545
Views
72
CrossRef citations to date
0
Altmetric
Review

EGFR/HER2 in breast cancer: a biological approach for molecular diagnosis and therapy

, &
Pages 417-434 | Published online: 09 Jan 2014

References

  • Schnitt SJ. Pharmacopathology: a new spin on an old idea. Am. J. Surg. Pathol.27(1), 121–123 (2003).
  • Yarden Y, Baselga J, Miles D. Molecular approach to breast cancer treatment. Semin. Oncol.31(5 Suppl. 10), 6–13 (2004).
  • Murdoch D, Sager J. Will targeted therapy hold its promise? An evidence-based review. Curr. Opin. Oncol.20(1), 104–111 (2008).
  • Rocha-Lima CM, Soares HP, Raez LE, Singal R. EGFR targeting of solid tumors. Cancer Control14(3), 295–304 (2007).
  • Piccart-Gebhart MJ. Adjuvant trastuzumab therapy for HER2-overexpressing breast cancer: what we know and what we still need to learn. Eur. J. Cancer42(12), 1715–1719 (2006).
  • Baselga J, Gianni L, Geyer C et al. Future options with trastuzumab for primary systemic and adjuvant therapy. Semin. Oncol.31(5 Suppl. 10), 51–57 (2004).
  • Bublil EM, Yarden Y. The EGF receptor family: spearheading a merger of signaling and therapeutics. Curr. Opin. Cell. Biol.19(2), 124–134 (2007).
  • Mendelsohn J, Baselga J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J. Clin. Oncol.21(14), 2787–2799 (2003).
  • Moasser MM. The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene26(45), 6469–6487 (2007).
  • Moasser MM. Targeting the function of the HER2 oncogene in human cancer therapeutics. Oncogene26(46), 6577–6592 (2007).
  • Nahta R, Esteva FJ. Trastuzumab: triumphs and tribulations. Oncogene26(25), 3637–3643 (2007).
  • Braga S, dal Lago L, Bernard C, Cardoso F, Piccart M. Use of trastuzumab for the treatment of early stage breast cancer. Expert Rev. Anticancer Ther.6(8), 1153–1164 (2006).
  • Hortobagyi GN. Trastuzumab in the treatment of breast cancer. N. Engl. J. Med.353(16), 1734–1736 (2005).
  • Untch M, Gelber RD, Jackisch C et al. Estimating the magnitude of trastuzumab effects within patient subgroups in the HERA trial. Ann. Oncol.19(6), 1090–1096 (2008).
  • Perez EA, Suman VJ, Davidson NE et al. Cardiac safety analysis of doxorubicin and cyclophosphamide followed by paclitaxel with or without trastuzumab in the North Central Cancer Treatment Group N9831 adjuvant breast cancer trial. J. Clin. Oncol.26(8), 1231–1238 (2008).
  • Slamon D, Eirmann W, Robert N et al. BCIRG 006: 2nd interim analysis Phase III randomized trial comparing doxorubicin and cyclophosphamide followed by docetaxel (ACT) with doxorubicin and cyclophosphamide followed by docetaxel and trastuzumab (ACTH) with docetaxel, carboplatin and trastuzumab (TCH) in HER2neu positive early breast cancer patients. Breast Cancer Res. Treat.100(Suppl. 1) (2006) (Abstract 52).
  • Chien KR. Herceptin and the heart – a molecular modifier of cardiac failure. N. Engl. J. Med.354(8), 789–790 (2006).
  • Wolff AC, Hammond ME, Schwartz JN et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J. Clin. Oncol.25(1), 118–145 (2007).
  • Hicks DG, Tubbs RR. Assessment of the HER2 status in breast cancer by fluorescence in situ hybridization: a technical review with interpretive guidelines. Hum. Pathol.36(3), 250–261 (2005).
  • Nielsen TO, Hsu FD, Jensen K et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin. Cancer Res.10(16), 5367–5374 (2004).
  • Siziopikou KP, Cobleigh M. The basal subtype of breast carcinomas may represent the group of breast tumors that could benefit from EGFR-targeted therapies. Breast16(1), 104–107 (2007).
  • Paez JG, Janne PA, Lee JC et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science304(5676), 1497–1500 (2004).
  • Takano T, Ohe Y, Sakamoto H et al. Epidermal growth factor receptor gene mutations and increased copy numbers predict gefitinib sensitivity in patients with recurrent non-small-cell lung cancer. J. Clin. Oncol.23(28), 6829–6837 (2005).
  • Lynch TJ, Bell DW, Sordella R et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med.350(21), 2129–2139 (2004).
