357
Views
9
CrossRef citations to date
0
Altmetric
Review

Classification of genetic profiles of Crohn’s disease: a focus on the ATG16L1 gene

, &
Pages 199-207 | Published online: 09 Jan 2014

References

  • Travis SP, Stange EF, Lemann M et al. European evidence based consensus on the diagnosis and management of Crohn’s disease: current management. Gut55(Suppl. 1), I16–I35 (2006).
  • Podolsky DK. Inflammatory bowel disease. N. Engl. J. Med.347(6), 417–429 (2002).
  • Schreiber S, Rosenstiel P, Albrecht M, Hampe J, Krawczak M. Genetics of Crohn disease, an archetypal inflammatory barrier disease. Nat. Rev.6(5), 376–388 (2005).
  • Bouma G, Strober W. The immunological and genetic basis of inflammatory bowel disease. Nat. Rev. Immunol.3(7), 521–533 (2003).
  • Sartor RB. Mechanisms of disease: pathogenesis of Crohn’s disease and ulcerative colitis. Nat. Clin. Pract.3(7), 390–407 (2006).
  • Kirsner JB, Spencer JA. Family occurrences of ulcerative colitis, regional enteritis, and ileocolitis. Ann. Intern. Med.59, 133–144 (1963).
  • Halme L, Paavola-Sakki P, Turunen U et al. Family and twin studies in inflammatory bowel disease. World J. Gastroenterol.12(23), 3668–3672 (2006).
  • Orholm M, Munkholm P, Langholz E et al. Familial occurrence of inflammatory bowel disease. N. Engl. J. Med.324(2), 84–88 (1991).
  • Peeters M, Nevens H, Baert F et al. Familial aggregation in Crohn’s disease: increased age-adjusted risk and concordance in clinical characteristics. Gastroenterology111(3), 597–603 (1996).
  • Yang H, McElree C, Roth MP et al. Familial empirical risks for inflammatory bowel disease: differences between Jews and non-Jews. Gut34(4), 517–524 (1993).
  • Satsangi J, Jewell DP, Bell JI. The genetics of inflammatory bowel disease. Gut40(5), 572–574 (1997).
  • Polito JM II, Childs B, Mellits ED et al. Crohn’s disease: influence of age at diagnosis on site and clinical type of disease. Gastroenterology111(3), 580–586 (1996).
  • Grandbastien B, Peeters M, Franchimont D et al. Anticipation in familial Crohn’s disease. Gut42(2), 170–174 (1998).
  • Colombel JF, Grandbastien B, Gower-Rousseau C et al. Clinical characteristics of Crohn’s disease in 72 families. Gastroenterology111(3), 604–607 (1996).
  • Annese V, Andreoli A, Andriulli A et al. Familial expression of anti-Saccharomyces cerevisiae Mannan antibodies in Crohn’s disease and ulcerative colitis: a GISC study. Am. J. Gastroenterol.96(8), 2407–2412 (2001).
  • Bayless TM. Maintenance therapy for Crohn’s disease. Gastroenterology110(1), 299–302 (1996).
  • Peeters M, Cortot A, Vermeire S, Colombel JF. Familial and sporadic inflammatory bowel disease: different entities? Inflamm. Bowel Dis.6(4), 314–320 (2000).
  • Orholm M, Binder V, Sorensen TI, Rasmussen LP, Kyvik KO. Concordance of inflammatory bowel disease among Danish twins. Results of a nationwide study. Scand. J. Gastroenterol.35(10), 1075–1081 (2000).
  • Bonen DK, Cho JH. The genetics of inflammatory bowel disease. Gastroenterology124(2), 521–536 (2003).
  • Duerr RH. Update on the genetics of inflammatory bowel disease. J. Clin. Gastroenterol.37(5), 358–367 (2003).
  • Lazaridis KN, Petersen GM. Genomics, genetic epidemiology, and genomic medicine. Clin. Gastroenterol. Hepatol.3(4), 320–328 (2005).
