24
Views
6
CrossRef citations to date
0
Altmetric
Review

The promise of PET in clinical management and as a sensitive test for drug cytotoxicity in sarcomas

, , &
Pages 105-119 | Published online: 09 Jan 2014

References

  • Jemal A, Siegel R, Ward E et al. Cancer statistics, 2007. CA Cancer J. Clin.57(1), 43–66 (2007).
  • Therasse P. Measuring the clinical response. What does it mean? Eur. J. Cancer38(14), 1817–1823 (2002).
  • McHugh K, Kao S. Response evaluation criteria in solid tumours (RECIST): problems and need for modifications in paediatric oncology? Br. J. Radiol.76(907), 433–436 (2003).
  • Therasse P, Arbuck SG, Eisenhauer EA et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J. Natl Cancer Inst.92(3), 205–216 (2000).
  • Kelloff GJ, Hoffman JM, Johnson B et al. Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin. Cancer Res.11(8), 2785–2808 (2005).
  • Solomon B, McArthur G, Cullinane C, Zalcberg J, Hicks R. Applications of positron emission tomography in the development of molecular targeted cancer therapeutics. BioDrugs17(5), 339–354 (2003).
  • Hicks RJ, Toner GC, Choong PF. Clinical applications of molecular imaging in sarcoma evaluation. Cancer Imaging5(1), 66–72 (2005).
  • Blay JY, Bonvalot S, Casali P et al. Consensus meeting for the management of gastrointestinal stromal tumors. Report of the GIST Consensus Conference of 20–21 March 2004, under the auspices of ESMO. Ann. Oncol.16(4), 566–578 (2005).
  • Miller AB, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. Cancer47(1), 207–214 (1981).
  • Moertel CG, Hanley JA. The effect of measuring error on the results of therapeutic trials in advanced cancer. Cancer38(1), 388–394 (1976).
  • James K, Eisenhauer E, Christian M et al. Measuring response in solid tumors: unidimensional versus bidimensional measurement. J. Natl Cancer Inst.91(6), 523–528 (1999).
  • Huvos AG, Rosen G, Marcove RC. Primary osteogenic sarcoma: pathologic aspects in 20 patients after treatment with chemotherapy en bloc resection, and prosthetic bone replacement. Arch. Pathol. Lab. Med.101(1), 14–18 (1977).
  • Salzer-Kuntschik M, Delling G, Beron G, Sigmund R. Morphological grades of regression in osteosarcoma after polychemotherapy – study COSS 80. J. Cancer Res. Clin. Oncol.106(Suppl.), 21–24 (1983).
  • Davis AM, Bell RS, Goodwin PJ. Prognostic factors in osteosarcoma: a critical review. J. Clin. Oncol.12(2), 423–431 (1994).
  • Raymond AK, Chawla SP, Carrasco CH et al. Osteosarcoma chemotherapy effect: a prognostic factor. Semin. Diagn. Pathol.4(3), 212–236 (1987).
  • Petrilli AS, Gentil FC, Epelman S et al. Increased survival, limb preservation, and prognostic factors for osteosarcoma. Cancer68(4), 733–737 (1991).
  • Glasser DB, Lane JM, Huvos AG, Marcove RC, Rosen G. Survival, prognosis, and therapeutic response in osteogenic sarcoma. The Memorial Hospital experience. Cancer69(3), 698–708 (1992).
  • Wuisman P, Enneking WF, Roesner A. Local growth and the prognosis of osteosarcoma. Int. Orthop.16(1), 55–58 (1992).
  • Bramwell VH, Burgers M, Sneath R et al. A comparison of two short intensive adjuvant chemotherapy regimens in operable osteosarcoma of limbs in children and young adults: the first study of the European Osteosarcoma Intergroup. J. Clin. Oncol.10(10), 1579–1591 (1992).
  • Provisor AJ, Ettinger LJ, Nachman JB et al. Treatment of nonmetastatic osteosarcoma of the extremity with preoperative and postoperative chemotherapy: a report from the Children’s Cancer Group. J. Clin. Oncol.15(1), 76–84 (1997).
  • Ferrari S, Bacci G, Picci P et al. Long-term follow-up and post-relapse survival in patients with non-metastatic osteosarcoma of the extremity treated with neoadjuvant chemotherapy. Ann. Oncol.8(8), 765–771 (1997).
