583
Views
42
CrossRef citations to date
0
Altmetric
Review

Dynamics of biological systems: role of systems biology in medical research

, , &
Pages 891-902 | Published online: 09 Jan 2014

References

  • Wolkenhauer O, Mesarovic M. Feedback dynamics and cell function: why systems biology is called systems biology. Mol. BioSystems1(1), 14–16 (2005).
  • Iyer VR, Eisen MB, Ross DT et al. The transcriptional program in the response of human fibroblasts to serum. Science283(5398), 83–87 (1999).
  • Ideker T, Thorsson V, Ranish JA et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science292(5518), 929–934 (2001).
  • Kholodenko BN, Kiyatkin A, Bruggeman FJ, Sontag E, Westerhoff HV, Hoek JB. Untangling the wires: a strategy to trace functional interactions in signaling and gene networks. Proc. Natl Acad. Sci. USA99(20), 12841–12846 (2002).
  • Nicholson JK, Holmes E, Lindon JC, Wilson ID. The challenges of modeling mammalian biocomplexity. Nat. Biotechnol.22(10), 1268–1274 (2004).
  • Westerhoff HV, Palsson O. The evolution of molecular biology into systems biology. Nat. Biotechnol.22(10), 1249–1252 (2004).
  • International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature409(6822), 860–921 (2001).
  • Venter CJ, Adams MD, Myers EW et al. The sequence of the human genome. Science291(5507), 1304–1351 (2001).
  • Schomburg I, Chang A, Hofmann O et al. BRENDA: a resource for enzyme data and metabolic information. Trends Biochem Sci.27(1), 54–56 (2002).
  • Stelzl U, Worm U, Lalowski M et al. A human protein–protein interaction network: a resource for annotating the proteome. Cell122(6), 957–968 (2005).
  • Rual JF, Venkatesan K, Hao T et al. Towards a proteome-scale map of the human protein–protein interaction network. Nature437(7062), 1173–1178 (2005).
  • Somogyi R, Greller LD. The dynamics of molecular networks: applications to therapeutic discovery. Drug Discov. Today6(24), 1267–1277 (2001).
  • Rao BM, Lauffenburger DA, Wittrup KD. Integrating cell-level kinetic modeling into the design of engineered protein therapeutics. Nat. Biotechnol.23(2), 191–194 (2005).
  • Nelson G, Wilde GJC, Spiller DG et al. Dynamic analysis of STAT6 signalling in living cells. FEBS Lett.532(1–2), 188–192 (2002).
  • Nelson DE, Ihekwaba AEC, Elliott M et al. Oscillations in NF-κB signaling control the dynamics of gene expression. Science306(5696), 704–708 (2004).
  • Schwille P, Haupts U, Maiti S, Webb WW. Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophys. J.77(4), 2251–2265 (1999).
  • Digman MA, Brown CM, Sengupta P, Wiseman PW, Horwitz AR, Gratton E. Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophys. J.89(2), 1317–1327 (2005).
  • Xu WB, Jericho MH, Meinertzhagen IA, Kreuzer HJ. Digital in-line holography for biological applications. Proc. Natl Acad. Sci. USA98(20), 11301–11305 (2001).
  • Ewis AA, Zhelev Z, Bakalova R et al. A history of microarrays in biomedicine. Expert Rev. Mol. Diagn.5(3), 315–328 (2005).
  • Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB. Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol.22(5), 245–252 (2004).
  • Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L. Innovation – metabolite profiling: from diagnostics to systems biology. Nature Rev. Mol. Cell Biol.5(9), 763–769 (2004).
  • Gadkar KG, Varner J, Doyle III FJ. Model identification of signal transduction networks from data using a state regulator problem. IEE Proc. Systems Biology2(1), 17–30 (2005).
  • Brazma A, Hingamp P, Quackenbush J et al. Minimum information about a microarray experiment (MIAME) – toward standards for microarray data. Nat. Genet.29, 365–371 (2001).
  • Faller D, Klingmüller U, Timmer J. Simulation methods for optimal experimental design in systems biology. Simulation79(12), 717–725 (2003).
