluronate in rheumatoid arthritis: relationship to inflammatory activity and the effect of corticosteroid therapy. Ann Rheum Dis 1985;44:83-8
  • Manicourt DH, Poilvache P, Nzeusseu A, et al. Serum levels of hyaluronan, antigenic keratan sulfate, matrix metalloproteinase 3, and tissue inhibitor of metalloproteinases 1 change predictably in rheumatoid arthritis patients who have begun activity after a night of bed rest. Arthritis Rheum 1999;42(9):1861-9
  • Wells AF, Klareskog L, Lindblad S, Laurent TC. Correlation between increased hyaluronan localized in arthritic synovium and the presence of proliferating cells: A role for macrophage-derived factors. Arthritis Rheum 1992;35(4):391-6
  • Pothacharoen P, Teekachunhatean S, Louthrenoo W, et al. Raised chondroitin sulfate epitopes and hyaluronan in serum from rheumatoid arthritis and osteoarthritis patients. Osteoarthr Cartilage 2006;14(3):299-301
  • Emlen W, Niebur J, Flanders G. Measurement of serum hyaluronic acid in patients with rheumatoid arthritis: correlation with disease activity. J Rheumatol 1996;23(6):974-8
  • Bruyere O, Collette JH, Ethgen O, et al. Biochemical markers of bone and cartilage remodeling in prediction of longterm progression of knee osteoarthritis. J Rheumatol 2003;30:1043-50
  • Sharif M, George E, Shepstone L, et al. Serum hyaluronic acid level as a predictor of disease progression in osteoarthritis of the knee. Arthritis Rheum 1995;38:760-7
  • Belcher C, Yaqub R, Fawthrop F, et al. Synovial fluid chondroitin and keratan sulphate epitopes, glycosaminoglycans, and hyaluronan in arthritic and normal knees. Ann Rheum Dis 1997;56(5):299-307
  • Engström-Laurent A, Hällgren R. Circulating hyaluronic acid levels vary with physical activity in healthy subjects and in rheumatoid arthritis patients. Arthritis Rheum 1987;30:1333-8
  • Hutadilok N, Ghosh P, Brooks PM. Binding of haptoglobin, inter-α-trypsin inhibitor, and α1 proteinase inhibitor to synovial fluid hyaluronate and the influence of these proteins on its degradation by oxygen derived free radicals. Ann Rheum Dis 1988;47(5):377-85
  • Zhuo L, Kimata K. Serum level of SHAP as a disease marker: a comparison with hyaluronan. Trends Glycosci Glyc 2010;22(124 SPEC.ISSUE):80-8
  • Pellegrini VDJr, Smith RL, Ku CW. Pathobiology of articular cartilage in trapeziometacarpal osteoarthritis. I. Regional biochemical analysis. J Hand Surg Am 1994;19(1):70-8
  • Lewis S, Crossman M, Flannelly J, et al. Chondroitin sulphation patterns in synovial fluid in osteoarthritis subsets. Ann Rheum Dis 1999;58(7):441-5
  • Cs-Szabó G, Roughley PJ, Plaas AH, Glant TT. Large and small proteoglycans of osteoarthritic and rheumatoid articular cartilage. Arthritis Rheum 1995;38:660-8
  • Yamada H, Miyauchi S, Hotta H, et al. Levels of chondroitin sulfate isomers in synovial fluid of patients with hip osteoarthritis. J Orthop Sci 1999;4:250-4
  • Wakitani S, Nawata M, Kawaguchi A, et al. Serum keratan sulfate is a promising marker of early articular cartilage breakdown. Rheumatology 2007;46(11):1652-6
  • Slater RR, Bayliss MT, Lachiewicz PF, et al. Monoclonal antibodies that detect biochemical markers of arthritis in humans. Arthritis Rheum 1995;38:655-9
  • Shu C, Hughes C, Smith SM, et al. The ovine newborn and human foetal intervertebral disc contain perlecan and aggrecan variably substituted with native 7D4 CS sulphation motif: spatiotemporal immunolocalisation and co-distribution with Notch-1 in the human foetal disc. Glycoconj J 2013;30(7):717-25
  • Hazell PK, Dent C, Fairclough JA, et al. Changes in glycosaminoglycan epitope levels in knee joint fluid following injury. Arthritis Rheum 1995;38(7):953-9
  • Jansen NW, Roosendaal G, Lundin B, et al. The combination of the biomarkers urinary C-terminal telopeptide of type II collagen, serum cartilage oligomeric matrix protein, and serum chondroitin sulfate 846 reflects cartilage damage in hemophilic arthropathy. Arthritis Rheum 2009;60:290-8
  • Poole AR, Ionescu M, Swan A, Dieppe PA. Changes in cartilage metabolism in arthritis are reflected by altered serum and synovial fluid levels of the cartilage proteoglycan aggrecan: implications for pathogenesis. J Clin Invest 1994;94(1):25-33
  • Mizon C, Mairie C, Balduyck M, et al. The chondroitin sulfate chain of bikunin-containing proteins in the inter-inhibitor family increases in size in inflammatory diseases. Euro J Biochem 2001;268(9):2717-24
  • Campion G, McCrae F, Schnitzer TJ, et al. Levels of keratan sulfate in the serum and synovial fluid of patients with osteoarthritis of the knee. Arthritis Rheum 1991;34:1254-9
  • Poole AR, Witter J, Roberts N, et al. Inflammation and cartilage metabolism in rheumatoid arthritis. Studies of the Blood Markers Hyaluronic Acid, Orosomucoid, and Keratan Sulfate. Arthritis Rheum 1990;33(6):790-9
  • Spector TD, Woodward L, Hall GM, et al. Keratan sulphate in rheumatoid arthritis, osteoarthritis and inflammatory diseases. Ann Rheum Dis 1992;51:1134-7
  • Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis 1957;16:494-502
  • Mehraban F, Finegan CK, Moskowitz RW. Serum keratan sulfate. Arthritis Rheum 1991;34:383-92
  • Cillero-Pastor B, Eijkel GB, Kiss A, et al. Matrix-assisted laser desorption ionization imaging mass spectrometry: A new methodology to study human osteoarthritic cartilage. Arthritis Rheum 2013;65(3):710-20
  • Mateos J, Lourido L, Fernández-Puente P, et al. Differential protein profiling of synovial fluid from rheumatoid arthritis and osteoarthritis patients using LC-MALDI TOF/TOF. J Proteomics 2012;75(10):2869-78

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.