  • Pochanugool L, Subhadharaphandou T, Dhanachai M et al. Prognostic factors among 130 patients with osteosarcoma. Clin. Orthop. Relat. Res.(345), 206–214 (1997).
  • Bielack SS, Kempf-Bielack B, Delling G et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J. Clin. Oncol.20(3), 776–790 (2002).
  • Jurgens H, Exner U, Gadner H et al. Multidisciplinary treatment of primary Ewing’s sarcoma of bone. A-year experience of a European Cooperative Trial. Cancer61(1), 23–32 (1988).
  • Delepine N, Delepine G, Cornille H et al. Prognostic factors in patients with localized Ewing’s sarcoma: the effect on survival of actual received drug dose intensity and of histologic response to induction therapy. J. Chemother.9(5), 352–363 (1997).
  • Wunder JS, Paulian G, Huvos AG et al. The histological response to chemotherapy as a predictor of the oncological outcome of operative treatment of Ewing sarcoma. J. Bone Joint Surg. Am.80(7), 1020–1033 (1998).
  • Hoffmann C, Ahrens S, Dunst J et al. Pelvic Ewing sarcoma: a retrospective analysis of 241 cases. Cancer85(4), 869–877 (1999).
  • Rosito P, Mancini AF, Rondelli R et al. Italian Cooperative Study for the treatment of children and young adults with localized Ewing sarcoma of bone: a preliminary report of 6 years of experience. Cancer86(3), 421–428 (1999).
  • Paulussen M, Ahrens S, Dunst J et al. Localized Ewing tumor of bone: final results of the cooperative Ewing’s Sarcoma Study CESS 86. J. Clin. Oncol.19(6), 1818–1829 (2001).
  • Bacci G, Longhi A, Ferrari S et al. Prognostic factors in non-metastatic Ewing’s sarcoma tumor of bone: an analysis of 579 patients treated at a single institution with adjuvant or neoadjuvant chemotherapy between 1972 and 1998. Acta Oncol.45(4), 469–475 (2006).
  • Eilber FC, Rosen G, Eckardt J et al. Treatment-induced pathologic necrosis: a predictor of local recurrence and survival in patients receiving neoadjuvant therapy for high-grade extremity soft tissue sarcomas. J. Clin. Oncol.19(13), 3203–3209 (2001).
  • Phelps ME, Hoffman EJ, Mullani NA, Ter-Pogossian MM. Application of annihilation coincidence detection to transaxial reconstruction tomography. J. Nucl. Med.16(3), 210–224 (1975).
  • Smith TA. Facilitative glucose transporter expression in human cancer tissue. Br. J. Biomed. Sci.56(4), 285–292 (1999).
  • Smith TA. Mammalian hexokinases and their abnormal expression in cancer. Br. J. Biomed. Sci.57(2), 170–178 (2000).
  • Flier JS, Mueckler MM, Usher P, Lodish HF. Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science235(4795), 1492–1495 (1987).
  • Huber BE, Cordingley MG. Expression and phenotypic alterations caused by an inducible transforming ras oncogene introduced into rat liver epithelial cells. Oncogene3(3), 245–256 (1988).
  • Persons DA, Schek N, Hall BL, Finn OJ. Increased expression of glycolysis-associated genes in oncogene-transformed and growth-accelerated states. Mol. Carcinog.2(2), 88–94 (1989).
  • Osthus RC, Shim H, Kim S et al. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J. Biol. Chem.275(29), 21797–21800 (2000).
  • Shawver LK, Olson SA, White MK, Weber MJ. Degradation and biosynthesis of the glucose transporter protein in chicken embryo fibroblasts transformed by the src oncogene. Mol. Cell Biol.7(6), 2112–2118 (1987).
  • White MK, Weber MJ. Transformation by the src oncogene alters glucose transport into rat and chicken cells by different mechanisms. Mol. Cell Biol.8(1), 138–144 (1988).
  • Scimeca JC, Ballotti R, Alengrin F et al. Metabolic effects induced by epidermal growth factor (EGF) in cells expressing EGF receptor mutants. J. Biol. Chem.264(12), 6831–6835 (1989).
  • Sistonen L, Holtta E, Lehvaslaiho H, Lehtola L, Alitalo K. Activation of the neu tyrosine kinase induces the fos/jun transcription factor complex, the glucose transporter and ornithine decarboxylase. J. Cell Biol.109(5), 1911–1919 (1989).
