97
Views
37
CrossRef citations to date
0
Altmetric
Review

Therapeutic options in Alzheimer’s disease

, , , &
Pages 897-910 | Published online: 10 Jan 2014

References

  • Mattson MP. Pathways towards and away from Alzheimer's disease. Nature430, 631–639 (2004).
  • Perry G, Rizzuto N, Autilio-Gambetti L, Gambetti P. Paired helical filaments from Alzheimer disease patients contain cytoskeletal components. Proc. Natl Acad. Sci. USA82, 3916–3920 (1985).
  • Bartus RT, Dean RL 3rd, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science217, 408–414 (1982).
  • Lleo A, Greenberg SM, Growdon JH. Current pharmacotherapy for Alzheimer's disease. Annu. Rev. Med.57, 513 (2005).
  • Birks JS, Melzer D. Donepezil for mild and moderate Alzheimer's disease. Cochrane Database Syst. Rev.CD001190 (2000).
  • Birks J, Iakovidou V, Tsolaki M. Rivastigmine for Alzheimer's disease. Cochrane Database Syst. Rev.CD001191 (2000).
  • Olin J, Schneider L. Galantamine for Alzheimer's disease. Cochrane Database Syst. Rev.CD001747 (2002).
  • Takeda A, Loveman E, Clegg A et al. A systematic review of the clinical effectiveness of donepezil, rivastigmine and galantamine on cognition, quality of life and adverse events in Alzheimer's disease. Int. J. Geriatr. Psych.21, 17–28 (2006).
  • Reisberg B, Doody R, Stoffler A et al. Memantine in moderate-to-severe Alzheimer's disease. N. Engl. J. Med.348, 1333–1341 (2003).
  • Farlow MR, Tariot P, Grossberg GT et al. Memantine/donepezil dual therapy is superior to placebo/donepezil therapy for treatment of moderate-to-severe Alzheimer's disease. Neurology60, A412 (2003).
  • Areosa SA, Sherriff F, McShane R. Memantine for dementia. Cochrane Database Syst. Rev.CD003154 (2005).
  • Josien H. Recent advances in the development of γ-secretase inhibitors. Curr. Opin. Drug Discov. Devel.5, 513–525 (2002).
  • Dovey HF, John V, Anderson JP et al. Functional γ-secretase inhibitors reduce β-amyloid peptide levels in brain. J. Neurochem.76, 173–181 (2001).
  • Das I, Craig C, Funahashi Y et al. Notch oncoproteins depend on γ-secretase/presenilin activity for processing and function. J. Biol. Chem.279, 30771–30780 (2004).
  • Louvi A, Sisodia SS, Grove EA. Presenilin 1 in migration and morphogenesis in the central nervous system. Development131, 3093–3105 (2004).
  • Tournoy J, Bossuyt X, Snellinx A et al. Partial loss of presenilins causes seborrheic keratosis and autoimmune disease in mice. Hum. Mol. Genet.13, 1321–1331 (2004).
  • Wong GT, Manfra D, Poulet FM et al. Chronic treatment with the γ-secretase inhibitor LY-411,575 inhibits β-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J. Biol. Chem.279, 12876–12882 (2004).
  • De Strooper B, Annaert W, Cupers P et al. A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature398, 518–522 (1999).
  • Shen J, Bronson RT, Chen DF et al. Skeletal and CNS defects in Presenilin-1-deficient mice. Cell89, 629–639 (1997).
  • Song W, Nadeau P, Yuan M et al. Proteolytic release and nuclear translocation of Notch-1 are induced by presenilin-1 and impaired by pathogenic presenilin-1 mutations. Proc. Natl Acad. Sci. USA96, 6959–6963 (1999).
  • Handler M, Yang X, Shen J. Presenilin-1 regulates neuronal differentiation during neurogenesis. Development127, 2593–2606 (2000).
  • Steiner H, Duff K, Capell A et al. A loss of function mutation of presenilin-2 interferes with amyloid β-peptide production and notch signaling. J. Biol. Chem.274, 28669–28673 (1999).
  • Herreman A, Hartmann D, Annaert W et al. Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency. Proc. Natl Acad. Sci. USA96, 11872–11877 (1999).
  • Donoviel DB, Hadjantonakis AK, Ikeda M et al. Mice lacking both presenilin genes exhibit early embryonic patterning defects. Genes Dev.13, 2801–2810 (1999).
  • Feng R, Wang H, Wang J et al. Forebrain degeneration and ventricle enlargement caused by double knockout of Alzheimer's presenilin-1 and presenilin-2. Proc. Natl Acad. Sci. USA101, 8162–8167 (2004).
  • Kim HS, Park CH, Cha SH et al. Carboxyl-terminal fragment of Alzheimer's APP destabilizes calcium homeostasis and renders neuronal cells vulnerable to excitotoxicity. FASEB J.14, 1508–1517 (2000).
  • Siemers ER, Quinn JF, Kaye J et al. Effects of a γ-secretase inhibitor in a randomized study of patients with Alzheimer disease. Neurology66, 602–604 (2006).
