203
Views
51
CrossRef citations to date
0
Altmetric
Review

Advances in strategies to improve drug delivery to brain tumors

Pages 1495-1509 | Published online: 10 Jan 2014

References

  • Newton HB. Primary brain tumors: review of etiology, diagnosis, and treatment. Am. Fam. Phys.49, 787–797 (1994).
  • Davis FG, McCarthy BJ. Current epidemiological trends and surveillance issues in brain tumors. Expert Rev. AntiCancer Ther.1, 395–401 (2001).
  • Wrensch M, Minn Y, Chew T, Bondy M, Berger MS. Epidemiology of primary brain tumors: current concepts and review of the literature. Neuro-Oncol.4, 278–299 (2002).
  • Kleihues P, Louis DN, Scheithauer BW et al. The WHO classification of tumors of the nervous system. J. Neuropathol. Exp. Neurol.61, 215–225 (2002).
  • Newton HB. Neurological complications of systemic cancer. Am. Fam. Phys.59, 878–886 (1999).
  • Legler JM, Ries LA, Smith MA et al. Cancer surveillance series: brain and other central nervous system cancers: recent trends in incidence and mortality. J. Natl Cancer Inst.91, 1382–1390 (1999).
  • ACS (American Cancer Society): Cancer Facts and Figures 2002. American Cancer Society, GA, USA (2002).
  • Fine HA, Dear KBG, Loeffler JS, Black PM, Canellos GP. Meta-analysis of radiation therapy with and without adjuvant chemotherapy for malignant gliomas in adults. Cancer71, 2585–2597 (1993).
  • Stewart LA, Burdett S, Parmar MKB et al. Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomized trials. Lancet359, 1011–1018 (2002).
  • Newton HB. Molecular neuro-oncology and the development of “targeted” therapeutic strategies for brain tumors. Part 1: growth factor and ras signaling pathways. Expert Rev. AntiCancer Ther.3, 595–614 (2003).
  • Newton HB. Molecular neuro-oncology and the development of “targeted” therapeutic strategies for brain tumors. Part 2: PI3K/Akt/PTEN, mTOR, SHH/PTCH, and angiogenesis. Expert Rev. AntiCancer Ther.4, 105–128 (2004).
  • Newton HB. Molecular neuro-oncology and the development of “targeted” therapeutic strategies for brain tumors. Part 5: apoptosis and cell cycle. Expert Rev. AntiCancer Ther.5, 355–378 (2005).
  • Kesari S, Ramakrishna N, Sauvageot C, Stiles CD, Wen PY. Targeted molecular therapy of malignant gliomas. Curr. Oncol. Rep.8, 58–70 (2006).
  • Reardon DA, Wen PY. Therapeutic advances in the treatment of glioblastoma: rationale and potential role of targeted agents. Oncologist11, 152–164 (2006).
  • Ribatti D, Nico B, Crivellato E, Artico M. Development of the blood–brain barrier: a historical point of view. Anat. Rec. B New Anat.289, 3–8 (2006).
  • Pardridge WM. Blood–brain barrier biology and methodology. J. Neurovirol.5, 556–569 (1999).
  • Pardridge WM. Molecular biology of the blood–brain barrier. Mol. Biotechnol.30, 57–70 (2005).
  • Shusta EV. Blood–brain barrier genomics, proteomics, and new transporter discovery. NeuroRx2, 151–161 (2005).
  • Tsuji A, Tamai II. Carrier-mediated or specialized transport of drugs across the blood–brain barrier. Adv. Drug Deliv. Rev.36, 277–290 (1999).
  • Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosci.7, 41–53 (2006).
  • Huber JD, Egleton RD, Davis TP. Molecular physiology and pathophysiology of tight junctions in the blood–brain barrier. Trends Neurosci.24, 719–725 (2001).
  • Wolburg H, Lippoldt A. Tight junctions of the blood-brain barrier: development, composition, and regulation. Vascul. Pharmacol.38, 223–337 (2002).
