1,362
Views
503
CrossRef citations to date
0
Altmetric
Review

Metabolomics-based methods for early disease diagnostics

, , , , &
Pages 617-633 | Published online: 09 Jan 2014

References

  • Nicholson JK, Wilson ID. High-resolution proton magnetic resonance spectroscopy of biological-fluids. Prog. NMR Spectrosc.21, 449–501 (1989).
  • Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica29, 1181–1189 (1999).
  • Shockcor JP, Holmes E. Metabonomic applications in toxicity screening and disease diagnosis. Curr. Top. Med. Chem.2, 35–51 (2002).
  • Nicholson JK, Wilson ID. Understanding ‘global’ systems biology: metabonomics and the continuum of metabolism. Nat. Rev. Drug Discov.2, 668–676 (2003).
  • Lindon JC, Holmes E, Nicholson JK. Metabonomics and its role in drug development and disease diagnosis. Expert. Rev. Mol. Diagn.4, 189–199 (2004).
  • Robertson DG. Metabonomics in toxicology: a review. Toxicol. Sci.85, 809–822 (2005).
  • Nicholson JK. Global systems biology, personalized medicine and molecular epidemiology. Mol. Syst. Biol.1–6 (2006).
  • Wishart DS, Tzur D, Knox C et al. HMDB: the Human Metabolome Database. Nucleic Acids Res.35, D521–D526 (2007).
  • Griffin JL. The Cinderella story of metabolic profiling: does metabolomics get to go to the functional genomics ball? Philos. Trans. R. Soc. Lond. B Biol. Sci.361, 147–161 (2006).
  • Villar-Garea A, Griese M, Imhof A. Biomarker discovery from body fluids using mass spectrometry. J. Chromatogr. B849(1–2), 105–114 (2007).
  • Wishart DS. Metabolomics: the principles and potential applications to transplantation. Am. J. Transplant.5, 2814–2820 (2005).
  • Pelczer I. High-resolution NMR for metabomics. Curr. Opin. Drug Discov. Devel.8, 127–133 (2005).
  • Keun HC. Metabonomic modeling of drug toxicity. Pharmacol. Ther.109, 92–106 (2006).
  • Serkova NJ, Niemann CU. Pattern recognition and biomarker validation using quantitative 1H-NMR-based metabolomics. Expert Rev. Mol. Diagn.6, 717–731 (2006).
  • Lindon JC, Holmes E, Nicholson JK. Metabonomics techniques and applications to pharmaceutical research & development. Pharm. Res.23, 1075–1088 (2006).
  • Harrigan GG, Goodacre R. Metabolic Profiling: Its Role in Biomarker Discovery and Gene Functional Analysis. Kluwer Academic Publishers, MA, USA 1–8 (2003).
  • Fiehn O. Metabolomics – the link between genotype and phenotype. Plant Mol. Biol.48, 155–171 (2002).
  • Kell DB. Metabolomics and systems biology: making sense of the soup. Curr. Opin. Microbiol.7, 296–307 (2004).
  • van der Greef J, Smilde AK. Symbiosis of chemometrics and metabolomics: past, present, and future. J. Chemomet.19, 376–386 (2005).
  • Lacey ME, Subramanian R, Olson DL, Webb AG, Sweedler JV. High-resolution NMR spectroscopy of sample volumes from 1 nL to 10 µL. Chem. Rev.99, 3133–3152 (1999).
  • Raftery D. High-throughput NMR spectroscopy. Anal. Bioanal. Chem.378, 1403–1404 (2004).
  • Lindon JC. HPLC-NMR-MS: past, present and future. Drug Disc. Today8, 1021–1022 (2003).
  • Brown SC, Kruppa G, Dasseux JL. Metabolomics applications of FT-ICR mass spectrometry. Mass Spectrom. Rev.24, 223–231 (2005).
  • Granger JH, Bake A, Plumb RS, Perez JC, Wilson ID. Ultra performance liquid chromatography-MS(TOF): new separations technology for high throughput metabonomics. Drug Met. Rev.36, 252–252 (2004).
  • Villas-Boas SG, Mas S, Akesson M, Smedsgaard J, Nielsen J. Mass spectrometry in metabolome analysis. Mass Spectrom. Rev.24, 613–646 (2005).