  • Cappuzzo F, Finocchiaro G, Rossi E et al. EGFR FISH assay predicts for response to cetuximab in chemotherapy refractory colorectal cancer patients. Ann. Oncol.19(4), 717–723 (2008).
  • Marquez A, Wu R, Zhao J, Tao J, Shi Z. Evaluation of epidermal growth factor receptor (EGFR) by chromogenic in situ hybridization (CISH) and immunohistochemistry (IHC) in archival gliomas using bright-field microscopy. Diagn. Mol. Pathol.13(1), 1–8 (2004).
  • Citri A, Skaria KB, Yarden Y. The deaf and the dumb: the biology of ErbB-2 and ErbB-3. Exp. Cell. Res.284(1), 54–65 (2003).
  • Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat. Rev. Cancer5(5), 341–354 (2005).
  • Stern DF. ErbBs in mammary development. Exp. Cell. Res.284(1), 89–98 (2003).
  • Mosesson Y, Yarden Y. Oncogenic growth factor receptors: implications for signal transduction therapy. Semin. Cancer Biol.14(4), 262–270 (2004).
  • Ramsauer VP, Carraway CA, Salas PJ, Carraway KL. Muc4/sialomucin complex, the intramembrane ErbB2 ligand, translocates ErbB2 to the apical surface in polarized epithelial cells. J. Biol. Chem.278(32), 30142–30147 (2003).
  • Holbro T, Beerli RR, Maurer F et al. The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc. Natl Acad. Sci. USA100(15), 8933–8938 (2003).
  • Katz M, Amit I, Citri A et al. A reciprocal tensin-3-cten switch mediates EGF-driven mammary cell migration. Nat. Cell Biol.9(8), 961–969 (2007).
  • Witton CJ, Reeves JR, Going JJ, Cooke TG, Bartlett JM. Expression of the HER1–4 family of receptor tyrosine kinases in breast cancer. J. Pathol.200(3), 290–297 (2003).
  • Naidu R, Yadav M, Nair S, Kutty MK. Expression of c-erbB3 protein in primary breast carcinomas. Br. J. Cancer78(10), 1385–1390 (1998).
  • Pawlowski V, Revillion F, Hebbar M, Hornez L, Peyrat JP. Prognostic value of the type I growth factor receptors in a large series of human primary breast cancers quantified with a real-time reverse transcription-polymerase chain reaction assay. Clin. Cancer Res.6(11), 4217–4225 (2000).
  • Suo Z, Risberg B, Kalsson MG et al. EGFR family expression in breast carcinomas. c-erbB-2 and c-erbB-4 receptors have different effects on survival. J. Pathol.196(1), 17–25 (2002).
  • Revillion F, Lhotellier V, Hornez L, Bonneterre J, Peyrat JP. ErbB/HER ligands in human breast cancer and relationships with their receptors, the bio-pathological features and prognosis. Ann. Oncol.19(1), 73–80 (2008).
  • Hsieh AC, Moasser MM. Targeting HER proteins in cancer therapy and the role of the non-target HER3. Br. J. Cancer97(4), 453–457 (2007).
  • Cohen S, Taylor JM. Epidermal growth factor: chemical and biological characterization. Recent Prog. Horm. Res.30(0), 533–550 (1974).
  • Nahta R, Hortobagyi GN, Esteva FJ. Growth factor receptors in breast cancer: potential for therapeutic intervention. Oncologist8(1), 5–17 (2003).
  • Semba K, Kamata N, Toyoshima K, Yamamoto T. A v-erbB-related protooncogene, c-erbB-2, is distinct from the c-erbB-1/epidermal growth factor-receptor gene and is amplified in a human salivary gland adenocarcinoma. Proc. Natl Acad. Sci. USA82(19), 6497–6501 (1985).
  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell100(1), 57–70 (2000).
  • Ciardiello F, Tortora G. Epidermal growth factor receptor (EGFR) as a target in cancer therapy: understanding the role of receptor expression and other molecular determinants that could influence the response to anti-EGFR drugs. Eur. J. Cancer39(10), 1348–1354 (2003).
  • Jarvela S, Helin H, Haapasalo J et al. Amplification of the epidermal growth factor receptor in astrocytic tumours by chromogenic in situ hybridization: association with clinicopathological features and patient survival. Neuropathol. Appl. Neurobiol.32(4), 441–450 (2006).
  • Rae JM, Scheys JO, Clark KM et al. EGFR and EGFRvIII expression in primary breast cancer and cell lines. Breast Cancer Res. Treat.87(1), 87–95 (2004).
