75
Views
17
CrossRef citations to date
0
Altmetric
Review

Antipsychotic drug action: targets for drug discovery with neurochemical imaging

&
Pages 57-64 | Published online: 10 Jan 2014

References

  • Acton PD. Nuclear Medicine In Clinical Diagnosis and Treatment. Ell PJ, Murray IPC (Eds). Churchill Livingstone, London, UK (1994).
  • Bartels SJ, Clark RE, Peacock WJ, Dums AR, Pratt SI. Medicare and medicaid costs for schizophrenia patients by age cohort compared with costs for depression, dementia, and medically ill patients. Am. J. Geriatr. Psychiatry 11(6), 648–657 (2003).
  • Shen WW. A history of antipsychotic drug development. Compr. Psych. 40(6), 407–414 (1999).
  • Creese I, Burt DR, Snyder SH. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192, 481–483 (1976).
  • Seeman P, Lee T. Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science 188, 1217–1219 (1975).
  • Bischoff S. Limbic selective neuroleptics. Clin. Neuropharmacol. 15(Suppl. 1), 265A–266A (1992).
  • Meltzer HY. New drugs for the treatment of schizophrenia. Psychiatr. Clin. North Am. 16, 365–385 (1993).
  • Scatton B, Zivkovic B. Neuroleptics and the limbic system. In: Psychopharmacology of the Limbic System. Trimble MR, Zarifian E (Eds). Oxford University Press, Oxford, UK, 174–197 (1985).
  • Kane J, Honigfeld G, Singer J, Meltzer H. Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Arch. Gen. Psych. 45(9), 789–796 (1988).
  • Wolkin A, Barouche F, Wolf AP et al. Dopamine blockade and clinical response: evidence for two biological subgroups of schizophrenia. Am. J. Psych. 146(7), 905–908 (1989).
  • Pilowsky LS, Costa DC, Ell PJ, Murray RM, Verhoeff NP, Kerwin RW. Antipsychotic medication, D2 dopamine receptor blockade and clinical response: a 123I IBZM SPET (single photon emission tomography) study. Psychol. Med. 23(3), 791–797 (1993).
  • Nordstrom AL, Farde L, Wiesel FA et al. Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects: a double-blind PET study of schizophrenic patients. Biol. Psych. 33(4), 227–235 (1993).
  • Kapur S, Zipursky R, Jones C, Remington G, Houle S. Relationship between dopamine D(2) occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am. J. Psych. 157(4), 514–520 (2000).
  • Pilowsky LS, Costa DC, Ell PJ, Murray RM, Verhoeff NP, Kerwin RW. Clozapine, single photon emission tomography, and the D2 dopamine receptor blockade hypothesis of schizophrenia. Lancet 340(8813), 199–202 (1992).
  • Farde L, Nordstrom AL, Wiesel FA, Pauli S, Halldin C, Sedvall G. Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Arch. Gen. Psych. 49(7), 538–544 (1992).
  • Meltzer HY, Matsubara S, Lee JC. The ratios of serotonin 2 and dopamine 2 affinities differentiate atypical and typical antipsychotic drugs. Psychopharmacol. Bull. 25(3), 390–392 (1989).
  • Nordstrom AL, Farde L, Halldin C. High 5-HT2 receptor occupancy in clozapine treated patients demonstrated by PET. Psychopharmacology (Berl.)110(3), 365–367 (1993).
  • Nyberg S, Farde L, Eriksson L, Halldin C, Eriksson B. 5-HT2 and D2 dopamine receptor occupancy in the living human brain. A PET study with risperidone. Psychopharmacology (Berl.)110(3), 265–272 (1993).
  • Travis MJ, Busatto GF, Pilowsky LS et al. Serotonin: 5-HT2A receptor occupancy in vivo and response to the new antipsychotics olanzapine and sertindole. Br. J. Psych. 171, 290–291 (1997).
  • Travis MJ, Busatto GF, Pilowsky LS et al. 5-HT2A receptor blockade in patients with schizophrenia treated with risperidone or clozapine. A SPET study using the novel 5-HT2A ligand 123I-5-I-R-91150. Br. J. Psych. 173, 236–241 (1998).