  • Taylor CF, Paton NW, Garwood KL et al. A systematic approach to modeling, capturing, and disseminating proteomics experimental data. Nat. Biotechnol.21(3), 247–254 (2003).
  • Hermjakob H, Montecchi-Palazzi L, Bader G et al. The HUPO PSI’s molecular interaction format – a community standard for the representation of protein interaction data. Nat. Biotechnol.22(10), 177–183 (2004).
  • Hucka M, Finney A, Sauro HM et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics19(4), 524–531 (2003).
  • Lloyd CM, Halstead MD and Nielsen PF. CellML: its future, present and past. Prog. Biophys. Mol. Biol.85, 433–450 (2004).
  • Etzold T, Ulyanov A, Argos P. SRS: information retrieval system for molecular biology data banks. Methods Enzymol.266, 114–128 (1996).
  • Kasprzyk A, Keefe D, Smedley D et al. EnsMart: a generic system for fast and flexible access to biological data. Genome Res.14(1), 160–169 (2004).
  • Gitton Y, Dahmane N, Baik S et al. A gene expression map of human chromosome 21 orthologues in the mouse. Nature420(6915), 586–590 (2002).
  • Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM. Systematic determination of genetic network architecture. Nat. Genet.22(3), 281–285 (1999).
  • Hwang D. A data integration methodology for systems biology. Proc. Natl Acad. Sci. USA102(48), 17296–17301 (2005).
  • Hwang D. A data integration methodology for systems biology: experimental verification. Proc. Natl Acad. Sci. USA102(48), 17302–17307 (2005).
  • Wolkenhauer O, Ullah M, Kolch W, Cho KH. Modeling and simulation of intracellular dynamics: Choosing an appropriate framework. IEEE Trans. Nanobioscience3(3), 200–207 (2004).
  • Rao CV, Wolf DM, Arkin AP. Control, exploitation and tolerance of intracellular noise. Nature420(6912), 231–237 (2002).
  • Tyson JJ, Chen KC, Novak B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol.15(2), 221–231 (2003).
  • Wolkenhauer O, Ullah M, Wellstead P, Cho KH. The dynamic systems approach to control and regulation of intracellular networks. FEBS Lett.579(8), 1846–1853 (2005).
  • de Jong H. Modeling and simulation of genetic regulatory systems: A literature review. J. Comp. Biol.9(1), 67–103 (2002).
  • Klipp E, Herwig R, Kowald A, Wierling C, Lehrach H. Systems Biology in Practice. Concepts, Implementation and Application. Wiley-VCH, Weinheim, Germany (2005).
  • Arkin AP. Synthetic cell biology. Curr. Opin. Biotechnol.12(6), 638–644 (2001).
  • Schuster R, Jacobasch G, Holzhutter HG. Mathematical-modeling of metabolic pathways affected by an enzyme deficiency - energy and redox metabolism of glucose-6-phosphate-dehydrogenase-deficient erythrocytes. Eur. J. Biochem.182(3), 605–612 (1989).
  • Jamshidi N, Wiback SJ, Palsson BO. In silico model-driven assessment of the effects of single nucleotide polymorphisms (SNPs) on human red blood cell metabolism. Genome Res.12(11), 1687–1692 (2002).
  • Cortassa S, Aon MA, Marbán E, Winslow RL, O’Rourke B. An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics. Biophys. J.84(4), 2734–2755 (2003).
  • Kholodenko BN. Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur. J. Biochem.267(6), 1583–1588 (2000).
  • Hornberg JJ, Binder B, Bruggeman FJ, Schoeberl B, Heinrich R, Westerhoff HV. Control of MAPK signalling: from complexity to what really matters. Oncogene24(36), 5533–5542 (2005).
  • Lee E, Salic A, Krueger R, Heinrich R, Kirschner MW. The roles of APC and axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biology1(1), 116–132 (2003).
  • Swameye I, Müller TG, Timmer J, Sandra O, Klingmüller U. Identification of nucleocytoplasmic cycling as a remote sensor in cellular signaling by databased modeling. Proc. Natl Acad. Sci. USA100(3), 1028–1033 (2003).
  • Fussenegger M, Bailey JE, Varner J. A mathematical model of caspase function in apoptosis. Nat. Biotechnol.18(7), 768–774 (2000).