  • Nieto Y, Nawaz F, Jones RB, Shpall EJ, Nawaz S. Prognostic significance of overexpression and phosphorylation of epidermal growth factor receptor (EGFR) and the presence of truncated EGFRvIII in locoregionally advanced breast cancer. J. Clin. Oncol.25(28), 4405–4413 (2007).
  • Marmor MD, Yarden Y. Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases. Oncogene23(11), 2057–2070 (2004).
  • Waterman H, Yarden Y. Molecular mechanisms underlying endocytosis and sorting of ErbB receptor tyrosine kinases. FEBS Lett.490(3), 142–152 (2001).
  • Wu J, Lee C, Yokom D et al. Disruption of the Y-box binding protein-1 results in suppression of the epidermal growth factor receptor and HER-2. Cancer Res.66(9), 4872–4879 (2006).
  • Berquin IM, Pang B, Dziubinski ML et al. Y-box-binding protein 1 confers EGF independence to human mammary epithelial cells. Oncogene24(19), 3177–3186 (2005).
  • Buttitta F, Barassi F, Fresu G et al. Mutational analysis of the HER2 gene in lung tumors from Caucasian patients: mutations are mainly present in adenocarcinomas with bronchioloalveolar features. Int. J. Cancer119(11), 2586–2591 (2006).
  • Shigematsu H, Takahashi T, Nomura M et al. Somatic mutations of the HER2 kinase domain in lung adenocarcinomas. Cancer Res.65(5), 1642–1646 (2005).
  • Begon DY, Delacroix L, Vernimmen D, Jackers P, Winkler R. Yin Yang 1 cooperates with activator protein 2 to stimulate ERBB2 gene expression in mammary cancer cells. J. Biol. Chem.280(26), 24428–24434 (2005).
  • Vernimmen D, Gueders M, Pisvin S, Delvenne P, Winkler R. Different mechanisms are implicated in ERBB2 gene overexpression in breast and in other cancers. Br. J. Cancer89(5), 899–906 (2003).
  • Citri A, Kochupurakkal BS, Yarden Y. The achilles heel of ErbB-2/HER2: regulation by the Hsp90 chaperone machine and potential for pharmacological intervention. Cell Cycle3(1), 51–60 (2004).
  • Citri A, Gan J, Mosesson Y et al. Hsp90 restrains ErbB-2/HER2 signalling by limiting heterodimer formation. EMBO Rep.5(12), 1165–1170 (2004).
  • Citri A, Harari D, Shohat G et al. Hsp90 recognizes a common surface on client kinases. J. Biol. Chem.281(20), 14361–14369 (2006).
  • Ferlay J, Autier P, Boniol M et al. Estimates of the cancer incidence and mortality in Europe in 2006. Ann. Oncol.18(3), 581–592 (2007).
  • Tumours of the breast. In: World Health Organization Classification of Tumours – Pathology and Genetics of Tumours of the Breast and Female Genital Organs. Tavassoli FA, Devilee P (Eds). IARC Press, Lyon, France (2003).
  • Payne SJ, Bowen RL, Jones JL, Wells CA. Predictive markers in breast cancer – the present. Histopathology52(1), 82–90 (2008).
  • Viale G, Regan MM, Maiorano E et al. Prognostic and predictive value of centrally reviewed expression of estrogen and progesterone receptors in a randomized trial comparing letrozole and tamoxifen adjuvant therapy for postmenopausal early breast cancer: BIG 1–98. J. Clin. Oncol.25(25), 3846–3852 (2007).
  • Perou CM, Sorlie T, Eisen MB et al. Molecular portraits of human breast tumours. Nature406(6797), 747–752 (2000).
  • Sorlie T, Perou CM, Tibshirani R et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA98(19), 10869–10874 (2001).
  • van de Vijver MJ, He YD, van’t Veer LJ et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med.347(25), 1999–2009 (2002).
  • Loi S, Haibe-Kains B, Desmedt C et al. Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J. Clin. Oncol.25(10), 1239–1246 (2007).
  • Oh DS, Troester MA, Usary J et al. Estrogen-regulated genes predict survival in hormone receptor-positive breast cancers. J. Clin. Oncol.24(11), 1656–1664 (2006).
  • Goldstein NS, Decker D, Severson D et al. Molecular classification system identifies invasive breast carcinoma patients who are most likely and those who are least likely to achieve a complete pathologic response after neoadjuvant chemotherapy. Cancer110(8), 1687–1696 (2007).
  • Matos I, Dufloth R, Alvarenga M, Zeferino LC, Schmitt F. p63, cytokeratin 5, and P-cadherin: three molecular markers to distinguish basal phenotype in breast carcinomas. Virchows Arch.447(4), 688–694 (2005).