  • Feldman GJ, Mullin JM, Ryan MP. Occludin: structure, function, and regulation. Adv. Drug Deliv. Rev.57, 883–917 (2005).
  • Van Itallie CM, Anderson JM. Claudins and epithelial paracellular transport. Ann. Rev. Physiol.68, 403–429 (2006).
  • Bazzoni G. The JAM family of junctional adhesion molecules. Curr. Opin. Cell Biol.15, 525–530 (2003).
  • Anderson JM, Fanning AS, Lapierre L, Van Itallie CM. Zonula occludens (ZO)-1 and ZO-2: membrane-associated guanylate kinase homologues (MAGuKs) of the tight junction. Biochem. Soc. Trans.23, 470–475 (1995).
  • de Boer AG, van der Sandt ICJ, Gaillard PJ. The role of drug transporters at the blood–brain barrier. Ann. Rev. Pharmacol. Toxicol.43, 629–656 (2003).
  • Borst P, Evers R, Kool M, Wijnholds J. A family of drug transporters: the multidrug resistance-associated proteins. J. Natl Cancer Inst.92, 1295–1302 (2000).
  • Schlageter KE, Molnar P, Lapin GD, Groothuis DR. Microvesesel organization and structure in experimental brain tumors: microvessel populations with distinctive structural and functional properties. Microvasc. Res.58, 312–328 (1999).
  • Groothuis DR. The blood-brain and blood-tumor barriers: a review of strategies for increasing drug delivery. Neuro-oncol.2, 45–59 (2000).
  • Parney IF, Prados MD. Chemotherapy principles. In: Textbook of Neuro-oncol.ogy. Berger MS, Prados MD (Eds). Elsevier Saunders, PA, USA 11, 75–79 (2005).
  • Pardridge WM. CNS drug design based on principles of blood–brain barrier transport. J. Neurochem.70, 1781–1792 (1998).
  • Rapoport SI, Ohno K, Pettigrew KD. Drug entry into the brain. Brain Res.172, 354–359 (1979).
  • Levin VA. Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J. Med. Chem.23, 682–684 (1980).
  • Blasberg RG, Groothuis DR. Chemotherapy of brain tumors: physiological and pharmacokinetic considerations. Semin. Oncol.13, 70–82 (1986).
  • Diamond JM, Wright EM. Molecular forces governing non-electrolyte permeation through cell membranes. Proc. R. Soc. Lond., B, Biol. Sci.171, 273–316 (1969).
  • Jain RK. Transport of molecules in the interstitium: a review. Cancer Res.47, 3039–3051 (1987).
  • Stohrer M, Boucher Y, Stangassinger M, Jain RK. Oncotic pressure in solid tumors is elevated. Cancer Res.60, 4251–4255 (2000).
  • Abbott NJ, Romero IA. Transporting therapeutics across the blood–brain barrier. Mol. Med. Today2(3), 106–113 (1996).
  • Kroll RA, Neuwelt EA. Outwitting the blood–brain barrier for therapeutic purposes: osmotic opening and other means. Neurosurg.42, 1083–1100 (1998).
  • Pardridge WM. Brain drug targeting and gene technologies. Jpn. J. Pharmacol.87, 97–103 (2001).
  • Pardridge WM. Drug and gene targeting to the brain with molecular Trojan horses. Nature Rev. Drug Discov.1, 131–139 (2002).
  • Pardridge WM. Targeting neurotherapeutic agents through the blood–brain barrier. Arch. Neurol.59, 35–40 (2002).
  • Demeule M, Régina A, Annabi B, Bertrand Y, Bojanowski MW, Béleveau R. Brain endothelial cells as pharmacological targets in brain tumors. Mol. Neurobiol.30, 157–183 (2004).
  • McCarty JH. Cell biology of the neurovascular unit: implications for drug delivery across the blood–brain barrier. Assay Drugs Dev. Technol.3, 89–95 (2005).
  • Egleton RD, Davis TP. Development of neuropeptide drugs that cross the blood–brain barrier. NeuroRx2, 44–53 (2005).