  • Trichard C, Paillere-Martinot ML, Attar-Levy D, Recassens C, Monnet F, Martinot JL. Binding of antipsychotic drugs to cortical 5-HT2A receptors: a PET study of chlorpromazine, clozapine, and amisulpride in schizophrenic patients. Am. J. Psychiatry 155(4), 505–508 (1998).
  • Schotte A, Janssen PF, Gommeren W et al. Risperidone compared with new and reference antipsychotic drugs: in vitro and in vivo receptor binding. Psychopharmacology (Berl.) 124(1–2), 57–73 (1996).
  • Kapur S, Zipursky RB, Remington G. Clinical and theoretical implications of 5-HT2 and D2 receptor occupancy of clozapine, risperidone, and olanzapine in schizophrenia. Am. J. Psych. 156(2), 286–293 (1999).
  • de Paulis T. M-100907 (Aventis). Curr. Opin. Investig. Drugs. 2(1), 123–132 (2001).
  • Pilowsky LS, Mulligan RS, Acton PD, Ell PJ, Costa DC, Kerwin RW. Limbic selectivity of clozapine. Lancet 350(9076), 490–491 (1997).
  • Xiberas X, Martinot JL, Mallet L et al. Extrastriatal and striatal D2 dopamine receptor blockade with haloperidol or new antipsychotic drugs in patients with schizophrenia. Br. J. Psychiatry 179, 503–508 (2001).
  • Kessler RM, Ansari MS, Li R, Dawant B, Lee M, Meltzer HY. Occupancy of striatal and extrastriatal dopamine D2 receptors by atypical antipsychotic drugs. J. Nucl. Med. 43, 15 (2002).
  • Bigliani V, Mulligan RS, Acton PD et al. Striatal and temporal cortical D2/D3 receptor occupancy by olanzapine and sertindole in vivo: a [123I]epidepride SPET study. Psychopharmacology 150, 132–140 (2000).
  • Stephenson CM, Bigliani V, Jones HM et al. Striatal and extra-striatal D2/D3 dopamine receptor occupancy by quetiapine in vivo: [123I]-epidepride single photon emission tomography (SPET) study. Br. J. Psych. 177, 408–415 (2000).
  • Bressan RA, Erlandsson K, Jones HM, Mulligan RS, Ell PJ, Pilowsky LS. Optimizing limbic selective D2/D3 receptor occupancy by risperidone: a [123I]-epidepride SPET study. J. Clin. Psychopharmacol. 23(1), 5–14 (2003).
  • Bressan RA, Erlandsson K, Jones HM et al. Is regionally selective D2/D3 dopamine occupancy sufficient for atypical antipsychotic effect? An in vivo quantitative [123I]epidepride SPET study of amisulpride-treated patients. Am. J. Psych. 160, 1413–1420 (2003).
  • Farde L, Suhara T, Nyberg S et al. A PET study of [11C]FLB 457 binding to extrastriatal D2-dopamine receptors in healthy subjects and antipsychotic drug-treated patients. Psychopharmacology 133, 396–404 (1997).
  • Talvik M, Nordström AL, Nyberg S, Olsson H, Halldin C, Farde L. No support for regional selectivity in clozapine-treated patients: a PET study with [(11)C]raclopride and [(11)C]FLB 457. Am. J. Psych. 158(6), 926–930 (2001).
  • Erlandsson K, Bressan RA, Mulligan RS, Ell PJ, Cunningham VJ, Pilowsky LS. Analysis of D2 dopamine receptor occupancy with quantitative SPET using the high-affinity ligand [123I]epidepride: resolving conflicting findings. Neuroimage 19, 1205–1214 (2003).
  • Gründer G, Landvogt L, Vernaleken I et al. Beyond the striatum: clozapine’s striatal and extrastriatal binding characteristics. Neuroimage 22(Suppl. 2), T177–T178 (2004).
  • Agid O, Mamo D, Zipursky RB, Vitcu I, Barsoum P, Kapur S. Differentiating the roles of striatal vs. extrastriatal dopamine D2 receptors in antipsychotic response –a PET study. Schizophr. Bull. 31(2), 442 (2005).
  • Joel D, Weiner I. The connections of the primate subthalamic nucleus: indirect pathways and the open-interconnected scheme of basal gangliathalamocortical circuitry. Brain Res. Brain Res. Rev. 23, 62–78 (1997).