  • Tyson JJ, Novak B. Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions. J. Theoret. Biol.210(2), 249–263 (2001).
  • Rajasethupathy P, Vayttaden SJ, Bhalla US. Systems modeling: a pathway to drug discovery. Curr. Opin. Chem. Biol.9(4), 400–406 (2005).
  • Noble D. Modeling the heart – from genes to cells to the whole organ. Science295(5560), 1678–1682 (2002).
  • Hood L, Perlmutter RM. The impact of systems approaches on biological problems in drug discovery. Nat. Biotechnol.22(10), 1215–1217 (2004).
  • Hamosh A, Scott AF, Amberger J, Bocchini C, Valle D, McKusick VA. Online Mendelian Inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res.30(1), 52–55 (2002).
  • Butcher EC, Berg EL, Kunkel EC. Systems biology in drug discovery. Nat. Biotechnol.22(10), 1253–1259 (2004).
  • Fishman MC, Porter JA. Pharmaceuticals – a new grammar for drug discovery. Nature437(7058), 491–493 (2005).
  • Nicholson JK, Connelly J, Lindon JC, Holmes E. Metabonomics: a platform for studying drug toxicity and gene function. Nat. Rev. Drug Discov.1(2), 153–161 (2002).
  • Porksen N, Hollingdal M, Juhl C, Butler P, Veldhuis JD, Schmitz O. Pulsatile insulin secretion: detection, regulation, and role in diabetes. Diabetes51(Suppl.), S245–S254 (2002).
  • Lynch TJ, Bell DW, Sordella R et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med.350(21), 2129–2139 (2004).
  • Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S et al. EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science304(5676), 1497–1500 (2004).
  • Mormont MC, Levi F. Cancer chronotherapy: principles, applications, and perspectives. Cancer97(1), 155–169 (2003).
  • Eddy DM, Schlessinger L. Archimedes – a trial-validated model of diabetes. Diabetes Care26(11), 3093–3101 (2003).
  • Agur Z, Arakelyan L, Belilty G et al. Application of the virtual cancer patient engine (VCPE) for improving oncological treatment design. J. Clin. Oncol.22(14), 50S692 Suppl. (2004).
  • Christopher R, Dhiman A, Fox J, et al. Data-driven computer simulation of human cancer cell. Ann. NY Acad. Sci.1020, 132–153 (2004).
  • Futreal PA, Coin L, Marshall M et al. A census of human cancer genes. Nat. Rev. Cancer4(3), 177–183 (2004).
  • Balmain A, Gray J, Ponder B. The genetics and genomics of cancer. Nat. Genet.33, 238–244 (2003).
  • Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat. Med.10(8), 789–799 (2004).
  • Michor F, Iwasa Y, Nowak MA. Dynamics of cancer progression. Nat. Rev. Cancer4(3), 197–205 (2004).
  • May P, May E. Twenty years of p53 research: structural and functional aspects of the p53 protein. Oncogene18(53), 7621–7636 (1999).
  • Aguda BD. A quantitative analysis of the kinetics of the G(2) DNA damage checkpoint system. Proc. Natl Acad. Sci. USA96(20), 11352–11357 (1999).
  • Bar-Or RL, Maya R, Segel LA, Alon U, Levine AJ, Oren M. Generation of oscillations by the p53-Mdm2 feedback loop: a theoretical and experimental study. Proc. Natl Acad. Sci. USA97(21), 11250–11255 (2000).
  • Kitano H. Cancer as a robust system: implications for anticancer therapy. Nat. Rev. Cancer4(3), 227–235 (2004).
  • Michor F, Hughes TP, Iwasa Y et al. Dynamics of chronic myeloid leukaemia. Nature435(7046), 1267–1270 (2005).
  • Michor F, Iwasa Y, Rajagopalan H, Lengauer C, Nowak MA. Linear model of colon cancer initiation. Cell Cycle3(3), 358–362 (2004).
  • Komarova NL. Mathematical modeling of tumorigenesis: mission possible. Curr. Opin. Oncol.17(1), 39–43 (2005).
  • Greller LD, Tobin FL, Poste G. Tumor heterogeneity and progression: conceptual foundations for modeling. Invasion Metastasis16(4–5), 177–208 (1996).
  • Gatenby RA, Gawlinski ET. The glycolytic phenotype in carcinogenesis and tumor invasion. Cancer Res.63(14), 3847–3854 (2003).
  • Fantin VR, Berardi MJ, Scorrano L, Korsmeyer SJ, Leder P. A novel mitochondriotoxic small molecule that selectively inhibits tumor cell growth. Cancer Cell2(1), 29–42 (2002).