  • Wilson ID, Plumb R, Granger J, Major H, Williams R, Lenz EA. HPLC-MS-based methods for the study of metabonomics. J. Chromatog. B817, 67–76 (2005).
  • Mohler RE, Dombek KM, Hoggard JC, Young ET, Synovec RE. Comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry analysis of metabolites in fermenting and respiring yeast cells. Anal. Chem.78, 2700–2709 (2006).
  • Chen H, Venter A, Cooks RG. Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation. Chem. Commun.19, 2042–2044 (2006).
  • Takats Z, Wiseman JM, Gologan B, Cooks RG. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science306, 471–473 (2004).
  • Cody RB, Laramee JA, Durst HD. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal. Chem.77, 2297–2302 (2005).
  • Johnson RA, Wichern DW. Applied Multivariate Statistical Analysis. Prentice Hall, NJ, USA (1999).
  • Krzanowski WJ. Principles of Multivariate Analysis: a User’s Perspective (Revised Edition). Oxford University Press, Oxford, UK (2000).
  • Brereton RG. Chemometrics: Data Analysis for the Laboratory and Chemical Plant. Wiley, West Sussex, UK (2003).
  • Keun HC, Ebbels TMD, Antti H et al. Improved analysis of multivariate data by variable stability scaling: application to NMR-based metabolic profiling. Anal. Chim. Acta490, 265–276 (2003).
  • Beckwith-Hall BM, Brindle JT, Barton RH et al. Application of orthogonal signal correction to minimise the effects of physical and biological variation in high resolution 1H NMR spectra of biofluids. Analyst127, 1283–1288 (2002).
  • Bollard ME, Stanley EG, Lindon JC, Nicholson JK, Holmes E. NMR-based metabonomic approaches for evaluating physiological influences on biofluid composition. NMR Biomed.18, 143–162 (2005).
  • Nagana Gowda GA, Ijare OB, Somashekar BS, Sharma A, Kapoor VK, Khetrapal CL. Single-step analysis of individual conjugated bile acids in human bile using 1H NMR spectroscopy. Lipids41, 591–603 (2006).
  • Bala L, Ghoshal UC, Ghoshal U et al. Malabsorption syndrome with and without small intestinal bacterial overgrowth: a study on upper-gut aspirate using 1H NMR spectroscopy. Magn. Reson. Med.56, 738–744 (2006).
  • Griffin JL, Kauppinen RA. Tumour metabolomics in animal models of human cancer. J. Proteome Res.6, 498–505 (2007).
  • Beckonert O, Keun HC, Ebbels TMD et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc.2, 2692–2703 (2007).
  • Saude EJ, Slupsky CM, Sykes BD. Optimization of NMR analysis of biological fluids for quantitative accuracy. Metabolomics2, 113–123 (2006).
  • Mo H, Raftery D. Pre-SAT180, a simple and effective faraway water suppression method. J. Magn. Reson.190, 1–6 (2008).
  • Wu D, Chen A, Johnson CS. An improved diffusion-ordered spectroscopy experiment incorporating bipolar-gradient pulses. J. Magn. Reson.115, 260–264 (1995).
  • Sandusky P, Raftery D. Use of selective TOCSY NMR experiments for quantifying minor components in complex mixtures: application to the metabonomics of amino acids in honey. Anal. Chem.77, 2455–2463 (2005).
  • Sandusky P, Raftery D. Use of semiselective TOCSY and the Pearson Correlation for the metabonomic analysis of biofluid mixtures: application to urine. Anal. Chem.77, 7717–7723 (2005).
  • Dumas M-E, Canlet C, Andre F, Vercauteren J, Paris A. Metabonomic assessment of physiological disruptions using 1H–13C HMBC NMR spectroscopy combined with pattern recognition procedures performed on filtered variables. Anal. Chem.74, 2261–2273 (2002).
  • Tang H, Wang Y, Nicholson JK, Lindon JC. Use of relaxation-edited one-dimensional and two-dimensional nuclear magnetic resonance spectroscopy to improve detection of small metabolites in blood plasma. Anal. Biochem.325, 260–272 (2004).
  • Dumas M-E, Canlet C, Vercauteren J, Andre F, Paris A. Homeostatic signature of anabolic steroids in cattle using 1H–13C HMBC NMR metabonomics. J. Proteome Res.4, 1493–1502 (2005).