  • Joyce JN, Meador-Woodruff JH. Linking the family of D2 receptors to neuronal circuits in human brain: insights into schizophrenia. Neuropsychopharmacology 16, 375–384 (1997).
  • Joyce JN. Dopamine D3 receptor as a therapeutic target for antipsychotic and antiparkinsonian drugs. Pharmacol. Ther. 90, 231–259 (2001).
  • Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res. Brain Res. Rev.31, 236–250 (2000).
  • Stone JM, Bressan RA, Erlandsson K, Ell PJ, Pilowsky LS. Non-uniform blockade of intrastriatal D(2)/D(3) receptors by risperidone and amisulpride. Psychopharmacology (Berl). 180(4), 664–669 (2005) [Epub ahead of print].
  • Wilson JM, Sanyal S, Van Tol HH. Dopamine D2 and D4 receptor ligands: relation to antipsychotic action. Eur. J. Pharmacol. 351(3), 273–286 (1998).
  • Seeman P, Guan HC, Van Tol HH. Schizophrenia: elevation of dopamine D4-like sites, using [3H]nemonapride and [125I]epidepride. Eur. J. Pharmacol. 286(2), R3–R5 (1995).
  • Schoots O, Seeman P, Guan HC, Paterson AD, Van Tol HH. Long-term haloperidol elevates dopamine D4 receptors by 2-fold in rats. Eur. J. Pharmacol. 289(1), 67–72 (1995).
  • Kusumi I, Ishikane T, Matsubara S, Koyama T. Long-term treatment with haloperidol or clozapine does not affect dopamine D4 receptors in rat frontal cortex. J. Neural Transm. Gen. Sect. 101(1–3), 231–235 (1995).
  • Tarazi FI, Zhang K, Baldessarini RJ. Dopamine D4 receptors: beyond schizophrenia. J. Recept. Signal Transduct. Res. 3, 131–147 (2004).
  • Joyce JN, Millan MJ. Dopamine D3 receptor antagonists as therapeutic agents. Drug Discov. Today 10(13), 917–925 (2005).
  • Kapur S, Remington G. Dopamine D(2) receptors and their role in atypical antipsychotic action: still necessary and may even be sufficient. Biol. Psych. 50(11), 873–883 (2001).
  • Kapur S, Seeman P. Does fast dissociation from the dopamine D(2) receptor explain the action of atypical antipsychotics? A new hypothesis. Am. J. Psych. (3), 360–369 (2001).
  • Walsh FX, Stevens TJ, Langlais PJ, Bird ED. Dopamine and homovanillic acid concentrations in striatal and limbic regions of human brain. Ann. Neurol. 12(1), 52–55 (1982).
  • Bolonna AA, Kerwin RW. Partial agonism and schizophrenia. Br. J. Psych. 186, 7–10 (2005).
  • Ohlsen RI, Pilowsky LS. The place of partial agonism in psychiatry: recent developments. J. Psychopharmacol.19(4), 408–413 (2005).
  • Yokoi F, Grunder G, Biziere K et al. Dopamine D2 and D3 receptor occupancy in normal humans treated with the antipsychotic drug aripiprazole (OPC 14597): a study using positron emission tomography and [11C]raclopride. Neuropsychopharmacology 27(2), 248–259 (2002).
  • Kinghorn WA, McEvoy JP. Aripiprazole: pharmacology, efficacy, safety and tolerability. Expert Rev. Neurother. 5(3), 297–307 (2005).
  • Ramaswamy S, Vijay D, William M, Sattar SP, Praveen F, Petty F. Aripiprazole possibly worsens psychosis. Int. Clin. Psychopharmacol. 19(1), 45–48 (2004).
  • El-Sayeh HG, Morganti C. Aripiprazole for schizophrenia. Cochrane Database Syst Rev. 2, CD004578 (2004).
  • Morris BJ, Cochran SM, Pratt JA. PCP: from pharmacology to modeling schizophrenia. Curr. Opin. Pharmacol. 5, 101–106 (2005).