  • Weiland M, Bahr F, Hohne M et al. The signaling potential of the receptors for insulin and insulin-like growth factor I (IGF-I) in 3T3-L1 adipocytes: comparison of glucose transport activity, induction of oncogene c-fos, glucose transporter mRNA, and DNA-synthesis. J. Cell Physiol.149(3), 428–435 (1991).
  • Barthel A, Okino ST, Liao J et al. Regulation of GLUT1 gene transcription by the serine/threonine kinase Akt1. J. Biol. Chem.274(29), 20281–20286 (1999).
  • Frauwirth KA, Riley JL, Harris MH et al. The CD28 signaling pathway regulates glucose metabolism. Immunity16(6), 769–777 (2002).
  • Barata JT, Silva A, Brandao JG et al. Activation of PI3K is indispensable for interleukin 7-mediated viability, proliferation, glucose use, and growth of T cell acute lymphoblastic leukemia cells. J. Exp. Med.200(5), 659–669 (2004).
  • VanderWeele DJ, Zhou R, Rudin CM. Akt up-regulation increases resistance to microtubule-directed chemotherapeutic agents through mammalian target of rapamycin. Mol. Cancer Ther.3(12), 1605–1613 (2004).
  • Semenza GL, Roth PH, Fang HM, Wang GL. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem.269(38), 23757–23763 (1994).
  • Elstrom RL, Bauer DE, Buzzai M et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res.64(11), 3892–3899 (2004).
  • Sakata K, Kato S, Fox JC, Shigemori M, Morimatsu M. Autocrine signaling through Ras regulates cell survival activity in human glioma cells: potential cross-talk between Ras and the phosphatidylinositol 3-kinase-Akt pathway. J. Neuropathol. Exp. Neurol.61(11), 975–983 (2002).
  • Feng Z, Hu W, de Stanchina E et al. The regulation of AMPK β1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res.67(7), 3043–3053 (2007).
  • Shankar LK, Hoffman JM, Bacharach S et al. Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in National Cancer Institute Trials. J. Nucl. Med.47(6), 1059–1066 (2006).
  • Larson SM, Erdi Y, Akhurst T et al. Tumor treatment response based on visual and quantitative changes in global tumor glycolysis using PET-FDG imaging. The visual response score and the change in total lesion glycolysis. Clin. Positron Imaging2(3), 159–171 (1999).
  • Basu S, Zaidi H, Houseni M et al. Novel quantitative techniques for assessing regional and global function and structure based on modern imaging modalities: implications for normal variation, aging and diseased states. Semin. Nucl. Med.37(3), 223–239 (2007).
  • Shields AF, Lim K, Grierson J, Link J, Krohn KA. Utilization of labeled thymidine in DNA synthesis: studies for PET. J. Nucl. Med.31(3), 337–342 (1990).
  • Wells P, Gunn RN, Alison M et al. Assessment of proliferation in vivo using 2-[11C]thymidine positron emission tomography in advanced intra-abdominal malignancies. Cancer Res.62(20), 5698–5702 (2002).
  • Shields AF, Grierson JR, Dohmen BM et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat. Med.4(11), 1334–1336 (1998).
  • Rasey JS, Grierson JR, Wiens LW, Kolb PD, Schwartz JL. Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J. Nucl. Med.43(9), 1210–1217 (2002).
  • Buck AK, Schirrmeister H, Hetzel M et al. 3-deoxy-3-[18F]fluorothymidine-positron emission tomography for noninvasive assessment of proliferation in pulmonary nodules. Cancer Res.62(12), 3331–3334 (2002).
  • Cobben DC, Elsinga PH, Suurmeijer AJ et al. Detection and grading of soft tissue sarcomas of the extremities with 18F-3´-fluoro-3´-deoxy-L-thymidine. Clin. Cancer Res.10(5), 1685–1690 (2004).
  • Been LB, Suurmeijer AJ, Elsinga PH et al. 18F -fluorodeoxythymidine PET for evaluating the response to hyperthermic isolated limb perfusion for locally advanced soft-tissue sarcomas. J. Nucl. Med.48(3), 367–372 (2007).
  • Hara T, Kosaka N, Shinoura N, Kondo T. PET imaging of brain tumor with [methyl-11C]choline. J. Nucl. Med.38(6), 842–847 (1997).
  • Hara T, Kosaka N, Kishi H. PET imaging of prostate cancer using carbon-11-choline. J. Nucl. Med.39(6), 990–995 (1998).