  • Reis-Filho JS, Milanezi F, Carvalho S et al. Metaplastic breast carcinomas exhibit EGFR, but not HER2, gene amplification and overexpression: immunohistochemical and chromogenic in situ hybridization analysis. Breast Cancer Res.7(6), R1028–R1035 (2005).
  • Palacios J, Honrado E, Osorio A et al. Phenotypic characterization of BRCA1 and BRCA2 tumors based in a tissue microarray study with 37 immunohistochemical markers. Breast Cancer Res. Treat.90(1), 5–14 (2005).
  • Paredes J, Milanezi F, Reis-Filho JS et al. Aberrant P-cadherin expression: is it associated with estrogen-independent growth in breast cancer? Pathol. Res. Pract.198(12), 795–801 (2002).
  • Reis-Filho JS, Milanezi F, Paredes J et al. Novel and classic myoepithelial/stem cell markers in metaplastic carcinomas of the breast. Appl. Immunohistochem. Mol. Morphol.11(1), 1–8 (2003).
  • Reis-Filho J, Pinheiro C, Lambros M et al. EGFR amplification and lack of activating mutations in metaplastic breast carcinomas. J. Pathol.209, 445–453 (2006).
  • Reis-Filho JS, Milanezi F, Steele D et al. Metaplastic breast carcinomas are basal-like tumours. Histopathology49(1), 10–21 (2006).
  • Rakha EA, El-Sayed ME, Green AR et al. Breast carcinoma with basal differentiation: a proposal for pathology definition based on basal cytokeratin expression. Histopathology50(4), 434–438 (2007).
  • Reis-Filho JS, Tutt AN. Triple negative tumours: a critical review. Histopathology52(1), 108–118 (2008).
  • Livasy CA, Karaca G, Nanda R et al. Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod. Pathol.19(2), 264–271 (2006).
  • Paredes J, Correia AL, Ribeiro AS et al. P-cadherin expression in breast cancer: a review. Breast Cancer Res.9(5), 214 (2007).
  • Rakha EA, El-Rehim DA, Paish C et al. Basal phenotype identifies a poor prognostic subgroup of breast cancer of clinical importance. Eur. J. Cancer42(18), 3149–3156 (2006).
  • Luck AA, Evans AJ, Green AR et al. The influence of basal phenotype on the metastatic pattern of breast cancer. Clin. Oncol. (R. Coll. Radiol.)20(1), 40–45 (2008).
  • Banerjee S, Reis-Filho JS, Ashley S et al. Basal-like breast carcinomas: clinical outcome and response to chemotherapy. J. Clin. Pathol.59(7), 729–735 (2006).
  • Tan DS, Marchio C, Jones RL et al. Triple negative breast cancer: molecular profiling and prognostic impact in adjuvant anthracycline-treated patients. Breast Cancer Res. Treat. (2007) (Epub ahead of print).
  • Slamon DJ, Clark GM, Wong SG et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science235(4785), 177–182 (1987).
  • Liu H, Fan Q, Zhang Z et al. Basal-HER2 phenotype shows poorer survival than basal-like phenotype in hormone receptor-negative invasive breast cancers. Hum. Pathol.39(2), 167–174 (2008).
  • Harris LN, You F, Schnitt SJ et al. Predictors of resistance to preoperative trastuzumab and vinorelbine for HER2-positive early breast cancer. Clin. Cancer Res.13(4), 1198–1207 (2007).
  • Dowsett M, Hanna WM, Kockx M et al. Standardization of HER2 testing: results of an international proficiency-testing ring study. Mod. Pathol.20(5), 584–591 (2007).
  • Harris L, Fritsche H, Mennel R et al. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J. Clin. Oncol.25(33), 5287–5312 (2007).
  • Gennari A, Sormani MP, Pronzato P et al. HER2 status and efficacy of adjuvant anthracyclines in early breast cancer: a pooled analysis of randomized trials. J. Natl Cancer Inst.100(1), 14–20 (2008).
  • Knoop AS, Knudsen H, Balslev E et al. Retrospective analysis of topoisomerase IIa amplifications and deletions as predictive markers in primary breast cancer patients randomly assigned to cyclophosphamide, methotrexate, and fluorouracil or cyclophosphamide, epirubicin, and fluorouracil: Danish Breast Cancer Cooperative Group. J. Clin. Oncol.23(30), 7483–7490 (2005).
  • Di Leo A, Gancberg D, Larsimont D et al. HER-2 amplification and topoisomerase IIa gene aberrations as predictive markers in node-positive breast cancer patients randomly treated either with an anthracycline-based therapy or with cyclophosphamide, methotrexate, and 5-fluorouracil. Clin. Cancer Res.8(5), 1107–1116 (2002).