  • Bressan RA, Erlandsson K, Stone JM et al. Impact of schizophrenia and chronic antipsychotic treatment on [(123)I]CNS-1261 binding to N-methyl-D-aspartate receptors in vivo. Biol. Psychiatry 58(1), 41–46 (2005).
  • Bressan RA, Erlandsson K, Mulligan RS et al. NMDA dysfunction in schizophrenia is modulated by antipsychotic drugs: a [123I]CNS 1261 study. Neuroimage 22(Suppl. 2), T103 (2004).
  • Tuominen HJ, Tiihonen J, Wahlbeck K. Glutamatergic drugs for schizophrenia: a systematic review and meta-analysis. Schizophr. Res. 72(2–3), 225–234 (2005).
  • Rowland LM, Bustillo JR, Mullins PG et al. Effects of ketamine on anterior cingulate glutamate metabolism in healthy humans: a 4-T proton MRS study. Am. J. Psych. 162(2), 394–396 (2005).
  • Olney JW, Farber NB. Glutamate receptor dysfunction and schizophrenia. Arch. Gen. Psych. 52(12), 998–1007 (1995).
  • Theberge J, Bartha R, Drost DJ et al. Glutamate and glutamine measured with 4.0 T proton MRS in never-treated patients with schizophrenia and healthy volunteers. Am. J. Psychiatry 159(11), 1944–1946 (2002).
  • Tibbo P, Hanstock C, Valiakalayil A, Allen P. 3-T proton MRS investigation of glutamate and glutamine in adolescents at high genetic risk for schizophrenia. Am. J. Psychiatry 161(6), 1116–1118 (2004).
  • Theberge J, Al-Semaan Y, Williamson PC et al. Glutamate and glutamine in the anterior cingulate and thalamus of medicated patients with chronic schizophrenia and healthy comparison subjects measured with 4.0-T proton MRS. Am. J. Psychiatry 160(12), 2231–2233 (2003).
  • Pantelis C, Velakoulis D, McGorry PD et al. Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet 361(9354), 281–288 (2003).
  • Coyle JT. The GABA-glutamate connection in schizophrenia: which is the proximate cause? Biochem. Pharmacol. 68(8), 1507–1514 (2004).
  • Ripoll N, Bronnec M, Bourin M. Nicotinic receptors and schizophrenia. Curr. Med. Res. Opin. 20(7), 1057–1074 (2004).
  • Domino EF, Mirzoyan D, Tsukada H. N-methyl-D-aspartate antagonists as drug models of schizophrenia: a surprising link to tobacco smoking. Prog. Neuropsychopharmacol. Biol. Psychiatry 28 (5), 801–811 (2004).
  • Levin ED, Petro A, Caldwell DP. Nicotine and clozapine actions on pre-pulse inhibition deficits caused by N-methyl-D-aspartate (NMDA) glutamatergic receptor blockade. Prog. Neuropsychopharmacol. Biol. Psychiatry 29(4), 581–586 (2005).
  • Li Z, Huang M, Ichikawa J, Dai J, Meltzer HY. N-Desmethylclozapine, a major metabolite of clozapine, increases cortical acetylcholine and dopamine release in vivo via stimulation of M(1) muscarinic receptors. Neuropsychopharmacology (2005) [Epub ahead of print].
  • Tandon R. Cholinergic aspects of schizophrenia. Br. J. Psychiatry 37(Suppl.) 7–11 (1999).
  • Sur C, Mallorga PJ, Wittmann M et al. N-desmethylclozapine, an allosteric agonist at muscarinic 1 receptor, potentiates N-methyl-D-aspartate receptor activity. Proc. Natl Acad. Sci. USA 100(23), 13674–13679 (2003).
  • Calabresi P, Centonze D, Gubellini P, Pisani A, Bernardi G. Endogenous ACh enhances striatal NMDA-responses via M1-like muscarinic receptors and PKC activation. Eur. J. Neurosci. 9, 2887–2895 (1998).
  • Marino MJ, Rouse ST, Levey AI, Potter LT, Conn PJ. Activation of the genetically defined m1 muscarinic receptor potentiates N-methyl-D-aspartate (NMDA) receptor currents in hippocampal pyramidal cells. Proc. Natl. Acad. Sci. USA 95(19), 11465–11470 (1998).