  • Thompson NP, Driscoll R, Pounder RE, Wakefield AJ. Genetics versus environment in inflammatory bowel disease: results of a British twin study. BMJ312(7023), 95–96 (1996).
  • Tysk C, Lindberg E, Jarnerot G, Floderus-Myrhed B. Ulcerative colitis and Crohn’s disease in an unselected population of monozygotic and dizygotic twins. A study of heritability and the influence of smoking. Gut29(7), 990–996 (1988).
  • Gaya DR, Russell RK, Nimmo ER, Satsangi J. New genes in inflammatory bowel disease: lessons for complex diseases? Lancet367(9518), 1271–1284 (2006).
  • Halfvarson J, Bodin L, Tysk C, Lindberg E, Jarnerot G. Inflammatory bowel disease in a Swedish twin cohort: a long-term follow-up of concordance and clinical characteristics. Gastroenterology124(7), 1767–1773 (2003).
  • Breslin NP, Todd A, Kilgallen C, O’Morain C. Monozygotic twins with Crohn’s disease and ulcerative colitis: a unique case report. Gut41(4), 557–560 (1997).
  • Tysk C. Genetic susceptibility in Crohn’s disease – review of clinical studies. Eur. J. Surg.164(12), 893–896 (1998).
  • Mathew CG, Lewis CM. Genetics of inflammatory bowel disease: progress and prospects. Hum. Mol. Genet.13(Spec. No 1), R161–R168 (2004).
  • Hugot JP, Chamaillard M, Zouali H et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature411(6837), 599–603 (2001).
  • Ogura Y, Bonen DK, Inohara N et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature411(6837), 603–606 (2001).
  • Hampe J, Cuthbert A, Croucher PJ et al. Association between insertion mutation in NOD2 gene and Crohn’s disease in German and British populations. Lancet357(9272), 1925–1928 (2001).
  • Rioux JD, Daly MJ, Silverberg MS et al. Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. Nat. Genet.29(2), 223–228 (2001).
  • Mirza MM, Fisher SA, King K et al. Genetic evidence for interaction of the 5q31 cytokine locus and the CARD15 gene in Crohn disease. Am. J. Hum. Genet.72(4), 1018–1022 (2003).
  • Peltekova VD, Wintle RF, Rubin LA et al. Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat. Genet.36(5), 471–475 (2004).
  • Duerr RH, Taylor KD, Brant SR et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science314(5804), 1461–1463 (2006).
  • A haplotype map of the human genome. Nature437(7063), 1299–1320 (2005).
  • Carlson CS, Eberle MA, Kruglyak L, Nickerson DA. Mapping complex disease loci in whole-genome association studies. Nature429(6990), 446–452 (2004).
  • Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat. Rev.6(2), 95–108 (2005).
  • Frazer KA, Ballinger DG, Cox DR et al. A second generation human haplotype map of over 3.1 million SNPs. Nature449(7164), 851–861 (2007).
  • Redon R, Ishikawa S, Fitch KR et al. Global variation in copy number in the human genome. Nature444(7118), 444–454 (2006).
  • Reich D, Patterson N, De Jager PL et al. A whole-genome admixture scan finds a candidate locus for multiple sclerosis susceptibility. Nat. Genet.37(10), 1113–1118 (2005).
  • Steemers FJ, Chang W, Lee G et al. Whole-genome genotyping with the single-base extension assay. Nat. Methods3(1), 31–33 (2006).
  • Gunderson KL, Steemers FJ, Lee G, Mendoza LG, Chee MS. A genome-wide scalable SNP genotyping assay using microarray technology. Nat. Genet.37(5), 549–554 (2005).
  • Hakonarson H, Grant SF, Bradfield JP et al. A genome-wide association study identifies KIAA0350 as a Type 1 diabetes gene. Nature448, 591–594 (2007).
