175
Views
17
CrossRef citations to date
0
Altmetric
Theme: Schizophrenia - Review

Functional dysconnectivity in schizophrenia and its relationship to neural synchrony

, &
Pages 755-765 | Published online: 09 Jan 2014

References

  • Saha S, Chant D, Welham J, McGrath J. A systematic review of the prevalence of schizophrenia. PLoS Med. 2(5), e141 (2005).
  • WHO. Global Burden of Disease. WHO, Geneva, Switzerland (2004).
  • Green MF. What are the functional consequences of neurocognitive deficits in schizophrenia? Am. J. Psychiatry 153(3), 321–330 (1996).
  • Insel TR. Rethinking schizophrenia. Nature 468(7321), 187–193 (2010).
  • No authors listed. So much more to know. Science 309(5731), 78–102 (2005).
  • Wray NR, Gottesman II. Using summary data from the Danish national registers to estimate heritabilities for schizophrenia, bipolar disorder, and major depressive disorder. Front. Genet. 3, 118 (2012).
  • Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch. Gen. Psychiatry 60(12), 1187–1192 (2003).
  • Gottesman II, Gould TD. The endophenotype concept in psychiatry: etymology and strategic intentions. Am. J. Psychiatry 160(4), 636–645 (2003).
  • Fingelkurts AA, Fingelkurts AA, Kähkönen S. Functional connectivity in the brain – is it an elusive concept? Neurosci. Biobehav. Rev. 28(8), 827–836 (2005).
  • Morgan VA, Waterreus A, Jablensky A et al. People Living with Psychotic Illness 2010: Report on the Second Australian National Survey. Commonwealth of Australia, Canberra, Australia (2011).
  • Kraepelin E. Manic-Depressive Insanity and Paranoia (trans. RM Barclay). Livingstone, Edinburgh, UK (1919).
  • Green MF, Kern RS, Heaton RK. Longitudinal studies of cognition and functional outcome in schizophrenia: implications for MATRICS. Schizophr. Res. 72(1), 41–51 (2004).
  • Meyer-Lindenberg A, Weinberger DR. Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat. Rev. Neurosci. 7(10), 818–827 (2006).
  • Mesulam MM. From sensation to cognition. Brain 121(Pt 6), 1013–1052 (1998).
  • Buzsáki G. Rhythms of the Brain. Oxford University Press, NY, USA (2006).
  • Wernicke C. Grundrisse der Psychiatrie. Thieme, Leipzig, Germany (1906).
  • Plum F. Prospects for research on schizophrenia. 3. Neurophysiology. Neuropathological findings. Neurosci. Res. Program Bull. 10(4), 384–388 (1972).
  • Benes FM, Davidson J, Bird ED. Quantitative cytoarchitectural studies of the cerebral cortex of schizophrenics. Arch. Gen. Psychiatry 43(1), 31–35 (1986).
  • Friston KJ, Frith CD. Schizophrenia: a disconnection syndrome? Clin. Neurosci. 3(2), 89–97 (1995).
  • Andreasen NC, Paradiso S, O’Leary DS. ‘Cognitive dysmetria’ as an integrative theory of schizophrenia: a dysfunction in cortical–subcortical–cerebellar circuitry? Schizophr. Bull. 24(2), 203–218 (1998).
  • Lesh TA, Niendam TA, Minzenberg MJ, Carter CS. Cognitive control deficits in schizophrenia: mechanisms and meaning. Neuropsychopharmacology 36(1), 316–338 (2011).
  • Stephan KE, Friston KJ, Frith CD. Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr. Bull. 35(3), 509–527 (2009).
  • Harrison PJ, Weinberger DR. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol. Psychiatry 10(1), 40–68; image 5 (2005).
  • Buckley PF. Neuroimaging of schizophrenia: structural abnormalities and pathophysiological implications. Neuropsychiatr. Dis. Treat. 1(3), 193–204 (2005).
  • Eckhorn R, Bauer R, Jordan W et al. Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat. Biol. Cybern. 60(2), 121–130 (1988).
  • Rodriguez E, George N, Lachaux JP, Martinerie J, Renault B, Varela FJ. Perception’s shadow: long-distance synchronization of human brain activity. Nature 397(6718), 430–433 (1999).
  • Miltner WH, Braun C, Arnold M, Witte H, Taub E. Coherence of γ-band EEG activity as a basis for associative learning. Nature 397(6718), 434–436 (1999).