  • Xi Y, de Ropp JS, Viant MR, Woodruff DL, Yu P. Automated screening for metabolites in complex mixtures using 2D COSY NMR spectroscopy. Metabolomics2, 221–233 (2006).
  • Viant MR. Improved methods for the acquisition and interpretation of NMR metabolomic data. Biochem. Biophys. Res. Commun.310, 943–948 (2003).
  • Shanaiah N, Desilva MA, Nagana Gowda GA, Raftery MA, Hainline BE, Raftery D. Class selection of amino acid metabolites in body fluids using chemical derivatization and their enhanced 13C NMR. Proc. Natl Acad. Sci.104, 11540–11544 (2007).
  • Yang Y, Li C, Nie X et al. Metabonomic studies of human hepatocellular carcinoma using high-resolution magic-angle spinning 1H NMR spectroscopy in conjunction with multivariate data analysis. J. Proteome Res.6, 2605–2614 (2007).
  • Zhang X, Wei D, Yap Y, Li L, Guo S, Chen F. Mass spectrometry-based “omics” technologies in cancer diagnostics. Mass Spectrom. Rev.26, 403–431 (2007).
  • Wilson ID, Nicholson JK, Castro-Perez J et al. High resolution “ultra performance” liquid chromatography coupled to oa-TOF mass spectrometry as a tool for differential metabolic pathway profiling in functional genomic studies. J. Proteome Res.4, 591–598 (2005).
  • Villas-Boas SG, Delicado DG, Akesson M, Nielsen J. Simultaneous analysis of amino and non-amino organic acids as methyl chloroformate derivatives using gas chromatography-mass spectrometry. Anal. Biochem.322(1), 134–138 (2003).
  • O’Hagan S, Dunn WB, Knowles JD et al. Closed-loop, multiobjective optimization of two-dimensional gas chromatography/mass spectrometry for serum metabolomics. Anal. Chem.79(2), 464–476 (2007).
  • Kelly RT, Page JS, Zhao R et al. Capillary?based multi nanoelectrospray emitters: improvements in ion transmission efficiency and implementation with capillary reversed-phase LC-ESI-MS. Anal. Chem.80, 143–149 (2008).
  • Chen H, Wortmann A, Zhang W, Zenobi R. Rapidin vivo fingerprinting of nonvolatile compounds in breath by extractive electrospray ionization quadrupole time-of-flight mass spectrometry. Angew. Chem. Int. Ed. Engl.46(4), 580–583 (2007).
  • Gu H, Chen H, Pan Z et al. Monitoring diet effects via biofluids and their implications for metabolomics studies. Anal. Chem.79(1), 89–97 (2007).
  • Vaidyanathan S, Gaskell S, Goodacre R. Matrix-suppressed laser desorption/ionisation mass spectrometry and its suitability for metabolome analyses. Rapid Commun. Mass Spectrom.20(8), 1192–1198 (2006).
  • Nordstro1m A, Want E, Northen T, Lehtio1 J, Siuzdak G. Multiple ionization mass spectrometry strategy used to reveal the complexity of metabolomics. Anal. Chem.80, 421–429 (2008).
  • Stoyanova R, Nicholson JK, Lindon JC, Brown TR. Sample classification based on Bayesian spectral decomposition of metabonomic NMR data sets. Anal. Chem.76, 3666–3674 (2004).
  • Stoyanova R, Nicholls AW, Nicholson JK, Lindon JC, Brown TR. Automatic alignment of individual peaks in large high-resolution spectral data sets. J. Magn. Reson.170, 329–335 (2004).
  • Forshed J, Torgrip RJ, Aberg KM, Karlberg B, Lindberg J, Jacobsson SP. A comparison of methods for alignment of NMR peaks in the context of cluster analysis J. Pharm. Biomed. Anal.38, 824–832 (2005).
  • Robinson MD, De Souza DP, Keen WW et al. A dynamic programming approach for the alignment of signal peaks in multiple gas chromatography-mass spectrometry experiments. BMC Bioinformatics8, 419–432 (2007).
  • Katajamaa M, Oresic M. Processing methods for differential analysis of LC/MS profile data. BMC Bioinformatics6, 179–190 (2005).
  • Le Moyec L, Valensi P, Charniot JC, Hantz E, Albertini JP. Serum 1H nuclear magnetic spectroscopy followed by principal component analysis and hierarchical cluster analysis to demonstrate effects of statins on hyperlipidemic patients. NMR Biomed.18, 421–429 (2005).