  • Tsuji A. Small molecular drug transfer across the blood-brain barrier via carrier-mediated transport systems. NeuroRx2, 54–62 (2005).
  • Cucullo L, Aumayr B, Rapp E, Janigro D. Drug delivery and in vitro models of the blood–brain barrier. Curr. Opin. Drug Discov. Devel.8, 89–99 (2005).
  • Chikhale EG, Ng KY, Burton PS, Borchardt RT. Hydrogen bonding potential as a determinant of the in vitro and in situ blood–brain permeability of peptides. Pharm. Res.11, 412–419 (1994).
  • Poduslo JF, Curran GL. Glycation increases the permeability of proteins across the blood–nerve and blood–brain barriers. Brain Res. Mol. Brain Res.23, 157–162 (1994).
  • Egleton RD, Mitchell SA, Huber JD et al. Improved bioavailability to the brain of glycosylated Met-enkephalin analogs. Brain Res.881, 37–46 (2000).
  • Caliceti P, Veronese FM. Pharmacokinetic and biodistribution properties of poly(ethyleneglycol)-protein conjugates. Adv. Drug Deliv. Rev.26, 1261–1277 (2003).
  • Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov.2, 214–221 (2003).
  • Morpurgo M, Veronese FM. Conjugates of peptides and proteins to polyethylene glycols. Methods Mol. Biol.283, 45–70 (2004).
  • Pardridge WM, Wu D, Sakane T. Combined use of carboxyl-directed protein pegylation and vector-mediated blood-brain barrier drug delivery system optimizes brain uptake of brain-derived neurotropic factor following intravenous administration. Pharm. Res.15, 576–582 (1998).
  • Molineux G. Pegylation: engineering improved biopharmaceuticals for oncology. Pharmacother.23, S3–S8 (2003).
  • Deguche Y, Kurihara A, Pardridge WM. Retention of biologic activity of human epidermal growth factor following conjugation to a blood-brain barrier drug delivery vector via an extended poly(ethylene glycol) linker. Bioconjugate Chem.10, 32–37 (1999).
  • Borlongan CV, Emerich DF. Facilitation of drug entry into the CNS via transient permeation of blood brain barrier: laboratory and preliminary clinical evidence from bradykinin receptor agonist, Cereport. Brain Res. Bull.60, 297–306 (2003).
  • Prados MD, Schold SC, Fine HA et al. A randomized, double-blind, placebo-controlled, Phase 2 study of RMP-7 in combination with carboplatin administered intravenously for the treatment of recurrent malignant glioma. Neuro-oncol.5, 96–103 (2003).
  • Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv. Drug Deliv. Rev.47, 65–81 (2001).
  • Lockman PR, Mumper RJ, Khan MA, Allen DD. Nanoparticle technology for drug delivery across the blood–brain barier. Drug Dev. Ind. Pharm.28, 1–13 (2002).
  • Olivier JC. Drug transport to brain with targeted nanoparticles. NeuroRx2, 108–119 (2005).
  • Silva GA. Neuroscience nanotechnology: progress, opportunities, and challenges. Nature Rev. Neurosci.7, 65–74 (2006).
  • Tiwari SB, Amiji MM. A review of nanocarrier-based CNS delivery systems. Curr. Drug Deliv.3, 219–232 (2006).
  • Gref R, Domb A, Quellec P et al. The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv. Drug Deliv. Rev.16, 215–233 (1995).
  • Jain KK. Nanotechnology-based drug delivery for cancer. Technol. Cancer Res. Treat.4, 407–416 (2005).
  • Olivier JC, Huertas R, Lee HJ, Calon F, Pardridge WM. Synthesis of pegylated immunonanoparticles. Pharm. Res.19, 1137–1143 (2002).
  • Gelperina SE, Khalansky AS, Skidan IN et al. Toxicological studies of doxorubicin bound to polysorbate 80-coated poly(butyl cyanoacrylate) nanoparticles in healthy rats and rats with intracranial glioblastoma. Toxicol. Lett.126, 131–141 (2002).
  • Steininger SC, Kreuter J, Khalanskyi AS et al. Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int. J. Cancer109, 759–767 (2004).