  • DeGrado TR, Coleman RE, Wang S et al. Synthesis and evaluation of 18F -labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. Cancer Res.61(1), 110–117 (2001).
  • Hara T, Kosaka N, Kishi H. Development of 18F-fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging. J. Nucl. Med.43(2), 187–199 (2002).
  • Bolster JM, Vaalburg W, Paans AM et al. Carbon-11 labelled tyrosine to study tumor metabolism by positron emission tomography (PET). Eur J. Nucl. Med.12(7), 321–324 (1986).
  • Wienhard K, Herholz K, Coenen HH et al. Increased amino acid transport into brain tumors measured by PET of L-(2-18F)fluorotyrosine. J. Nucl. Med.32(7), 1338–1346 (1991).
  • Inoue T, Tomiyoshi K, Higuichi T et al. Biodistribution studies on L-3-[fluorine-18]fluoro-α-methyl tyrosine: a potential tumor-detecting agent. J. Nucl. Med.39(4), 663–667 (1998).
  • Wester HJ, Herz M, Weber W et al. Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J. Nucl. Med.40(1), 205–212 (1999).
  • Kubota K, Ishiwata K, Kubota R et al. Feasibility of fluorine-18-fluorophenylalanine for tumor imaging compared with carbon-11-L-methionine. J. Nucl. Med.37(2), 320–325 (1996).
  • van Ginkel RJ, Kole AC, Nieweg OE et al. L-[1-11C]-tyrosine PET to evaluate response to hyperthermic isolated limb perfusion for locally advanced soft-tissue sarcoma and skin cancer. J. Nucl. Med.40(2), 262–267 (1999).
  • Zhang H, Yoshikawa K, Tamura K et al. [11C]methionine positron emission tomography and survival in patients with bone and soft tissue sarcomas treated by carbon ion radiotherapy. Clin. Cancer Res.10(5), 1764–1772 (2004).
  • Chang CH, Wang HE, Wu SY et al. Comparative evaluation of FET and FDG for differentiating lung carcinoma from inflammation in mice. Anticancer Res.26(2A), 917–925 (2006).
  • Pauleit D, Zimmermann A, Stoffels G et al.18F-FET PET compared with 18F-FDG PET and CT in patients with head and neck cancer. J. Nucl. Med.47(2), 256–261 (2006).
  • Glaser M, Collingridge DR, Aboagye EO et al. Iodine-124 labelled annexin-V as a potential radiotracer to study apoptosis using positron emission tomography. Appl. Radiat. Isot.58(1), 55–62 (2003).
  • Zijlstra S, Gunawan J, Burchert W. Synthesis and evaluation of a 18F-labelled recombinant annexin-V derivative, for identification and quantification of apoptotic cells with PET. Appl. Radiat. Isot.58(2), 201–207 (2003).
  • Fujibayashi Y, Taniuchi H, Yonekura Y et al. Copper-62-ATSM: a new hypoxia imaging agent with high membrane permeability and low redox potential. J. Nucl. Med.38(7), 1155–1160 (1997).
  • Dolbier WR Jr, Li AR, Koch CJ, Shiue CY, Kachur AV. [18F]-EF5, a marker for PET detection of hypoxia: synthesis of precursor and a new fluorination procedure. Appl. Radiat. Isot.54(1), 73–80 (2001).
  • Josse O, Labar D, Georges B, Gregoire V, Marchand-Brynaert J. Synthesis of [18F]-labeled EF3 [2-(2-nitroimidazol-1-yl)-N-(3,3,3-trifluoropropyl)-acetamide], a marker for PET detection of hypoxia. Bioorg. Med. Chem.9(3), 665–675 (2001).
  • Rasey JS, Koh WJ, Grierson JR, Grunbaum Z, Krohn KA. Radiolabelled fluoromisonidazole as an imaging agent for tumor hypoxia. Int. J. Radiat. Oncol. Biol. Phys.17(5), 985–991 (1989).
  • Koh WJ, Rasey JS, Evans ML et al. Imaging of hypoxia in human tumors with [F-18]fluoromisonidazole. Int. J. Radiat. Oncol. Biol. Phys.22(1), 199–212 (1992).
  • Rajendran JG, Wilson DC, Conrad EU et al. [18F]FMISO and [18F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. Eur. J. Nucl. Med. Mol. Imaging30(5), 695–704 (2003).