  • Barker M, Rayens W. Partial least squares for discrimination. J. Chemom.17, 166–173 (2003).
  • Cloarec O, Dumas ME, Craig A et al. Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from metabolic 1H NMR data sets. Anal. Chem.77, 1282–1289 (2005).
  • Crockford DJ, Holmes E, Lindon JC et al. Statistical heterospectroscopy, an approach to the integrated analysis of NMR and UPLC-MS data sets: application in metabonomic toxicology studies. Anal. Chem.78(2), 363–371 (2006).
  • Pan Z, Raftery D. Combining NMR spectroscopy and mass spectrometry in metabolomics. Anal. Bioanal. Chem.387, 525–527 (2007).
  • Chen HW, Pan Z, Talaty N, Cooks RG, Raftery D. Combining desorption electrospray ionization mass spectrometry and nuclear magnetic resonance for differential metabolomics without sample preparation. Rapid. Commun. Mass Spectrom.20, 1577–1584 (2006).
  • Sitter B, Lundgren S, Bathen TF, Halgunset J, Fjosne HE, Gribbestad IS. Comparison of HR MAS MR spectroscopic profiles of breast cancer tissue with clinical parameters. NMR Biomed.19, 30–40 (2006).
  • Sitter B, Sonnewald U, Spraul M, Fjösne HE, Gribbestad IS. High-resolution magic angle spinning MRS of breast cancer tissue. NMR Biomed.15, 327–337 (2002).
  • Whitehead TL, Kieber-Emmons T. Applying in vitro NMR spectroscopy and 1H NMR metabonomics to breast cancer characterization and detection. Prog. NMR Spectr.47, 165–174 (2005).
  • Cheng LL, Chang IW, Smith BL, Gonzalez RG. Evaluating human breast ductal carcinomas with high-resolution magic-angle spinning proton magnetic resonance spectroscopy. J. Magn. Reson.135, 194–202 (1998).
  • Bathen TF, Jensen LR, Sitter B et al. MR-determined metabolic phenotype of breast cancer in prediction of lymphatic spread, grade, and hormone status. Breast Cancer Res. Treat.104, 181–189 (2006).
  • Yang C, Richardson AD, Smith JW, Osterman A. Comparative metabolomics of breast cancer. Pac. Symp. Biocomput.181–192 (2007).
  • Phillips M, Cataneo RN, Ditkoff BA et al. Volatile markers of breast cancer in the breath. Breast J.9, 184–191 (2003).
  • Odunsi K, Wollman RM, Ambrosone CB et al. Detection of epithelial ovarian cancer using H-1-NMR-based metabonomics. Int. J. Cancer113, 782–788 (2005).
  • Denkert C, Budczies J, Kind T et al. Mass spectrometry-based metabolic profiling reveals different metabolite patterns in invasive ovarian carcinomas and ovarian borderline tumors. Cancer Res.66, 10795–10804 (2006).
  • Beger RD, Schnackenberg LK, Holland RD, Li D, Dragan Y. Metabonomic models of human pancreatic cancer using 1D proton NMR spectra of lipids in plasma. Metabolomics2, 125–134 (2006).
  • Fang F, He X, Deng H et al. Discrimination of metabolic profiles of pancreatic cancer from chronic pancreatitis by high-resolution magic angle spinning 1H nuclear magnetic resonance and principal components analysis. Cancer Sci.98, 1678–1682 (2007).
  • Sitter B, Bathen T, Hagen B, Arentz C, Skjeldestad FE, Gribbestad IS. Cervical cancer tissue characterized by high-resolution magic angle spinning MR spectroscopy. MAGMA16, 174–181 (2004).
  • Lyng H, Sitter B, Bathen TF et al. Metabolic mapping by use of high-resolution magic angle spinning 1H MR spectroscopy for assessment of apoptosis in cervical carcinomas. BMC Cancer7, 11(1–12) (2007).
  • Phillips M, Gleeson K, Hughes JM et al. Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study. Lancet353, 1930–1933 (1999).
  • Deng C, Li N, Zhang X. Development of headspace solid-phase microextraction with on-fiber derivatization for determination of hexanal and heptanal in human blood. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.813, 47–52 (2004).
  • Chen X, Xu F, Wang Y et al. A study of the volatile organic compounds exhaled by lung cancer cells in vitro for breath diagnosis. Cancer110, 835–844 (2007).