  • Todd JA, Walker NM, Cooper JD et al. Robust associations of four new chromosome regions from genome-wide analyses of Type 1 diabetes. Nat. Genet.39(7), 857–864 (2007).
  • Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature447(7145), 661–678 (2007).
  • Sladek R, Rocheleau G, Rung J et al. A genome-wide association study identifies novel risk loci for Type 2 diabetes. Nature445(7130), 881–885 (2007).
  • Saxena R, Voight BF, Lyssenko V et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science316(5829), 1331–1336 (2007).
  • Zeggini E, Weedon MN, Lindgren CM et al. Replication of genome-wide association signals in UK samples reveals risk loci for Type 2 diabetes. Science316(5829), 1336–1341 (2007).
  • Scott LJ, Mohlke KL, Bonnycastle LL et al. A genome-wide association study of Type 2 diabetes in Finns detects multiple susceptibility variants. Science316(5829), 1341–1345 (2007).
  • Klein RJ, Zeiss C, Chew EY et al. Complement factor H polymorphism in age-related macular degeneration. Science308(5720), 385–389 (2005).
  • Helgadottir A, Thorleifsson G, Manolescu A et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science316(5830), 1491–1493 (2007).
  • McPherson R, Pertsemlidis A, Kavaslar N et al. A common allele on chromosome 9 associated with coronary heart disease. Science316(5830), 1488–1491 (2007).
  • Easton DF, Pooley KA, Dunning AM et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature447(7148), 1087–1093 Nature (2007).
  • Baldassano RN, Bradfield JP, Monos DS et al. Association of variants of the interleukin-23 receptor (IL23R) gene with susceptibility to pediatric Crohn’s disease. Clin. Gastroenterol. Hepatol. Clin.5(8), 972–976 (2007).
  • Hampe J, Franke A, Rosenstiel P et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet.39(2), 207–211 (2007).
  • Croucher PJ, Mascheretti S, Hampe J et al. Haplotype structure and association to Crohn’s disease of CARD15 mutations in two ethnically divergent populations. Eur. J. Hum. Genet.11(1), 6–16 (2003).
  • Patterson M, Cardon L. Replication publication. PLoS Biology3(9), E327 (2005).
  • Page GP, George V, Go RC, Page PZ, Allison DB. “Are we there yet?”: deciding when one has demonstrated specific genetic causation in complex diseases and quantitative traits. Am. J. Hum. Genet.73(4), 711–719 (2003).
  • Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K. A comprehensive review of genetic association studies. Genet. Med.4(2), 45–61 (2002).
  • Rioux JD, Xavier RJ, Taylor KD et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet.39(5), 596–604 (2007).
  • Libioulle C, Louis E, Hansoul S et al. Novel Crohn disease locus identified by genome-wide association maps to a gene desert on 5p13.1 and modulates expression of PTGER4. PLoS Genet.3(4), E58 (2007).
  • Singh SB, Davis AS, Taylor GA, Deretic V. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science313(5792), 1438–1441 (2006).
  • Parkes M, Barrett JC, Prescott NJ et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat. Genet.39(7), 830–832 (2007).
  • Roberts RL, Gearry RB, Hollis-Moffatt JE et al. IL23R R381Q and ATG16L1 T300A are strongly associated with Crohn’s disease in a study of New Zealand Caucasians with inflammatory bowel disease. Am. J. Gastroenterol.102(12), 2754–2761 (2007).
  • Hilmi I, Tan YM, Goh KL. Crohn’s disease in adults: observations in a multiracial Asian population. World J. Gastroenterol.12(9), 1435–1438 (2006).
  • Law NM, Lim CC, Chong R, Ng HS. Crohn’s disease in the Singapore Chinese population. J. Clin. Gastroenterol.26(1), 27–29 (1998).
  • Yang SK, Hong WS, Min YI et al. Incidence and prevalence of ulcerative colitis in the Songpa-Kangdong District, Seoul, Korea, 1986–1997. J. Gastroenterol. Hepatol.15(9), 1037–1042 (2000).