  • Jarvinen TA, Tanner M, Rantanen V et al. Amplification and deletion of topoisomerase IIa associate with ErbB-2 amplification and affect sensitivity to topoisomerase II inhibitor doxorubicin in breast cancer. Am. J. Pathol.156(3), 839–847 (2000).
  • Ellis MJ, Coop A, Singh B et al. Letrozole is more effective neoadjuvant endocrine therapy than tamoxifen for ErbB-1- and/or ErbB-2-positive, estrogen receptor-positive primary breast cancer: evidence from a Phase III randomized trial. J. Clin. Oncol.19(18), 3808–3816 (2001).
  • Arimidex T, Alone or in Combination (ATAC) Trialists’ Group, Forbes JF et al. Effect of anastrozole and tamoxifen as adjuvant treatment for early-stage breast cancer: 100-month analysis of the ATAC trial. Lancet Oncol.9(1), 45–53 (2008).
  • Dowsett M, Ebbs SR, Dixon JM et al. Biomarker changes during neoadjuvant anastrozole, tamoxifen, or the combination: influence of hormonal status and HER-2 in breast cancer – a study from the IMPACT trialists. J. Clin. Oncol.23(11), 2477–2492 (2005).
  • Rasmussen BB, Regan MM, Lykkesfeldt AE et al. Adjuvant letrozole versus tamoxifen according to centrally-assessed ERBB2 status for postmenopausal women with endocrine-responsive early breast cancer: supplementary results from the BIG 1–98 randomised trial. Lancet Oncol.9(1), 23–28 (2008).
  • Molina MA, Saez R, Ramsey EE et al. NH(2)-terminal truncated HER-2 protein but not full-length receptor is associated with nodal metastasis in human breast cancer. Clin. Cancer Res.8(2), 347–353 (2002).
  • Zabrecky JR, Lam T, McKenzie SJ, Carney W. The extracellular domain of p185/neu is released from the surface of human breast carcinoma cells, SK-BR-3. J. Biol. Chem.266(3), 1716–1720 (1991).
  • Fornier MN, Seidman AD, Schwartz MK et al. Serum HER2 extracellular domain in metastatic breast cancer patients treated with weekly trastuzumab and paclitaxel: association with HER2 status by immunohistochemistry and fluorescence in situ hybridization and with response rate. Ann. Oncol.16(2), 234–239 (2005).
  • Sandri MT, Johansson H, Colleoni M et al. Serum levels of HER2 ECD can determine the response rate to low dose oral cyclophosphamide and methotrexate in patients with advanced stage breast carcinoma. Anticancer Res.24(2C), 1261–1266 (2004).
  • Bryan BB, Schnitt SJ, Collins LC. Ductal carcinoma in situ with basal-like phenotype: a possible precursor to invasive basal-like breast cancer. Mod. Pathol.19(5), 617–621 (2006).
  • Paredes J, Lopes N, Milanezi F, Schmitt FC. P-cadherin and cytokeratin 5: useful adjunct markers to distinguish basal-like ductal carcinomas in situ.Virchows Arch.450(1), 73–80 (2007).
  • Livasy CA, Perou CM, Karaca G et al. Identification of a basal-like subtype of breast ductal carcinoma in situ.Hum. Pathol.38(2), 197–204 (2007).
  • McCarthy A, Savage K, Gabriel A et al. A mouse model of basal-like breast carcinoma with metaplastic elements. J. Pathol.211(4), 389–398 (2007).
  • Tischkowitz MD, Foulkes WD. The basal phenotype of BRCA1-related breast cancer: past, present and future. Cell Cycle5(9), 963–967 (2006).
  • James CR, Quinn JE, Mullan PB, Johnston PG, Harkin DP. BRCA1, a potential predictive biomarker in the treatment of breast cancer. Oncologist12(2), 142–150 (2007).
  • Klijn JG, Berns PM, Schmitz PI, Foekens JA. The clinical significance of epidermal growth factor receptor (EGF-R) in human breast cancer: a review on 5232 patients. Endocr. Rev.13(1), 3–17 (1992).
  • Bhargava R, Gerald WL, Li AR et al. EGFR gene amplification in breast cancer: correlation with epidermal growth factor receptor mRNA and protein expression and HER-2 status and absence of EGFR-activating mutations. Mod. Pathol.18(8), 1027–1033 (2005).
  • Arnes JB, Collett K, Akslen LA. Independent prognostic value of the basal-like phenotype of breast cancer and associations with EGFR and candidate stem cell marker BMI-1. Histopathology52(3), 370–380 (2008).