  • Gregoriou GG, Gotts SJ, Zhou H, Desimone R. High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science 324(5931), 1207–1210 (2009).
  • Summerfield C, Mangels JA. Functional coupling between frontal and parietal lobes during recognition memory. Neuroreport 16(2), 117–122 (2005).
  • Meyer P, Mecklinger A, Grunwald T, Fell J, Elger CE, Friederici AD. Language processing within the human medial temporal lobe. Hippocampus 15(4), 451–459 (2005).
  • Uhlhaas PJ, Singer W. Abnormal neural oscillations and synchrony in schizophrenia. Nat. Rev. Neurosci. 11(2), 100–113 (2010).
  • Buzsáki G, Chrobak JJ. Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks. Curr. Opin. Neurobiol. 5(4), 504–510 (1995).
  • Traub RD, Bibbig A, LeBeau FE, Buhl EH, Whittington MA. Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro. Annu. Rev. Neurosci. 27, 247–278 (2004).
  • Bartos M, Vida I, Jonas P. Synaptic mechanisms of synchronized γ oscillations in inhibitory interneuron networks. Nat. Rev. Neurosci. 8(1), 45–56 (2007).
  • Marder SR, Fenton W. Measurement and treatment research to improve cognition in schizophrenia: NIMH MATRICS initiative to support the development of agents for improving cognition in schizophrenia. Schizophr. Res. 72(1), 5–9 (2004).
  • Nuechterlein KH, Barch DM, Gold JM, Goldberg TE, Green MF, Heaton RK. Identification of separable cognitive factors in schizophrenia. Schizophr. Res. 72(1), 29–39 (2004).
  • Woodberry KA, Giuliano AJ, Seidman LJ. Premorbid IQ in schizophrenia: a meta-analytic review. Am. J. Psychiatry 165(5), 579–587 (2008).
  • Mesholam-Gately RI, Giuliano AJ, Goff KP, Faraone SV, Seidman LJ. Neurocognition in first-episode schizophrenia: a meta-analytic review. Neuropsychology 23(3), 315–336 (2009).
  • Kurtz MM. Neurocognitive impairment across the lifespan in schizophrenia: an update. Schizophr. Res. 74(1), 15–26 (2005).
  • Goldberg TE, Ragland JD, Torrey EF, Gold JM, Bigelow LB, Weinberger DR. Neuropsychological assessment of monozygotic twins discordant for schizophrenia. Arch. Gen. Psychiatry 47(11), 1066–1072 (1990).
  • Uhlhaas PJ, Haenschel C, Nikolic D, Singer W. The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia. Schizophr. Bull. 34(5), 927–943 (2008).
  • Lee KH, Williams LM, Breakspear M, Gordon E. Synchronous γ activity: a review and contribution to an integrative neuroscience model of schizophrenia. Brain Res. Brain Res. Rev. 41(1), 57–78 (2003).
  • Gonzalez-Burgos G, Lewis DA. GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia. Schizophr. Bull. 34(5), 944–961 (2008).
  • Uhlhaas PJ, Linden DE, Singer W et al. Dysfunctional long-range coordination of neural activity during Gestalt perception in schizophrenia. J. Neurosci. 26(31), 8168–8175 (2006).
  • Krishnan GP, Hetrick WP, Brenner CA, Shekhar A, Steffen AN, O’Donnell BF. Steady state and induced auditory γ deficits in schizophrenia. Neuroimage 47(4), 1711–1719 (2009).
  • Mulert C, Kirsch V, Pascual-Marqui R, McCarley RW, Spencer KM. Long-range synchrony of g oscillations and auditory hallucination symptoms in schizophrenia. Int. J. Psychophysiol. 79(1), 55–63 (2011).
  • Riecanský I, Kašpárek T, Rehulová J, Katina S, Prikryl R. Aberrant EEG responses to γ-frequency visual stimulation in schizophrenia. Schizophr. Res. 124(1–3), 101–109 (2010).
  • Flynn G, Alexander D, Harris A et al. Increased absolute magnitude of γ synchrony in first-episode psychosis. Schizophr. Res. 105(1–3), 262–271 (2008).
  • Williams LM, Whitford TJ, Nagy M et al. Emotion-elicited γ synchrony in patients with first-episode schizophrenia: a neural correlate of social cognition outcomes. J. Psychiatry Neurosci. 34(4), 303–313 (2009).