  • Trapp S, Horobin RW. A predictive model for the selective accumulation of chemicals in tumor cells. Eur. Biophys. J.34(7), 958–966 (2005).
  • Adams GP, Weiner LM. Monoclonal antibody therapy of cancer. Nat. Biotechnol.23(9), 1147–1157 (2005).
  • Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat. Rev. Cancer5, 341–354 (2005).
  • Kholodenko BN, Demin OV, Moehren G, Hoek JB. Quantification of short term signaling by the epidermal growth factor receptor. J. Biol. Chem.274(42), 30169–30181 (1999).
  • Resat H, Ewald JA, Dixon DA, Wiley HS. An integrated model of epidermal growth factor receptor trafficking and signal transduction. Biophys. J.85(2), 730–743 (2003).
  • Oda K, Matsuoka Y, Funahashi A, Kitano H. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol. Syst. Biol.1, E1–E17 (2005).
  • Hornberg JJ, Bruggeman FJ, Westerhoff HV, Lankelma J. Cancer: a systems biology disease. Biosystems83(2–3), 81–90 (2006).
  • Agur Z, Cojocaru L, Mazor G, Anderson RM, Danon YL. Pulse mass measles vaccination across age cohorts. Proc. Natl Acad. Sci. USA90(24), 11698–11702 (1993).
  • Segel LA, Jager E, Elias D, Cohen IR. A quantitative model of autoimmune-disease and T-cell vaccination: does more mean less? Immunol. Today16(2), 80–84 (1995).
  • Fishman MA, Segel LA. Modeling immunotherapy for allergy. Bull. Math Biol.58(6), 1099–1121 (1996).
  • Segel LA. Multiple attractors in immunology: theory and experiment. Biophys. Chem.72(1), 223–230 (1998).
  • Bretscher MT, Althaus CL, Muller V, Bonhoeffer S. Recombination in HIV and the evolution of drug resistance: for better or for worse? Bioessays26(2), 180–188 (2004).
  • Meyers LA, Pourbohloul B, Newman MEJ, Skowronski DM, Brunham RC. Network theory and SARS: predicting outbreak diversity. J. Theoret. Biol.232(1), 71–81 (2005).
  • Calvano SE, Xiao WZ, Richards DR et al. A network-based analysis of systemic inflammation in humans. Nature437(7061), 1032–1037 (2005).
  • Yarmush ML, Banta S. Metabolic engineering: advances in the modeling and intervention in health and disease. Ann. Rev. Biomed. Eng.5, 349–381 (2003).
  • Chevalier G, Deniau JM. Disinhibition as a basic process in the expression of striatal functions. Trends Neurosci.13(7), 277–280 (1990).
  • Lemaire V, Tobin FL, Greller LD, Cho CR, Suva LJ. Modeling the interactions between osteoblast and osteoclast activities in bone remodeling. J. Theoret. Biol.229(3), 293–309 (2004).
  • Kitano H, Oda K, Kimura T et al. Metabolic syndrome and robustness tradeoffs. Diabetes53(Suppl.), S6–S15 (2004).
  • Schilling M, Maiwald T, Bohl S et al. Quantitative data generation for systems biology – the impact of randomisation, calibrators and normalisers. IEE Proc. Systems Biology152(4), 193–200 (2005).
  • Tomita M. Whole-cell simulation: a grand challenge of the 21st century. Trends Biotechnol.19(6), 205–210 (2001).
  • Snoep JL. The Silicon Cell initiative: working towards a detailed kinetic description at the cellular level. Curr. Opin. Biotech.16(3), 336–343 (2005).
  • Bunge MA. Scientific Research. Springer, Berlin, Germany (1967).

Websites

  • Blue Brain Project - Modeling the Mammalian Brain www.bluebrainproject.epfl.ch
  • IUPS Physiome project www.physiome.org.nz
  • Online Mendelian Inheritance in Man™ database www.ncbi.nlm.nih.gov/entrez/ query.fcgi?db=OMIM
  • E-Cell Project www.e-cell.org
  • The Silicon Cells www.siliconcell.net
  • JWS Online - Online Cellular Systems Modelling www.jjj.bio.vu.nl
  • Virtual Cell Modeling and Simulation Framework www.nrcam.uchc.edu
  • HepatoSys - Systems Biology of Regenerating Hepatocytes www.fdm.uni-freiburg.de/SysBio
  • SimTK: physics-based models and software www.simtk.org

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.