  • Vassar R, Bennett BD, Babu-Khan S et al. Χ-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science286, 735–741 (1999).
  • Sinha S, Anderson JP, Barbour R et al. Purification and cloning of amyloid precursor protein β-secretase from human brain. Nature402, 537–540 (1999).
  • Yan R, Bienkowski MJ, Shuck ME et al. Membrane-anchored aspartyl protease with Alzheimer's disease β-secretase activity. Nature402, 533–537 (1999).
  • Lin X, Koelsch G, Wu S et al. Human aspartic protease memapsin 2 cleaves the β-secretase site of β-amyloid precursor protein. Proc. Natl Acad. Sci. USA97, 1456–1460 (2000).
  • Vassar R, Citron M. Aβ-generating enzymes: recent advances in β- and γ-secretase research. Neuron27, 419–422 (2000).
  • Ghosh AK, Bilcer G, Harwood C et al. Structure-based design: potent inhibitors of human brain memapsin 2 (β-secretase). J. Med. Chem.44, 2865–2868 (2001).
  • Hong L, Koelsch G, Lin X et al. Structure of the protease domain of memapsin 2 (β-secretase) complexed with inhibitor. Science290, 150–153 (2000).
  • Francotte P, Graindorge E, Boverie S, de Tullio P, Pirotte B. New trends in the design of drugs against Alzheimer's disease. Curr. Med. Chem.11, 1757–1778 (2004).
  • Steinhilb ML, Turner RS, Gaut JR. The protease inhibitor, MG132, blocks maturation of the amyloid precursor protein Swedish mutant preventing cleavage by β-Secretase. J. Biol. Chem.276, 4476–4484 (2001).
  • Roberds SL, Anderson J, Basi G et al. BACE knockout mice are healthy despite lacking the primary β-secretase activity in brain: implications for Alzheimer's disease therapeutics. Hum. Mol. Genet.10, 1317–1324 (2001).
  • Dominguez D, Tournoy J, Hartmann D et al. Phenotypic and biochemical analyses of BACE1- and BACE2-deficient mice. J. Biol. Chem.280, 30797–30806 (2005).
  • Laird FM, Cai H, Savonenko AV et al. BACE1, a major determinant of selective vulnerability of the brain to amyloid-β amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. J. Neurosci.25, 11693–11709 (2005).
  • Jarvik GP, Wijsman EM, Kukull WA et al. Interactions of apolipoprotein E genotype, total cholesterol level, age, and sex in prediction of Alzheimer's disease: a case-control study. Neurology45, 1092–1096 (1995).
  • Bales KR, Verina T, Dodel RC et al. Lack of apolipoprotein E dramatically reduces amyloid β-peptide deposition. Nat. Genet.17, 263–264 (1997).
  • Fassbender K, Simons M, Bergmann C et al. Simvastatin strongly reduces levels of Alzheimer's disease β -amyloid peptides Aβ42 and Aβ 40in vivo and in vivo. Proc. Natl Acad. Sci. USA98, 5856–5861 (2001).
  • Refolo LM, Pappolla MA, LaFrancois J et al. A cholesterol-lowering drug reduces β-amyloid pathology in a transgenic mouse model of Alzheimer's disease. Neurobiol. Dis.8, 890–899 (2001).
  • Golde TE, Eckman CB. Cholesterol modulation as an emerging strategy for the treatment of Alzheimer's disease. Drug Discov. Today6, 1049–1055 (2001).
  • Wolozin B, Kellman W, Ruosseau P, Celesia GG, Siegel G. Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch. Neurol.57, 1439–1443 (2000).
  • Shepherd J, Blauw GJ, Murphy MB et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet360, 1623–1630 (2002).
  • Schenk D, Barbour R, Dunn W et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature400, 173–177 (1999).
  • Games D, Bard F, Grajeda H et al. Prevention and reduction of AD-type pathology in PDAPP mice immunized with Aβ1–42. Ann NY Acad Sci920, 274–284 (2000).
  • Bacskai BJ, Kajdasz ST, Christie RH et al. Imaging of amyloid-β deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy. Nat. Med.7, 369–372 (2001).
  • Janus C. Vaccines for Alzheimer's disease: how close are we? CNS Drugs17, 457–474 (2003).
  • Buttini M, Masliah E, Barbour R et al. Χ-amyloid immunotherapy prevents synaptic degeneration in a mouse model of Alzheimer's disease. J. Neurosci.25, 9096–9101 (2005).
  • Oddo S, Billings L, Kesslak JP, Cribbs DH, LaFerla FM. Aβ immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron43, 321–332 (2004).
  • Bard F, Cannon C, Barbour R et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat. Med.6, 916–919 (2000).
  • Bard F, Barbour R, Cannon C et al. Epitope and isotype specificities of antibodies to β-amyloid peptide for protection against Alzheimer's disease-like neuropathology. Proc. Natl Acad. Sci. USA100, 2023–2028 (2003).