  • Sorger D, Patt M, Kumar P et al. [18F]Fluoroazomycinarabinofuranoside (18FAZA) and [18F]fluoromisonidazole (18FMISO): a comparative study of their selective uptake in hypoxic cells and PET imaging in experimental rat tumors. Nucl. Med. Biol.30(3), 317–326 (2003).
  • Piert M, Machulla HJ, Picchio M et al. Hypoxia-specific tumor imaging with 18F-fluoroazomycin arabinoside. J. Nucl. Med.46(1), 106–113 (2005).
  • Reischl G, Dorow DS, Cullinane C et al. Imaging of tumor hypoxia with [124I]IAZA in comparison with [18F]FMISO and [18F]FAZA – first small animal PET results. J. Pharm. Pharm. Sci.10(2), 203–211 (2007).
  • Dahlbom M, Hoffman EJ, Hoh CK et al. Whole-body positron emission tomography: part I. Methods and performance characteristics. J. Nucl. Med.33(6), 1191–1199 (1992).
  • Beyer T, Townsend DW, Brun T et al. A combined PET/CT scanner for clinical oncology. J. Nucl. Med.41(8), 1369–1379 (2000).
  • Gambhir SS, Czernin J, Schwimmer J et al. A tabulated summary of the FDG PET literature. J. Nucl. Med.42(5 Suppl), 1–93S (2001).
  • Ioannidis JP, Lau J. 18F-FDG PET for the diagnosis and grading of soft-tissue sarcoma: a meta-analysis. J. Nucl. Med.44(5), 717–724 (2003).
  • Bastiaannet E, Groen H, Jager PL et al. The value of FDG-PET in the detection, grading and response to therapy of soft tissue and bone sarcomas; a systematic review and meta-analysis. Cancer Treat. Rev.30(1), 83–101 (2004).
  • Brown FM, Fletcher CD. Problems in grading soft tissue sarcomas. Am. J. Clin. Pathol.114(Suppl.), S82–S89 (2000).
  • Oliveira AM, Nascimento AG. Grading in soft tissue tumors: principles and problems. Skeletal Radiol.30(10), 543–559 (2001).
  • Shives TC. Biopsy of soft-tissue tumors. Clin. Orthop. Relat. Res.(289), 32–35 (1993).
  • Eary JF, Conrad EU, Bruckner JD et al. Quantitative [F-18]fluorodeoxyglucose positron emission tomography in pretreatment and grading of sarcoma. Clin. Cancer Res.4(5), 1215–1220 (1998).
  • Folpe AL, Lyles RH, Sprouse JT, Conrad EU III, Eary JF. (F-18) fluorodeoxyglucose positron emission tomography as a predictor of pathologic grade and other prognostic variables in bone and soft tissue sarcoma. Clin. Cancer Res.6(4), 1279–1287 (2000).
  • Adler LP, Blair HF, Makley JT et al. Noninvasive grading of musculoskeletal tumors using PET. J. Nucl. Med.32(8), 1508–1512 (1991).
  • Schulte M, Brecht-Krauss D, Heymer B et al. Fluorodeoxyglucose positron emission tomography of soft tissue tumours: is a non-invasive determination of biological activity possible? Eur J. Nucl. Med.26(6), 599–605 (1999).
  • Schulte M, Brecht-Krauss D, Heymer B et al. Grading of tumors and tumorlike lesions of bone: evaluation by FDG PET. J. Nucl. Med.41(10), 1695–1701 (2000).
  • Schwarzbach MH, Dimitrakopoulou-Strauss A, Willeke F et al. Clinical value of [18-F] fluorodeoxyglucose positron emission tomography imaging in soft tissue sarcomas. Ann. Surg.231(3), 380–386 (2000).
  • Schwarzbach MH, Dimitrakopoulou-Strauss A, Mechtersheimer G et al. Assessment of soft tissue lesions suspicious for liposarcoma by F18-deoxyglucose (FDG) positron emission tomography (PET). Anticancer Res.21(5), 3609–3614 (2001).
  • Lee FY, Yu J, Chang SS, Fawwaz R, Parisien MV. Diagnostic value and limitations of fluorine-18 fluorodeoxyglucose positron emission tomography for cartilaginous tumors of bone. J. Bone Joint Surg. Am.86-A(12), 2677–2685 (2004).
  • Brenner W, Conrad EU, Eary JF. FDG PET imaging for grading and prediction of outcome in chondrosarcoma patients. Eur. J. Nucl. Med. Mol. Imaging31(2), 189–195 (2004).