  • Machado RF, Laskowski D, Deffenderfer O et al. Detection of lung cancer by sensor array analyses of exhaled breath. Am. J. Respir. Crit. Care Med.171, 1286–1291 (2005).
  • Phillips M, Altorki N, Austin JH et al. Prediction of lung cancer using volatile biomarkers in breath. Cancer Biomark.3, 95–109 (2007).
  • Poli D, Carbognani P, Corradi M et al. Exhaled volatile organic compounds in patients with non-small cell lung cancer: cross sectional and nested short-term follow-up study. Respir. Res.6, 71–80 (2005).
  • Rantalainen M, Cloarec O, Beckonert O et al. Statistically integrated metabonomic-proteomic studies on a human prostate cancer xenograft model in mice. J. Proteome Res.5(10), 2642–2655 (2006).
  • Cheng LL, Wu C, Smith MR, Gonzalez RG. Non-destructive quantitation of spermine in human prostate tissue samples using HRMAS 1H NMR spectroscopy at 9.4 T. FEBS Lett.494(1–2), 112–116 (2001).
  • Swanson MG, Vigneron DB, Tabatabai ZL et al. Proton HR-MAS spectroscopy and quantitative pathologic analysis of MRI/3D-MRSI-targeted postsurgical prostate tissues. Magn. Reson. Med.50(5), 944–954 (2003).
  • Burns MA, He W, Wu CL, Cheng LL. Quantitative pathology in tissue MR spectroscopy based human prostate metabolomics. Technol. Cancer Res. Treat.3(6), 591–598 (2004).
  • Cheng LL, Burns MA, Taylor JL et al. Metabolic characterization of human prostate cancer with tissue magnetic resonance spectroscopy. Cancer Res.65(8), 3030–3034 (2005).
  • Swanson MG, Zektzer AS, Tabatabai ZL et al.Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy. Magn. Reson. Med.55(6), 1257–1264 (2006).
  • Kline EE, Treat EG, Averna TA et al. Citrate concentrations in human seminal fluid and expressed prostatic fluid determined via 1H nuclear magnetic resonance spectroscopy outperform prostate specific antigen in prostate cancer detection. J. Urol.176(5), 2274–2279 (2006).
  • Serkova NJ, Gamito EJ, Jones RH et al. The metabolites citrate, myo-inositol, and spermine are potential age-independent markers of prostate cancer in human expressed prostatic secretions. Prostate68(6), 620–628 (2008).
  • Moka D, Vorreuther R, Schicha H et al. Biochemical classification of kidney carcinoma biopsy samples using magic-angle-spinning 1H nuclear magnetic resonance spectroscopy. J. Pharm. Biomed. Anal.17, 125–132 (1998).
  • Tate AR, Foxall PJD, Holmes E et al. Distinction between normal and renal cell carcinoma kidney cortical biopsy samples using pattern recognition of 1H magic angle spinning (MAS) NMR spectra. NMR Biomed.13, 64–71 (2003).
  • Righi V, Mucci A, Schenetti L et al.Ex vivo HR-MAS magnetic resonance spectroscopy of normal and malignant human renal tissues. Anticancer Res.27, 3195–3204 (2007).
  • Kind T, Tolstikov V, Fiehn O, Weiss RH. A comprehensive urinary metabolomic approach for identifying kidney cancer. Anal. Biochem.363(2), 185–195 (2007).
  • Martínez-Bisbal MC, Martí-Bonmatí L, Piquer J et al.1H and 13C HR-MAS spectroscopy of intact biopsy samples ex vivo and in vivo1H MRS study of human high grade gliomas. NMR Biomed.17, 191–205 (2004).
  • Cheng U, Chang I, Louis DN, Gonzalez RG. Correlation of high-resolution magic angle spinning proton magnetic resonance spectroscopy with histopathology of intact human brain tumor specimens. Cancer Res.58, 1825–1832 (1998).
  • Tzika AA, Cheng LL, Goumnerova L et al. Biochemical characterization of pediatric brain tumors by using in vivo and ex vivo magnetic resonance spectroscopy. J. Neurosurg.96, 1023–1031 (2002).
  • Tzika AA, Astrakas L, Cao H et al. Combination of high-resolution magic angle spinning proton magnetic resonance spectroscopy and microscale genomics to type brain tumor biopsies. Int. J. Mol. Med.20, 199–208 (2007).