  • Raedler TJ, Knable MB, Jones DW et al. In vivo determination of muscarinic acetylcholine receptor availability in schizophrenia. Am. J. Psychiatry 160(1), 118–127 (2003).
  • Raedler TJ, Knable MB, Jones DW, Urbina RA, Egan MF, Weinberger DR. Central muscarinic acetylcholine receptor availability in patients treated with clozapine. Neuropsychopharmacology 28(8), 1531–1537 (2003).
  • Raedler TJ, Knable MB, Jones DW et al. In vivo olanzapine occupancy of muscarinic acetylcholine receptors in patients with schizophrenia. Neuropsychopharmacology 23(1), 56–68 (2000).
  • Crook JM, Dean B, Pavey G, Copolov D. The binding of [3H]AF-DX 384 is reduced in the caudate-putamen of subjects with schizophrenia. Life Sci. 64(19), 1761–1771 (1999).
  • Bymaster FP, Shannon HE, Rasmussen K et al. Unexpected antipsychotic-like activity with the muscarinic receptor ligand (5R,6R)6-(3-propylthio-1,2,5-thiadiazol-4-yl)-1-azabicycloKaran RS. Brain Res. 795, 179–190 (1998).
  • Ravishankar P, Pandhi P. Effect of muscarinic receptor agonists on animal models of psychosis. Methods Find. Exp. Clin. Pharmacol. 22(3), 169–172 (2000).
  • Stanhope KJ, Mirza NR, Bickerdike MJ et al. The muscarinic receptor agonist xanomeline has an antipsychotic-like profile in the rat. J. Pharmacol. Exp. Ther. 299(2), 782–792 (2001).
  • Andersen MB, Fink-Jensen A, Peacock L et al. The muscarinic M1/M4 receptor agonist xanomeline exhibits antipsychotic-like activity in cebus apella monkeys. Neuropsychopharmacology 28(6), 1168–1175 (2003).
  • Wirkner K, Krause T, Koles L, Thummler S, Al-Khrasani M, Illes P. D1 but not D2 dopamine receptors or adrenoceptors mediate dopamine-induced potentiation of N-methyl-D-aspartate currents in the rat prefrontal cortex. Neurosci. Lett. 372(1–2), 89–93 (2004).
  • Tauscher J, Hussain T, Agid O et al. Equivalent occupancy of dopamine D1 and D2 receptors with clozapine: differentiation from other atypical antipsychotics. Am. J. Psychiatry 161(9), 1620–1625 (2004).
  • Okubo Y, Suhara T, Suzuki K et al. Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 385(6617), 634–636 (1997).
  • Abi-Dargham A, Mawlawi O, Lombardo I et al. Prefrontal dopamine D1 receptors and working memory in schizophrenia. J. Neurosci. 22(9), 3708–3719 (2002).
  • Karlsson P, Farde L, Halldin C, Sedvall G. PET study of D(1) dopamine receptor binding in neuroleptic-naive patients with schizophrenia. Am. J. Psychiatry 159(5), 761–767 (2002).
  • Goldman-Rakic PS, Castner SA, Svensson TH, Siever LJ, Williams GV. Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dysfunction. Psychopharmacology (Berl) 174(1), 3–16 (2004).
  • Karlsson P, Smith L, Farde L, Harnryd C, Sedvall G, Wiesel FA. Lack of apparent antipsychotic effect of the D1-dopamine receptor antagonist SCH39166 in acutely ill schizophrenic patients. Psychopharmacology (Berl.) 121(3), 309–316 (1995).
  • Kapur S, Mamo D. Half a century of antipsychotics and still a central role for dopamine D2 receptors. Prog. Neuropsychopharmacol. Biol. Psychiatry 27(7), 1081–1090 (2003).
  • Leucht S, Wahlbeck K, Hamann J, Kissling W. New generation antipsychotics versus low-potency conventional antipsychotics: a systematic review and meta-analysis. Lancet 361(9369), 1581–1589 (2003).
  • Lieberman JA, Stroup TS, McEvoy JP et al. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N. Engl. J. Med. 353(12), 1209–1223 (2005).

Website

  • Joseph P. Hornak. The Basics of NMR. www.cis.rit.edu/htbooks/nmr/bnmr.htm

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.