  • Buchholz TA, Tu X, Ang KK et al. Epidermal growth factor receptor expression correlates with poor survival in patients who have breast carcinoma treated with doxorubicin-based neoadjuvant chemotherapy. Cancer104(4), 676–681 (2005).
  • Cheang MC, Voduc D, Bajdik C et al. Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin. Cancer Res.14(5), 1368–1376 (2008).
  • Cappuzzo F, Varella-Garcia M, Shigematsu H et al. Increased HER2 gene copy number is associated with response to gefitinib therapy in epidermal growth factor receptor-positive non-small-cell lung cancer patients. J. Clin. Oncol.23(22), 5007–5018 (2005).
  • Cappuzzo F, Hirsch FR, Rossi E et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J. Natl Cancer Inst.97(9), 643–655 (2005).
  • Hirsch FR, Varella-Garcia M, Bunn PA Jr et al. Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J. Clin. Oncol.21(20), 3798–3807 (2003).
  • Cho EY, Choi YL, Han JJ, Kim KM, Oh YL. Expression and amplification of Her2, EGFR and cyclin D1 in breast cancer: immunohistochemistry and chromogenic in situ hybridization. Pathol. Int.58(1), 17–25 (2008).
  • Sassen A, Rochon J, Wild P et al. Cytogenetic analysis of HER1/EGFR, HER2, HER3 and HER4 in 278 breast cancer patients. Breast Cancer Res.10(1), R2 (2008).
  • Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer7(3), 169–181 (2007).
  • Chan SK, Hill ME, Gullick WJ. The role of the epidermal growth factor receptor in breast cancer. J. Mammary Gland Biol. Neoplasia11(1), 3–11 (2006).
  • Perez EA, Suman VJ, Davidson NE et al. HER2 testing by local, central, and reference laboratories in specimens from the North Central Cancer Treatment Group N9831 intergroup adjuvant trial. J. Clin. Oncol.24(19), 3032–3038 (2006).
  • Bartlett JM, Ibrahim M, Jasani B et al. External quality assurance of HER2 fluorescence in situ hybridisation testing: results of a UK NEQAS pilot scheme. J. Clin. Pathol.60(7), 816–819 (2007).
  • Elkin EB, Weinstein MC, Winer EP et al. HER-2 testing and trastuzumab therapy for metastatic breast cancer: a cost–effectiveness analysis. J. Clin. Oncol.22(5), 854–863 (2004).
  • Moeder CB, Giltnane JM, Harigopal M et al. Quantitative justification of the change from 10% to 30% for human epidermal growth factor receptor 2 scoring in the American Society of Clinical Oncology/College of American Pathologists guidelines: tumor heterogeneity in breast cancer and its implications for tissue microarray based assessment of outcome. J. Clin. Oncol.25(34), 5418–5425 (2007).
  • Vincent-Salomon A, MacGrogan G, Couturier J et al. Calibration of immunohistochemistry for assessment of HER2 in breast cancer: results of the French multicentre GEFPICS study. Histopathology42(4), 337–347 (2003).
  • Modi S, DiGiovanna MP, Lu Z et al. Phosphorylated/activated HER2 as a marker of clinical resistance to single agent taxane chemotherapy for metastatic breast cancer. Cancer Invest.23(6), 483–487 (2005).
  • Ricardo SA, Milanezi F, Carvalho ST, Leitao DR, Schmitt FC. HER2 evaluation using the novel rabbit monoclonal antibody SP3 and CISH in tissue microarrays of invasive breast carcinomas. J. Clin. Pathol.60(9), 1001–1005 (2007).
  • Bussolati G, Montemurro F, Righi L et al. A modified trastuzumab antibody for the immunohistochemical detection of HER-2 overexpression in breast cancer. Br. J. Cancer92(7), 1261–1267 (2005).
  • Sapino A, Montemurro F, Marchio C et al. Patients with advanced stage breast carcinoma immunoreactive to biotinylated Herceptin are most likely to benefit from trastuzumab-based therapy: an hypothesis-generating study. Ann. Oncol.18(12), 1963–1968 (2007).
  • Molina MA, Codony-Servat J, Albanell J et al. Trastuzumab (herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res.61(12), 4744–4749 (2001).
  • Liu PC, Liu X, Li Y et al. Identification of ADAM10 as a major source of HER2 ectodomain sheddase activity in HER2 overexpressing breast cancer cells. Cancer Biol. Ther.5(6), 657–664 (2006).