  • Tateishi U, Yamaguchi U, Seki K et al. Glut-1 expression and enhanced glucose metabolism are associated with tumour grade in bone and soft tissue sarcomas: a prospective evaluation by [18F]fluorodeoxyglucose positron emission tomography. Eur. J. Nucl. Med. Mol. Imaging33(6), 683–691 (2006).
  • Kole AC, Nieweg OE, van Ginkel RJ et al. Detection of local recurrence of soft-tissue sarcoma with positron emission tomography using [18F]fluorodeoxyglucose. Ann. Surg. Oncol.4(1), 57–63 (1997).
  • Lucas JD, O’Doherty MJ, Cronin BF et al. Prospective evaluation of soft tissue masses and sarcomas using fluorodeoxyglucose positron emission tomography. Br. J. Surg.86(4), 550–556 (1999).
  • Hain SF, O’Doherty MJ, Bingham J, Chinyama C, Smith MA. Can FDG PET be used to successfully direct preoperative biopsy of soft tissue tumours? Nucl. Med. Commun.24(11), 1139–1143 (2003).
  • Eary JF, O’Sullivan F, Powitan Y et al. Sarcoma tumor FDG uptake measured by PET and patient outcome: a retrospective analysis. Eur. J. Nucl. Med. Mol. Imaging29(9), 1149–1154 (2002).
  • Schuetze SM, Rubin BP, Vernon C et al. Use of positron emission tomography in localized extremity soft tissue sarcoma treated with neoadjuvant chemotherapy. Cancer103(2), 339–348 (2005).
  • Brenner W, Eary JF, Hwang W, Vernon C, Conrad EU. Risk assessment in liposarcoma patients based on FDG PET imaging. Eur. J. Nucl. Med. Mol. Imaging33(11), 1290–1295 (2006).
  • Hawkins DS, Schuetze SM, Butrynski JE et al. [18F]Fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumors. J. Clin. Oncol.23(34), 8828–8834 (2005).
  • Schwarzbach MH, Hinz U, Dimitrakopoulou-Strauss A et al. Prognostic significance of preoperative [18-F] fluorodeoxyglucose (FDG) positron emission tomography (PET) imaging in patients with resectable soft tissue sarcomas. Ann. Surg.241(2), 286–294 (2005).
  • Franzius C, Bielack S, Flege S et al. Prognostic significance of 18F-FDG and (99m)Tc-methylene diphosphonate uptake in primary osteosarcoma. J. Nucl. Med.43(8), 1012–1017 (2002).
  • Franzius C, Sciuk J, Daldrup-Link HE, Jurgens H, Schober O. FDG-PET for detection of osseous metastases from malignant primary bone tumours: comparison with bone scintigraphy. Eur. J. Nucl. Med.27(9), 1305–1311 (2000).
  • Schirrmeister H, Guhlmann A, Elsner K et al. Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J. Nucl. Med.40(10), 1623–1629 (1999).
  • Franzius C, Daldrup-Link HE, Sciuk J et al. FDG-PET for detection of pulmonary metastases from malignant primary bone tumors: comparison with spiral CT. Ann. Oncol.12(4), 479–486 (2001).
  • Lucas JD, O’Doherty MJ, Wong JC et al. Evaluation of fluorodeoxyglucose positron emission tomography in the management of soft-tissue sarcomas. J. Bone Joint Surg. Br.80(3), 441–447 (1998).
  • Klem ML, Grewal RK, Wexler LH et al. PET for staging in rhabdomyosarcoma: an evaluation of PET as an adjunct to current staging tools. J. Pediatr. Hematol. Oncol.29(1), 9–14 (2007).
  • Franzius C, Daldrup-Link HE, Wagner-Bohn A et al. FDG-PET for detection of recurrences from malignant primary bone tumors: comparison with conventional imaging. Ann. Oncol.13(1), 157–160 (2002).
  • Johnson GR, Zhuang H, Khan J, Chiang SB, Alavi A. Roles of positron emission tomography with fluorine-18-deoxyglucose in the detection of local recurrent and distant metastatic sarcoma. Clin. Nucl. Med.28(10), 815–820 (2003).
  • Garcia R, Kim EE, Wong FC et al. Comparison of fluorine-18-FDG PET and technetium-99m-MIBI SPECT in evaluation of musculoskeletal sarcomas. J. Nucl. Med.37(9), 1476–1479 (1996).