  • Sjøbakk TE, Johansen R, Bathen TF et al. Characterization of brain metastases using high-resolution magic angle spinning MRS. NMR Biomed.21(2), 175–185 (2008).
  • Valonen PK, Griffin JL, Lehtimäki KK et al. High-resolution magic-angle-spinning 1H NMR spectroscopy reveals different responses in choline-containing metabolites upon gene therapy-induced programmed cell death in rat brain glioma. NMR Biomed.18, 252–259 (2005).
  • Horszty?ski D, Wawer I, Grieb P. A study of lyophylized human brain tumor tissue using MAS 1H-MRS spectroscopy. Neurol. Neurochir. Pol.37, 123–132 (2003).
  • Barton SJ, Howe FA, Tomlins AM et al. Comparison of in vivo1H MRS of human brain tumours with 1H HR-MAS spectroscopy of intact biopsy samples in vitro.MAGMA8, 121–128 (1999).
  • Griffin JL, Kauppinen RA. A metabolomics perspective of human brain tumours. FEBS J.2741132–1139 (2007).
  • Zuppi C, Messana I, Tapanainen P et al. Proton nuclear magnetic resonance spectral profiles of urine from children and adolescents with type 1 diabetes. Clin. Chem.48, 660–662 (2002).
  • Messana I, Forni F, Ferrari F, Rossi C, Giardina B, Zuppi C. Proton nuclear magnetic resonance spectral profiles of urine in Type II diabetic patients. Clin. Chem.44, 1529–1534 (1998).
  • Salek RM, Maguire ML, Bentley E et al.A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol. Genomics29, 99–108 (2007).
  • Zhang S, Nagana Gowda GA, Asiago V et al. Correlative and quantitative 1H NMR-based metabolomics reveals specific metabolic pathway disturbances in diabetic rats. Anal. Biochem. (2008) (In press).
  • Toye A, Gauguier D. Genetics and functional genomics of Type 2 diabetes mellitus. Genome Biol.4, 241 (2003).
  • Dumas ME, Barton RH, Toye A et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc. Natl Acad. Sci. USA103, 12511–12516 (2006).
  • Makinen VP, Soininen P, Forsblom C et al. Diagnosing diabetic nephropathy by 1H NMR metabonomics of serum. MAGMA19, 281–296 (2006).
  • Hodavance MS, Ralston SL, Pelczer I. Beyond blood sugar: the potential of NMR-based metabonomics for Type 2 human diabetes, and the horse as a possible model. Anal. Bioanal. Chem.387, 533–537 (2007).
  • Shulman GI, Rothman DL, Shulman RG, Brindle K. 13C NMR-studies of glucose disposal in normal and non-insulin-dependent diabetic humans. Philos. Trans. Phys. Sci. Eng.333, 525–529 (1990).
  • Cline GW, Magnusson I, Rothman DL, Petersen KF, Laurent D, Shulman GI. Mechanism of impaired insulin-stimulated muscle glucose metabolism in subjects with insulin-dependent diabetes mellitus. J. Clin. Invest.99, 2219–2224 (1997).
  • Roden M, Shulman GI. Applications of NMR spectroscopy to study muscle glycogen metabolism in man. Annu. Rev. Med.50, 277–290 (1999).
  • Boden G, Shulman GI. Free fatty acids in obesity and Type 2 diabetes: defining their role in the development of insulin resistance and β-cell dysfunction. Eur. J. Clin. Invest.32, 14–23 (2002).
  • Roden M, Price TB, Perseghin G et al. Mechanism of free fatty acid-induced insulin resistance in humans. J. Clin. Invest.97, 2859–2865 (1996).
  • Wang C, Kong HW, Guan YF et al. Plasma phospholipid metabolic profiling and biomarkers of Type 2 diabetes mellitus based on high-performance liquid chromatography/electrospray mass spectrometry and multivariate statistical analysis. Anal. Chem.77, 4108–4116 (2005).
  • Plumb RS, Johnson KA, Rainville P et al. The detection of phenotypic differences in the metabolic plasma profile of three strains of Zucker rats at 20 weeks of age using ultra-performance liquid chromatography/orthogonal acceleration time-of-flight mass spectrometry. Rapid Commun. Mass Spec.20, 2800–2806 (2006).