  • Esteva FJ, Cheli CD, Fritsche H et al. Clinical utility of serum HER2/neu in monitoring and prediction of progression-free survival in metastatic breast cancer patients treated with trastuzumab-based therapies. Breast Cancer Res.7(4), R436–R443 (2005).
  • Reddy JC, Reimann JD, Anderson SM, Klein PM. Concordance between central and local laboratory HER2 testing from a community-based clinical study. Clin. Breast Cancer7(2), 153–157 (2006).
  • O’Malley FP, Thomson T, Julian J et al. HER2 testing in a population-based study of patients with metastatic breast cancer treated with trastuzumab. Arch. Pathol. Lab. Med.132(1), 61–65 (2008).
  • Carlson RW, Moench SJ, Hammond ME et al. HER2 testing in breast cancer: NCCN Task Force report and recommendations. J. Natl Compr. Canc. Netw.4(Suppl. 3), S1–S22; quiz S23–S24 (2006).
  • Tubbs RR, Hicks DG, Cook J et al. Fluorescence in situ hybridization (FISH) as primary methodology for the assessment of HER2 status in adenocarcinoma of the breast: a single institution experience. Diagn. Mol. Pathol.16(4), 207–210 (2007).
  • Ma Y, Lespagnard L, Durbecq V, Paesmans M et al. Polysomy 17 in HER-2/neu status elaboration in breast cancer: effect on daily practice. Clin. Cancer Res.11(12), 4393–4399 (2005).
  • Merola R, Mottolese M, Orlandi G et al. Analysis of aneusomy level and HER-2 gene copy number and their effect on amplification rate in breast cancer specimens read as 2+ in immunohistochemical analysis. Eur. J. Cancer42(10), 1501–1506 (2006).
  • Laakso M, Tanner M, Isola J. Dual-colour chromogenic in situ hybridization for testing of HER-2 oncogene amplification in archival breast tumours. J. Pathol.210(1), 3–9 (2006).
  • Li-Ning TE, Ronchetti R, Torres-Cabala C, Merino MJ. Role of chromogenic in situ hybridization (CISH) in the evaluation of HER2 status in breast carcinoma: comparison with immunohistochemistry and FISH. Int. J. Surg. Pathol.13(4), 343–351 (2005).
  • Lambros MB, Natrajan R, Reis-Filho JS. Chromogenic and fluorescent in situ hybridization in breast cancer. Hum. Pathol.38(8), 1105–1122 (2007).
  • Dietel M, Ellis IO, Hofler H et al. Comparison of automated silver enhanced in situ hybridisation (SISH) and fluorescence ISH (FISH) for the validation of HER2 gene status in breast carcinoma according to the guidelines of the American Society of Clinical Oncology and the College of American Pathologists. Virchows Arch.451(1), 19–25 (2007).
  • Gasparini G, Sarmiento R, Amici S et al. Gefitinib (ZD1839) combined with weekly epirubicin in patients with metastatic breast cancer: a Phase I study with biological correlate. Ann. Oncol.16(12), 1867–1873 (2005).
  • Polychronis A, Sinnett HD, Hadjiminas D et al. Preoperative gefitinib versus gefitinib and anastrozole in postmenopausal patients with oestrogen-receptor positive and epidermal-growth-factor-receptor-positive primary breast cancer: a double-blind placebo-controlled Phase II randomised trial. Lancet Oncol.6(6), 383–391 (2005).
  • von Minckwitz G, Jonat W, Fasching P et al. A multicentre Phase II study on gefitinib in taxane- and anthracycline-pretreated metastatic breast cancer. Breast Cancer Res. Treat.89(2), 165–172 (2005).
  • Baselga J, Albanell J, Ruiz A et al. Phase II and tumor pharmacodynamic study of gefitinib in patients with advanced breast cancer. J. Clin. Oncol.23(23), 5323–5333 (2005).
  • Strome SE, Sausville EA, Mann D. A mechanistic perspective of monoclonal antibodies in cancer therapy beyond target-related effects. Oncologist12(9), 1084–1095 (2007).
  • Socinski MA. Antibodies to the epidermal growth factor receptor in non small cell lung cancer: current status of matuzumab and panitumumab. Clin. Cancer Res.13(15 Pt 2), S4597–S4601 (2007).
  • Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature256(5517), 495–497 (1975).
  • Yu Z, Boggon TJ, Kobayashi S et al. Resistance to an irreversible epidermal growth factor receptor (EGFR) inhibitor in EGFR-mutant lung cancer reveals novel treatment strategies. Cancer Res.67(21), 10417–10427 (2007).
  • Romond EH, Perez EA, Bryant J et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med.353(16), 1673–1684 (2005).