  • Leong RW, Lau JY, Sung JJ. The epidemiology and phenotype of Crohn’s disease in the Chinese population. Inflamm. Bowel Dis.10(5), 646–651 (2004).
  • Loftus EV Jr. Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology126(6), 1504–1517 (2004).
  • Yamazaki K, Onouchi Y, Takazoe M et al. Association analysis of genetic variants in IL23R, ATG16L1 and 5p13.1 loci with Crohn’s disease in Japanese patients. J. Hum. Genet.52(7), 575–583 (2007).
  • Baldassano RN, Bradfield JP, Monos DS et al. Association of the T300A non-synonymous variant of the ATG16L1 gene with susceptibility to paediatric Crohn’s disease. Gut56(8), 1171–1173 (2007).
  • Prescott NJ, Fisher SA, Franke A et al. A nonsynonymous SNP in ATG16L1 predisposes to ileal Crohn’s disease and is independent of CARD15 and IBD5. Gastroenterology132(5), 1665–1671 (2007).
  • Duerr RH, Barmada MM, Zhang L, Pfutzer R, Weeks DE. High-density genome scan in Crohn disease shows confirmed linkage to chromosome 14q11–12. Am. J. Hum. Genet.66(6), 1857–1862 (2000).
  • Hampe J, Schreiber S, Shaw SH et al. A genomewide analysis provides evidence for novel linkages in inflammatory bowel disease in a large European cohort. Am. J. Hum. Genet.64(3), 808–816 (1999).
  • Shaw SH, Hampe J, White R et al. Stratification by CARD15 variant genotype in a genome-wide search for inflammatory bowel disease susceptibility loci. Hum. Genet.113(6), 514–521 (2003).
  • Zheng H, Ji C, Li J et al. Cloning and analysis of human Apg16L. DNA Seq.15(4), 303–305 (2004).
  • Mizushima N, Kuma A, Kobayashi Y et al. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12–Apg5 conjugate. J. Cell Sci.116(Pt 9), 1679–1688 (2003).
  • Kuma A, Mizushima N, Ishihara N, Ohsumi Y. Formation of the approximately 350-kDa Apg12–Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J. Biol. Chem.277(21), 18619–18625 (2002).
  • Birmingham CL, Smith AC, Bakowski MA, Yoshimori T, Brumell JH. Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J. Biol. Chem.281(16), 11374–11383 (2006).
  • Grant SF, Thorleifsson G, Reynisdottir I et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of Type 2 diabetes. Nat. Genet.38(3), 320–323 (2006).
  • Zeggini E, McCarthy MI. TCF7L2: the biggest story in diabetes genetics since HLA? Diabetologia50(1), 1–4 (2007).
  • Schmid D, Dengjel J, Schoor O, Stevanovic S, Munz C. Autophagy in innate and adaptive immunity against intracellular pathogens. J. Mol. Med.84(3), 194–202 (2006).
  • Deretic V. Autophagy as an immune defense mechanism. Curr. Opin. Immunol.18(4), 375–382 (2006).
  • Dengjel J, Schoor O, Fischer R et al. Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc. Natl Acad. Sci. USA102(22), 7922–7927 (2005).
  • Smyth DJ, Cooper JD, Bailey R et al. A genome-wide association study of nonsynonymous SNPs identifies a Type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat. Genet.38(6), 617–619 (2006).
  • Deretic V. Autophagy in innate and adaptive immunity. Trends Immunol.26(10), 523–528 (2005).
  • Amer AO, Byrne BG, Swanson MS. Macrophages rapidly transfer pathogens from lipid raft vacuoles to autophagosomes. Autophagy1(1), 53–58 (2005).
  • Nakagawa I, Amano A, Mizushima N et al. Autophagy defends cells against invading group A Streptococcus. Science306(5698), 1037–1040 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.