  • Major HJ, Williams R, Wilson AJ, Wilson ID. A metabonomic analysis of plasma from Zucker rat strains using gas chromatography/mass spectrometry and pattern recognition. Rapid Commun. Mass Spec.20, 3295–3302 (2006).
  • Yi LZ, He J, Liang YZ, Yuan DL, Chau FT. Plasma fatty acid metabolic profiling and biomarkers of type 2 diabetes mellitus based on GCMS and PLS-LDA. Febs Lett.580, 6837–6845 (2006).
  • Newgard CB, Stedman SW. Metabolic profiling for understanding of diabetes and obesity mechanisms. FASEB J.20, A1307–A1307 (2006).
  • Williams R, Lenz EM, Wilson AJ et al. A multi-analytical platform approach to the metabonomic analysis of plasma from normal and zucker (fa/fa) obese rats. Mol. Biosyst.2, 174–183 (2006).
  • Atherton HJ, Bailey NJ, Zhang W et al. A combined H-1-NMR spectroscopy- and mass spectrometry-based metabolomic study of the PPAR-α null mutant mouse defines profound systemic changes in metabolism linked to the metabolic syndrome. Physiol. Genomics27, 178–186 (2006).
  • Jones PM, Bennett MJ. The changing face of newborn screening: diagnosis of inborn errors of metabolism by tandem mass spectrometry. Clin. Chim. Acta324, 121–128 (2002).
  • Engelke UFH, Liebrand-van Sambeek MLF, DeJong JGN et al. N-acetylated metabolites in urine: proton nuclear magnetic resonance spectroscopic study on patients with inborn errors of metabolism. Clin. Chem.50, 58–66 (2004).
  • Moolenaar SH, Engelke UFH, Wevers RA. Proton nuclear magnetic resonance spectroscopy of body fluids in the field of inborn errors of metabolism. Ann. Clin. Biochem.40, 16–24 (2003).
  • Iles RA, Hind AJ, Chalmers RA. Use of proton nuclear magnetic resonance spectroscopy in detection and study of organic acidurias. Clin. Chem.31, 1795–1801 (1985).
  • Constantinou MA, Papakonstantinou E, Benaki D et al. Application of nuclear magnetic resonance spectroscopy combined with principal component analysis in detecting inborn errors of metabolism using blood spots: a metabonomic approach. Anal. Chim. Acta511, 303–312 (2004).
  • Constantinou MA, Papakonstantinou E, Spraul M et al.1H NMR-based metabonomics for the diagnosis of inborn errors of metabolism in urine. Anal. Chim. Acta542, 169–177 (2005).
  • Pan Z, Gu H, Talaty N et al. Principal component analysis of urine metabolites detected by NMR and DESI–MS in patients with inborn errors of metabolism. Anal. Bioanal. Chem.387, 539–549 (2007).
  • Engelke UFH, Oostendorp M, Wevers RA. NMR spectroscopy of body fluids as a metabolomics approach to inborn errors of metabolism. In: The Handbook of Metabonomics and Metabolomics. Lindon JC, Nicholson JK, Holmes E (Eds). Elsevier Science 375–412 (2007).
  • Otvos JD, Jeyarajah EJ, Bennett DW. Quantification of plasma lipoproteins by proton nuclear magnetic resonance spectroscopy. Clin. Chem.37, 377–386 (1991).
  • Kuller L, Arnold A, Tracy R et al. Nuclear magnetic resonance spectroscopy of lipoproteins and risk of coronary heart disease in the cardiovascular health study. Arterioscler. Thromb. Vasc. Biol.22, 1175–1180 (2002).
  • Brindle JT, Antti H, Holmes E et al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR based metabonomics. Nat. Med.8, 1439–1444 (2002).
  • Brindle JT, Nicholson JK, Schofield PM, Grainger DJ, Holmes E. Application of chemometrics to 1H NMR spectroscopic data to investigate a relationship between human serum metabolic profiles and hypertension. Analyst128, 32–36 (2003).
  • Kirschenlohr HL, Griffin JL, Clarke SC et al. Proton NMR analysis of plasma is a weak predictor of coronary artery disease. Nat. Med.12, 705–710 (2006).
  • Ala-Korpela M. Critical evaluation of 1H NMR metabonomics of serum as a methodology for disease risk assessment and diagnostics. Clin. Chem. Lab. Med.46(1), 27–42 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.