  • Koziara JM, Lockman PR, Allen DD, Mumper RJ. Paclitaxel nanoparticles for the potential treatment of brain tumors. J. Control Release99, 259–269 (2004).
  • Brigger I, Morizet J, Laudani L et al. Negative preclinical results with stealth nanospheres-encapsulated doxorubicin in an orthotopic murine brain tumor model. J. Control Release100, 29–40 (2004).
  • Di Paolo A. Liposomal anticancer therapy: pharmacokinetic and clinical aspects. J. Chemother.16, 90–93 (2004).
  • Fenske DB, Cullis PR. Entrapment of small molecules and nucleic acid-based drugs in liposomes. Methods Enzymol.391, 7–40 (2005).
  • Schnyder A, Huwyler J. Drug transport to brain with targeted liposomes. NeuroRx2, 99–107 (2005).
  • Kshirsagar NA, Pandya SK, Kirodian BG, Sanath S. Liposomal drug delivery system from laboratory to clinic. J. Postgrad. Med.51(Suppl. 1), S5–S15 (2005).
  • Ramsay EC, Dos Santos N, Dragowska WH, Laskin JJ, Bally MB. The formulation of lipid-based nanotechnologies for the delivery of fixed dose anticancer drug combinations. Curr. Drug Deliv.2, 341–351 (2005).
  • Allen TM. Long-circulating (sterically stabilized) liposomes for targeted drug delivery. Trends Pharmacol. Sci.15, 215–220 (1994).
  • Huwyler J, Wu D, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes. Proc. Natl Acad. Sci. USA93, 14164–14169 (1996).
  • Zhang Y, Zhu C, Pardridge WM. Antisense gene therapy of brain cancer with an artificial virus gene delivery system. Mol. Ther.6, 67–72 (2002).
  • Abraham SA, Waterhouse DN, Mayer LD, Cullis PR, Madden TD, Bally MB. The liposomal formulation of doxorubicin. Meth. Enzymol.391, 71–97 (2005).
  • Allen TM, Martin FJ. Advantages of liposomal delivery systems for anthracyclines. Sem. in Oncol.31, 5–15 (2004).
  • Vail DM, Amantea MA, Colbern GT, Martin FJ, Hilger RA, Working PK. Pegylated liposomal doxorubicin: proof of principle using preclinical animal models and pharmacokinetic studies. Sem. in Oncol.31, 16–35 (2004).
  • Siegal T, Horowitz A, Gabizon A. Doxorubicin encapsulated in sterically stabilized liposomes for the treatment of a brain tumor model: biodistribution and therapeutic efficacy. J. Neurosurg.83, 1029–1037 (1995).
  • Sharma US, Sharma A, Chau RI, Straubinger RM. Liposome-mediated therapy of intracranial brain tumors in a rat model. Pharm. Res.14, 992–998 (1997).
  • Saito R, Bringas JR, McKnight TR et al. Distribution of liposomes into brain and rat brain tumor models by convection-enhanced delivery monitored with magnetic resonance imaging. Cancer Res.64, 2572–2579 (2004).
  • Koukourakis MI, Koukouraki S, Fezoulidis I et al. High intratumoral accumulation of stealth liposomal doxorubicin (Caelyx) in glioblastomas and in metastatic brain tumors. Br. J. Cancer83, 1281–1286 (2000).
  • Fabel K, Dietrich J, Hau P et al. Long-term stabilization in patients with malignant glioma after treatment with liposomal doxorubicin. Cancer92, 1936–1942 (2001).
  • Hau P, Fabel K, Baumgart U et al. Pegylated liposomal doxorubicin-efficacy in patients with recurrent high-grade glioma. Cancer100, 1199–1207 (2004).
  • Chua SL, Rosenthal RA, Wong SS et al. Phase 2 study of temozolomide and Caelyx in patients with recurrent glioblastoma multiforme. Neuro-oncol.6, 38–43 (2004).
  • Reszka RC, Jacobs A, Voges J. Liposome-mediated suicide gene therapy in humans. Methods Enzymol.391, 200–208 (2005).
  • Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH. Convection-enhanced delivery of macromolecules in the brain. Proc. Natl Acad. Sci. USA91, 2076–2080 (1994).
  • Lieberman DM, Laske DW, Morrison PF, Bandiewicz KS, Oldfield EH. Convection-enhanced distribution of large molecules in gray matter during interstitial drug infusion.J. Neurosurg.82, 1021–1029 (1995).
  • Mamot C, Nguyen JB, Pourdehnad M et al. Extensive distribution of liposomes in rodent brains and brain tumors following convection-enhanced delivery. J. Neuro-oncol.68, 1–9 (2004).
  • Hall WA, Rustamzadeh E, Asher AL. Convection-enhanced delivery in clinical trials. Neurosurg. Focus14, E2 (2003).
  • Hall WA, Scherr GT. Convection-enhanced delivery of targeted toxins for malignant glioma. Expert Opin. Drug Deliv.3, 371–377 (2006).
  • Vandergrift WA, Patel SJ, Nicholas JS, Varma AK. Convection-enhanced delivery of immunotoxins and radioisotopes for treatment of malignant gliomas. Neurosurg. Focus20, E13 (2006).
  • Chen MY, Chen ZJ, Gillies GT, Haar PJ, Broaddus WC. Intratumoral administration and convection-enhanced delivery. In: Handbook of Brain Tumor Chemotherapy. Newton HB (Ed.). Elsevier Medical Publishers – Academic Press, London, UK, 19,295–304 (2006).
  • Brem H, Langer R. Polymer-based drug delivery to the brain. Science Med.3, 2–11 (1996).
  • Raza SM, Pradilla G, Legnani FG et al. Local delivery of antineoplastic agents by controlled-release polymers for the treatment of malignant brain tumours. Expert Opin. Biol. Ther.5, 477–494 (2005).
  • Haque RM, Amundson E, Dorsi M, Brem H. Interstitial chemotherapy and polymer-drug delivery. In: Handbook of Brain Tumor Chemotherapy. Newton HB (Ed.). Elsevier Medical Publishers – Academic Press, London, UK, 20,274–294 (2006).
  • Brem H, Piantadosi S, Burger PC et al. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery of biodegradable polymers of chemotherapy for recurrent gliomas. The Polymer-Brain Tumor Treatment Group. Lancet345, 1008–1012 (1995).
  • Valtonen S, Timonen U, Toivanen P et al. Interstitial chemotherapy with carmustine-loaded polymers for high-grade gliomas: a randomized double-blind study. Neurosurg.41, 44–48 (1997).
  • Westphal M, Hilt DC, Bortey E et al. A Phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro-oncol.5, 79–88 (2003).
  • Sharma S, Nijdam AJ, Sinha PM et al. Controlled-release microchips. Expert Opin. Drug Deliv.3, 379–394 (2006).
  • Meredith RF, LoBuglio AF. Recent progress in radioimmunotherapy of cancer. Oncology11, 979–987 (1997).
  • Kalofonos HP, Pawlikowska TR, Hemingway A et al. Antibody guided diagnosis and therapy of brain gliomas using radiolabeled monoclonal antibodies against epidermal growth factor receptor and placental alkaline phosphatase. J. Nucl. Med.30, 1636–1645 (1989).
  • Riva P, Franceschi G, Arista A et al. Local application of radiolabeled monoclonal antibodies in the treatment of high grade malignant gliomas. A six-year clinical experience. Cancer80, 2733–2742 (1997).
  • Bigner DD, Brown MT, Friedman AH et al. Iodine-131-labeled antitenascin monoclonal antibody 81C6 treatment of patients with recurrent malignant gliomas: Phase I trial results. J. Clin. Oncol.16, 2202–2212 (1998).
  • Cokgor I, Akabani G, Kuan CT et al. Phase trial results of iodine-131-labeled antitenascin monoclonal antibody 81C6 treatment of patients with newly diagnosed malignant gliomas. J. Clin. Oncol.18, 3862–3872 (2000).