  • Schwarzbach M, Willeke F, Dimitrakopoulou-Strauss A et al. Functional imaging and detection of local recurrence in soft tissue sarcomas by positron emission tomography. Anticancer Res.19(2B), 1343–1349 (1999).
  • Bredella MA, Caputo GR, Steinbach LS. Value of FDG positron emission tomography in conjunction with MR imaging for evaluating therapy response in patients with musculoskeletal sarcomas. AJR Am. J. Roentgenol.179(5), 1145–1150 (2002).
  • Hustinx R, Smith RJ, Benard F et al. Dual time point fluorine-18 fluorodeoxyglucose positron emission tomography: a potential method to differentiate malignancy from inflammation and normal tissue in the head and neck. Eur. J. Nucl. Med.26(10), 1345–1348 (1999).
  • Zhuang H, Pourdehnad M, Lambright ES et al. Dual time point 18F-FDG PET imaging for differentiating malignant from inflammatory processes. J. Nucl. Med.42(9), 1412–1417 (2001).
  • van Waarde A, Cobben DC, Suurmeijer AJ et al. Selectivity of 18F-FLT and 18F-FDG for differentiating tumor from inflammation in a rodent model. J. Nucl. Med.45(4), 695–700 (2004).
  • Kubota K, Furumoto S, Iwata R et al. Comparison of 18F-fluoromethylcholine and 2-deoxy-D-glucose in the distribution of tumor and inflammation. Ann. Nucl. Med.20(8), 527–533 (2006).
  • Giovannetti E, Mey V, Danesi R et al. Interaction between gemcitabine and topotecan in human non-small-cell lung cancer cells: effects on cell survival, cell cycle and pharmacogenetic profile. Br. J. Cancer92(4), 681–689 (2005).
  • MacKeigan JP, Taxman DJ, Hunter D et al. Inactivation of the antiapoptotic phosphatidylinositol 3-kinase-Akt pathway by the combined treatment of taxol and mitogen-activated protein kinase kinase inhibition. Clin. Cancer Res.8(7), 2091–2099 (2002).
  • Kim SH, Juhnn YS, Song YS. Akt involvement in paclitaxel chemoresistance of human ovarian cancer cells. Ann. NY Acad. Sci.1095, 82–89 (2007).
  • Ng SSW, Tsao MS, Chow S, Hedley DW. Inhibition of phosphatidylinositide 3-kinase enhances gemcitabine-induced apoptosis in human pancreatic cancer cells. Cancer Res.60(19), 5451–5455 (2000).
  • Rapisarda A, Uranchimeg B, Sordet O et al. Topoisomerase I-mediated inhibition of hypoxia-inducible factor 1: mechanism and therapeutic implications. Cancer Res.64(4), 1475–1482 (2004).
  • Yakes FM, Chinratanalab W, Ritter CA et al. Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res.62(14), 4132–4141 (2002).
  • Le XF, Lammayot A, Gold D et al. Genes affecting the cell cycle, growth, maintenance, and drug sensitivity are preferentially regulated by anti-HER2 antibody through phosphatidylinositol 3-kinase-AKT signaling. J. Biol. Chem.280(3), 2092–2104 (2005).
  • Yokoyama H, Ikehara Y, Kodera Y et al. Molecular basis for sensitivity and acquired resistance to gefitinib in HER2-overexpressing human gastric cancer cell lines derived from liver metastasis. Br. J. Cancer95(11), 1504–1513 (2006).
  • Tokunaga E, Kimura Y, Mashino K et al. Activation of PI3K/Akt signaling and hormone resistance in breast cancer. Breast Cancer13(2), 137–144 (2006).
  • Zhou R, Vander Heiden MG, Rudin CM. Genotoxic exposure is associated with alterations in glucose uptake and metabolism. Cancer Res.62(12), 3515–3520 (2002).
  • Rivenzon-Segal D, Boldin-Adamsky S, Seger D, Seger R, Degani H. Glycolysis and glucose transporter 1 as markers of response to hormonal therapy in breast cancer. Int. J. Cancer107(2), 177–182 (2003).
  • Glass-Marmor L, Beitner R. Taxol (paclitaxel) induces a detachment of phosphofructokinase from cytoskeleton of melanoma cells and decreases the levels of glucose 1,6-bisphosphate, fructose 1,6-bisphosphate and ATP. Eur. J. Pharmacol.370(2), 195–199 (1999).
  • Barnes K, McIntosh E, Whetton AD et al. Chronic myeloid leukaemia: an investigation into the role of Bcr-Abl-induced abnormalities in glucose transport regulation. Oncogene24(20), 3257–3267 (2005).