  • Gonzalez-Angulo AM, Hortobagyi GN, Esteva FJ. Adjuvant therapy with trastuzumab for HER-2/neu-positive breast cancer. Oncologist11(8), 857–867 (2006).
  • Nahta R, Esteva FJ. Herceptin: mechanisms of action and resistance. Cancer Lett.232(2), 123–138 (2006).
  • Modi S, D’Andrea G, Norton L et al. A Phase I study of cetuximab/paclitaxel in patients with advanced-stage breast cancer. Clin. Breast Cancer7(3), 270–277 (2006).
  • Piechocki MP, Yoo GH, Dibbley SK, Lonardo F. Breast cancer expressing the activated HER2/neu is sensitive to gefitinib in vitro and in vivo and acquires resistance through a novel point mutation in the HER2/neu. Cancer Res.67(14), 6825–6843 (2007).
  • Normanno N, Campiglio M, Maiello MR et al. Breast cancer cells with acquired resistance to the EGFR tyrosine kinase inhibitor gefitinib show persistent activation of MAPK signaling. Breast Cancer Res. Treat. (2007) (Epub ahead of print).
  • Agrawal A, Gutteridge E, Gee JM, Nicholson RI, Robertson JF. Overview of tyrosine kinase inhibitors in clinical breast cancer. Endocr. Relat. Cancer12(Suppl. 1), S135–S144 (2005).
  • Hoadley KA, Weigman VJ, Fan C et al. EGFR associated expression profiles vary with breast tumor subtype. BMC Genomics8, 258 (2007).
  • Guix M, Granja Nde M, Meszoely I et al. Short preoperative treatment with erlotinib inhibits tumor cell proliferation in hormone receptor-positive breast cancers. J. Clin. Oncol.26(6), 897–906 (2008).
  • Nahta R, Esteva FJ. HER2 therapy: molecular mechanisms of trastuzumab resistance. Breast Cancer Res.8(6), 215 (2006).
  • Lan KH, Lu CH, Yu D. Mechanisms of trastuzumab resistance and their clinical implications. Ann. NY Acad. Sci.1059, 70–75 (2005).
  • Nagy P, Friedlander E, Tanner M et al. Decreased accessibility and lack of activation of ErbB2 in JIMT-1, a herceptin-resistant, MUC4-expressing breast cancer cell line. Cancer Res.65(2), 473–482 (2005).
  • Scaltriti M, Rojo F, Ocana A et al. Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. J. Natl Cancer Inst.99(8), 628–638 (2007).
  • Ludovini V, Gori S, Colozza M et al. Evaluation of serum HER2 extracellular domain in early breast cancer patients: correlation with clinicopathological parameters and survival. Ann. Oncol.19(5), 883–890 (2008).
  • Nagata Y, Lan KH, Zhou X et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell6(2), 117–127 (2004).
  • Fujita T, Doihara H, Kawasaki K et al. PTEN activity could be a predictive marker of trastuzumab efficacy in the treatment of ErbB2-overexpressing breast cancer. Br. J. Cancer94(2), 247–252 (2006).
  • Kobayashi S, Boggon TJ, Dayaram T et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med.352(8), 786–792 (2005).
  • Reid A, Vidal L, Shaw H, de Bono J. Dual inhibition of ErbB1 (EGFR/HER1) and ErbB2 (HER2/neu). Eur. J. Cancer43(3), 481–489 (2007).
  • Spector NL, Xia W, Burris H III et al. Study of the biologic effects of lapatinib, a reversible inhibitor of ErbB1 and ErbB2 tyrosine kinases, on tumor growth and survival pathways in patients with advanced malignancies. J. Clin. Oncol.23(11), 2502–2512 (2005).
  • Konecny GE, Pegram MD, Venkatesan N et al. Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res.66(3), 1630–1639 (2006).
  • Johnston SR, Martin LA, Leary A, Head J, Dowsett M. Clinical strategies for rationale combinations of aromatase inhibitors with novel therapies for breast cancer. J. Steroid Biochem. Mol. Biol.106(1–5), 180–186 (2007).
  • Bilancia D, Rosati G, Dinota A et al. Lapatinib in breast cancer. Ann. Oncol. (18 Suppl.6), vi26–vi30 (2007).
  • Geyer CE, Forster J, Lindquist D et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N. Engl J. Med.355(26), 2733–2743 (2006).
  • Nahta R, Hung MC, Esteva FJ. The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Res.64(7), 2343–2346 (2004).
  • Carteni G, Fiorentino R, Vecchione L, Chiurazzi B, Battista C. Panitumumab a novel drug in cancer treatment. Ann. Oncol. (18 Suppl.6), vi16–vi21 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.