  • Symond MB, Harris AWF, Gordon E, Williams LM. ‘Gamma Synchrony’ in first-episode schizophrenia: a disorder of temporal connectivity? Am. J. Psychiatry. 162(3), 459–465 (2005).
  • Basar-Eroglu C, Brand A, Hildebrandt H, Karolina Kedzior K, Mathes B, Schmiedt C. Working memory related γ oscillations in schizophrenia patients. Int. J. Psychophysiol. 64(1), 39–45 (2007).
  • Cho RY, Konecky RO, Carter CS. Impairments in frontal cortical γ synchrony and cognitive control in schizophrenia. Proc. Natl Acad. Sci. USA 103(52), 19878–19883 (2006).
  • Pettersson-Yeo W, Allen P, Benetti S, McGuire P, Mechelli A. Dysconnectivity in schizophrenia: where are we now? Neurosci. Biobehav. Rev. 35(5), 1110–1124 (2011).
  • Fornito A, Zalesky A, Pantelis C, Bullmore ET. Schizophrenia, neuroimaging and connectomics. Neuroimage 62(4), 2296–2314 (2012).
  • Wang L, Metzak PD, Honer WG, Woodward TS. Impaired efficiency of functional networks underlying episodic memory-for-context in schizophrenia. J. Neurosci. 30(39), 13171–13179 (2010).
  • Becerril KE, Repovs G, Barch DM. Error processing network dynamics in schizophrenia. Neuroimage 54(2), 1495–1505 (2011).
  • Fornito A, Yoon J, Zalesky A, Bullmore ET, Carter CS. General and specific functional connectivity disturbances in first-episode schizophrenia during cognitive control performance. Biol. Psychiatry 70(1), 64–72 (2011).
  • Williamson PC, Allman JM. A framework for interpreting functional networks in schizophrenia. Front. Hum. Neurosci. 6, 184 (2012).
  • Ojemann GA, Corina DP, Corrigan N et al. Neuronal correlates of functional magnetic resonance imaging in human temporal cortex. Brain 133(Pt 1), 46–59 (2010).
  • Schölvinck ML, Maier A, Ye FQ, Duyn JH, Leopold DA. Neural basis of global resting-state fMRI activity. Proc. Natl Acad. Sci. USA 107(22), 10238–10243 (2010).
  • Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III – the final common pathway. Schizophr. Bull. 35(3), 549–562 (2009).
  • Kömek K, Bard Ermentrout G, Walker CP, Cho RY. Dopamine and γ band synchrony in schizophrenia – insights from computational and empirical studies. Eur. J. Neurosci. 36(2), 2146–2155 (2012).
  • Moghaddam B, Javitt D. From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology 37(1), 4–15 (2012).
  • Hashimoto K, Fukushima T, Shimizu E et al. Decreased serum levels of D-serine in patients with schizophrenia: evidence in support of the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia. Arch. Gen. Psychiatry 60(6), 572–576 (2003).
  • Madeira C, Freitas ME, Vargas-Lopes C, Wolosker H, Panizzutti R. Increased brain D-amino acid oxidase (DAAO) activity in schizophrenia. Schizophr. Res. 101(1–3), 76–83 (2008).
  • Belforte JE, Zsiros V, Sklar ER et al. Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat. Neurosci. 13(1), 76–83 (2010).
  • Weickert CS, Fung SJ, Catts VS et al. Molecular evidence of N-methyl-D-aspartate receptor hypofunction in schizophrenia. Mol. Psychiatry doi:10.1038/mp.2012.137 (2012) (Epub ahead of print).
  • Kantrowitz J, Javitt DC. Glutamatergic transmission in schizophrenia: from basic research to clinical practice. Curr. Opin. Psychiatry 25(2), 96–102 (2012).
  • Krystal JH, Mathew SJ, D’Souza DC, Garakani A, Gunduz-Bruce H, Charney DS. Potential psychiatric applications of metabotropic glutamate receptor agonists and antagonists. CNS Drugs 24(8), 669–693 (2010).
  • Keefe RS, Buchanan RW, Marder SR et al. Clinical trials of potential cognitive-enhancing drugs in schizophrenia: what have we learned so far? Schizophr. Bull. 39(2), 417–435 (2013).
  • Rossignol E. Genetics and function of neocortical GABAergic interneurons in neurodevelopmental disorders. Neural Plast. 2011, 649325 (2011).
  • Joshi D, Fung SJ, Rothwell A, Weickert CS. Higher γ-aminobutyric acid neuron density in the white matter of orbital frontal cortex in schizophrenia. Biol. Psychiatry 72(9), 725–733 (2012).