  • Boren J, Cascante M, Marin S et al. Gleevec (STI571) influences metabolic enzyme activities and glucose carbon flow toward nucleic acid and fatty acid synthesis in myeloid tumor cells. J. Biol. Chem.276(41), 37747–37753 (2001).
  • Takei T, Kuge Y, Zhao S et al. Enhanced apoptotic reaction correlates with suppressed tumor glucose utilization after cytotoxic chemotherapy: use of 99mTc-Annexin V, 18F-FDG, and histologic evaluation. J. Nucl. Med.46(5), 794–799 (2005).
  • Su H, Bodenstein C, Dumont RA et al. Monitoring tumor glucose utilization by positron emission tomography for the prediction of treatment response to epidermal growth factor receptor kinase inhibitors. Clin. Cancer Res.12(19), 5659–5667 (2006).
  • Schulte M, Brecht-Krauss D, Werner M et al. Evaluation of neoadjuvant therapy response of osteogenic sarcoma using FDG PET. J. Nucl. Med.40(10), 1637–1643 (1999).
  • Franzius C, Sciuk J, Brinkschmidt C, Jurgens H, Schober O. Evaluation of chemotherapy response in primary bone tumors with F-18 FDG positron emission tomography compared with histologically assessed tumor necrosis. Clin. Nucl. Med.25(11), 874–881 (2000).
  • Hawkins DS, Rajendran JG, Conrad EU III, Bruckner JD, Eary JF. Evaluation of chemotherapy response in pediatric bone sarcomas by [F-18]-fluorodeoxy-D-glucose positron emission tomography. Cancer94(12), 3277–3284 (2002).
  • Nair N, Ali A, Green AA et al. Response of osteosarcoma to chemotherapy. Evaluation with F-18 FDG-PET Scans. Clin. Positron Imaging3(2), 79–83 (2000).
  • Jones DN, McCowage GB, Sostman HD et al. Monitoring of neoadjuvant therapy response of soft-tissue and musculoskeletal sarcoma using fluorine-18-FDG PET. J. Nucl. Med.37(9), 1438–1444 (1996).
  • van Ginkel RJ, Hoekstra HJ, Pruim J et al. FDG-PET to evaluate response to hyperthermic isolated limb perfusion for locally advanced soft-tissue sarcoma. J. Nucl. Med.37(6), 984–990 (1996).
  • Young H, Baum R, Cremerius U et al. Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur. J. Cancer35(13), 1773–1782 (1999).
  • Nordsmark M, Alsner J, Keller J et al. Hypoxia in human soft tissue sarcomas: adverse impact on survival and no association with p53 mutations. Br. J. Cancer84(8), 1070–1075 (2001).
  • Maseide K, Kandel RA, Bell RS et al. Carbonic anhydrase IX as a marker for poor prognosis in soft tissue sarcoma. Clin. Cancer Res.10(13), 4464–4471 (2004).
  • Shintani K, Matsumine A, Kusuzaki K et al. Expression of hypoxia-inducible factor (HIF)-1α as a biomarker of outcome in soft-tissue sarcomas. Virchows Arch.449(6), 673–681 (2006).
  • Francis P, Namlos HM, Muller C et al. Diagnostic and prognostic gene expression signatures in 177 soft tissue sarcomas: hypoxia-induced transcription profile signifies metastatic potential. BMC Genomics8, 73 (2007).
  • Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science307(5706), 58–62 (2005).
  • Del Guerra A, Belcari N. Advances in animal PET scanners. Q. J. Nucl. Med.46(1), 35–47 (2002).
  • Lewis JS, Achilefu S, Garbow JR, Laforest R, Welch MJ. Small animal imaging. current technology and perspectives for oncological imaging. Eur. J. Cancer38(16), 2173–2188 (2002).
  • Leyton J, Latigo JR, Perumal M et al. Early detection of tumor response to chemotherapy by 3´-deoxy-3´-[18F]fluorothymidine positron emission tomography: the effect of cisplatin on a fibrosarcoma tumor model in vivo. Cancer Res.65(10), 4202–4210 (2005).
  • Pichler BJ, Judenhofer MS, Catana C et al. Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J. Nucl. Med.47(4), 639–647 (2006).
  • Catana C, Wu Y, Judenhofer MS et al. Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner. J. Nucl. Med.47(12), 1968–1976 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.