  • Reardon DA, Akabani G, Colemen RE et al. Phase II trial of murine 131I-labeled antitenascin monoclonal antibody 81C6 administered into surgically created resection cavities of patients with newly diagnosed malignant gliomas. J. Clin. Oncol.20, 1389–1397 (2002).
  • Shapiro WR, Carpenter SP, Roberts K, Shan JS. (131)I-chTNT-1/B mAb: tumour necrosis therapy for malignant astrocytic glioma. Expert Opin. Biol. Ther.6, 539–545 (2006).
  • Hall WA, Fodstad O. Immunotoxins and central nervous system neoplasia. J. Neurosurg.76, 1–12 (1992).
  • Debinski W. Local treatment of brain tumors with targeted chimera cytotoxic proteins. Cancer Investig.20, 801–809 (2002).
  • Cohen KA, Liu T, Bissonette R, Puri RK, Frankel AE. DAB389EGF fusion protein therapy of refractory glioblastoma multiforme. Curr. Pharm. Biotechnol.4, 39–49 (2003).
  • Pastan I, Chaudhary VK, Fitzgerald D. Recombinant toxins as novel therapeutic agents. Ann. Rev. Biochem.61, 331–354 (1992).
  • Laske DW, Youle RJ, Oldfield EH. Tumor regression with regional distribution of the targeted toxin TF-CRM107 in patients with malignant brain tumors. Nature Med.3, 1362–1368 (1997).
  • Weaver M, Laske DW. Transferrin receptor ligand-targeted toxin conjugate (Tf-CRM107) for therapy of malignant gliomas. J. Neuro-oncol.65, 3–13 (2003).
  • Sampson JH, Akabani G, Archer GE et al. Progress report of a Phase I study of the intracerebral microinfusion of a recombinant chimeric protein composed of transforming growth factor (TGF)-α and a mutated form of the Pseudomonas exotoxin termed PE-38 (TP-38) for the treatment of malignant brain tumors. J. Neuro-Oncol.65, 27–35 (2003).
  • Weber F, Asher A, Bucholz R et al. Safety, tolerability, and tumor response of IL4-Pseudomonas exotoxin (NBI-3001) in patients with recurrent malignant glioma. J. Neuro-oncol.64, 125–137 (2003).
  • Weingart J, Tatter S, Rosenfeld S et al. Intratumoral convection-enhanced delivery of IL13-PE38QQR cytotoxin for recurrent malignant glioma without planned resection: a Phase I/II study. Neuro-oncol.5, 357 (2003).
  • Prados M, Kunwar S, Lang FF et al. Final results of Phase I/II studies of IL13-PE38QQR administered intratumorally (IT) and/or peritumorally (PT) via convection-enhanced delivery (CED) in patients undergoing tumor resection for recurrent malignant glioma. Proc. Am. Soc. Clin. Oncol.23, S115 (2005).
  • Gaillard PJ, Visser CC, de Boer AG. Targeted delivery across the blood-brain barrier. Expert Opin. Drug Deliv.2, 299–309 (2005).
  • Shin SU, Wu D, Ramanathan R, Pardridge WM, Morrison SL. Functional and pharmacokinetic properties of antibody/avidin fusion proteins. J. Immunol.158, 4797–4804 (1997).
  • Friden PM, Walus LR, Musso GF, Taylor MA, Malfroy B, Starzyk RM. Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood–brain barrier. Proc. Natl Acad. Sci. USA88, 4771–4775 (1991).
  • Pardridge WM, Buciak JL, Friden PM. Selective transport of an anti-transferrin receptor antibody through the blood–brain barrier in vivo. J. Pharmacol. Exp. Ther.259, 66–70 (1991).
  • Coloma MJ, Lee HJ, Kurihara A et al. Transport across the primate blood–brain barrier of a genetically engineered chimeric monoclonal antibody to the human insulin receptor. Pharm. Res.17, 266–274 (2000).
  • Pardridge WM. Blood–brain barrier drug targeting: the future of brain drug development. Mol. Interven.3, 90–105 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.