  • Lisman JE, Coyle JT, Green RW et al. Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci. 31(5), 234–242 (2008).
  • Rotaru DC, Lewis DA, Gonzalez-Burgos G. The role of glutamatergic inputs onto parvalbumin-positive interneurons: relevance for schizophrenia. Rev. Neurosci. 23(1), 97–109 (2012).
  • Glausier JR, Lewis DA. Selective pyramidal cell reduction of GABA(A) receptor a1 subunit messenger RNA expression in schizophrenia. Neuropsychopharmacology 36(10), 2103–2110 (2011).
  • Volman V, Behrens MM, Sejnowski TJ. Downregulation of parvalbumin at cortical GABA synapses reduces network γ oscillatory activity. J. Neurosci. 31(49), 18137–18148 (2011).
  • Rolls ET. Glutamate, obsessive-compulsive disorder, schizophrenia, and the stability of cortical attractor neuronal networks. Pharmacol. Biochem. Behav. 100(4), 736–751 (2012).
  • Cabungcal JH, Steullet P, Kraftsik R, Cuenod M, Do KQ. Early-life insults impair parvalbumin interneurons via oxidative stress: reversal by N-acetylcysteine. Biol. Psychiatry 73(6), 574–582 (2013).
  • Carmeli C, Knyazeva MG, Cuénod M, Do KQ. Glutathione precursor N-acetyl-cysteine modulates EEG synchronization in schizophrenia patients: a double-blind, randomized, placebo-controlled trial. PLoS ONE 7(2), e29341 (2012).
  • Ahn Allen CG. The role of the a7 nicotinic receptor in cognitive processing of persons with schizophrenia. Curr. Opin. Psychiatry 25(2), 103–108 (2012).
  • Nakazawa K, Zsiros V, Jiang Z et al. GABAergic interneuron origin of schizophrenia pathophysiology. Neuropharmacology 62(3), 1574–1583 (2012).
  • Singer W, Gray CM. Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18, 555–586 (1995).
  • Sullivan PF. The genetics of schizophrenia. PLoS Med. 2(7), e212 (2005).
  • Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium. Genome-wide association study identifies five new schizophrenia loci. Nat. Genet. 43(10), 969–976 (2011).
  • Buonanno A. The neuregulin signaling pathway and schizophrenia: from genes to synapses and neural circuits. Brain Res. Bull. 83(3–4), 122–131 (2010).
  • Stefansson H, Ophoff RA, Steinberg S et al.; Genetic Risk and Outcome in Psychosis (GROUP). Common variants conferring risk of schizophrenia. Nature 460(7256), 744–747 (2009).
  • Lips ES, Cornelisse LN, Toonen RF et al.; International Schizophrenia Consortium. Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia. Mol. Psychiatry 17(10), 996–1006 (2012).
  • Mothersill O, Kelly S, Rose EJ, Donohoe G. The effects of psychosis risk variants on brain connectivity: a review. Front. Psychiatry 3, 18 (2012).
  • Williams LM, Rush AJ, Koslow SH et al. International Study to Predict Optimized Treatment for Depression (iSPOT-D), a randomized clinical trial: rationale and protocol. Trials 12, 4 (2011).
  • Insel T, Cuthbert B, Garvey M et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am. J. Psychiatry 167(7), 748–751 (2010).
  • Gladsjo JA, McAdams LA, Palmer BW, Moore DJ, Jeste DV, Heaton RK. A six-factor model of cognition in schizophrenia and related psychotic disorders: relationships with clinical symptoms and functional capacity. Schizophr. Bull. 30(4), 739–754 (2004).
  • Dickinson D, Ramsey ME, Gold JM. Overlooking the obvious: a meta-analytic comparison of digit symbol coding tasks and other cognitive measures in schizophrenia. Arch. Gen. Psychiatry 64(5), 532–542 (2007).
  • Heinrichs RW, Zakzanis KK. Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology 12(3), 426–445 (1998).
  • Kohler CG, Walker JB, Martin EA, Healey KM, Moberg PJ. Facial emotion perception in schizophrenia: a meta-analytic review. Schizophr. Bull. 36(5), 1009–1019 (2010).
  • Bleuler E. Dementia praecox oder die Gruppe der Schizophrenien. In: Hrsg. Handbuch der Psychiatrie. Aschaffenburg, G (Ed.) Leipzig, Deuticke, Germany (1911).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.