  • Das P, Howard V, Loosbrock N et al. Amyloid-β immunization effectively reduces amyloid deposition in FcRγ-/- knock-out mice. J. Neurosci.23, 8532–8538 (2003).
  • Bacskai BJ, Kajdasz ST, McLellan ME et al. Non-Fc-mediated mechanisms are involved in clearance of amyloid-β in vivo by immunotherapy. J. Neurosci.22, 7873–7878 (2002).
  • McLaurin J, Cecal R, Kierstead ME et al. Therapeutically effective antibodies against amyloid-β peptide target amyloid-β residues 4–10 and inhibit cytotoxicity and fibrillogenesis. Nat. Med.8, 1263–1269 (2002).
  • Dodart JC, Bales KR, Gannon KS et al. Immunization reverses memory deficits without reducing brain Aβ burden in Alzheimer's disease model. Nat. Neurosci.5, 452–457 (2002).
  • DeMattos RB, Bales KR, Cummins DJ et al. Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer's disease. Proc. Natl Acad. Sci. USA98, 8850–8855 (2001).
  • Dodel RC, Du Y, Depboylu C et al. Intravenous immunoglobulins containing antibodies against β-amyloid for the treatment of Alzheimer's disease. J. Neurol. Neurosurg. Psych.75, 1472–1474 (2004).
  • Dodel R, Hampel H, Depboylu C et al. Human antibodies against amyloid β peptide: a potential treatment for Alzheimer's disease. Ann. Neurol.52, 253–256 (2002).
  • Hock C, Konietzko U, Streffer JR et al. Antibodies against β-amyloid slow cognitive decline in Alzheimer's disease. Neuron38, 547–554 (2003).
  • Monsonego A, Weiner HL. Immunotherapeutic approaches to Alzheimer's disease. Science302, 834–838 (2003).
  • Ferrer I, Boada Rovira M, Sanchez Guerra ML, Rey MJ, Costa-Jussa F. Neuropathology and pathogenesis of encephalitis following amyloid-β immunization in Alzheimer's disease. Brain Pathol.14, 11–20 (2004).
  • Dodel RC, Hampel H, Du Y. Immunotherapy for Alzheimer's disease. Lancet Neurol.2, 215–220 (2003).
  • Fox NC, Black RS, Gilman S et al. Effects of Aβ immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology64, 1563–1572 (2005).
  • Pfeifer M, Boncristiano S, Bondolfi L et al. Cerebral hemorrhage after passive anti-Aβ immunotherapy. Science298, 1379 (2002).
  • Lee EB, Leng LZ, Lee VM, Trojanowski JQ. Meningoencephalitis associated with passive immunization of a transgenic murine model of Alzheimer's amyloidosis. FEBS Lett.579, 2564–2568 (2005).
  • Gong Y, Chang L, Viola KL et al. Alzheimer's disease-affected brain: presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc. Natl Acad. Sci. USA100, 10417–10422 (2003).
  • Chan SL, Griffin WS, Mattson MP. Evidence for caspase-mediated cleavage of AMPA receptor subunits in neuronal apoptosis and Alzheimer's disease. J. Neurosci. Res.57, 315–323 (1999).
  • Kontush A, Berndt C, Weber W et al. Amyloid-β is an antioxidant for lipoproteins in cerebrospinal fluid and plasma. Free Radic. Biol. Med.30, 119–128 (2001).
  • Zou K, Gong JS, Yanagisawa K, Michikawa M. A novel function of monomeric amyloid β-protein serving as an antioxidant molecule against metal-induced oxidative damage. J. Neurosci.22, 4833–4841 (2002).
  • Gibson GE, Park LC, Sheu KF, Blass JP, Calingasan NY. The α-ketoglutarate dehydrogenase complex in neurodegeneration. Neurochem. Int.36, 97–112 (2000).
  • Bursztajn S, DeSouza R, McPhie DL et al. Overexpression in neurons of human presenilin-1 or a presenilin-1 familial Alzheimer disease mutant does not enhance apoptosis. J. Neurosci.18, 9790–9799 (1998).
  • Leutner S, Czech C, Schindowski K et al. Reduced antioxidant enzyme activity in brains of mice transgenic for human presenilin-1 with single or multiple mutations. Neurosci. Lett.292, 87–90 (2000).
  • Andorn AC, Kalaria RN. Factors Affecting pro- and anti-oxidant properties of fragments of the b-protein precursor (bpp): implication for Alzheimer's disease. J. Alzheimers Dis.2, 69–78 (2000).
  • Moreira PI, Smith MA, Zhu X et al. Therapeutic potential of oxidant mechanisms in Alzheimer disease. Expert Rev. Neurotherapeutics4, 995–1004 (2004).
  • Smith MA, Atwood CS, Joseph JA, Perry G. Predicting the failure of amyloid-β vaccine. Lancet359, 1864–1865 (2002).
  • Perry G, Nunomura A, Raina AK, Smith MA. Amyloid-β junkies. Lancet355, 757 (2000).
  • Neuroinflammation Working Group. Inflammation and Alzheimer's disease. Neurobiol. Aging21, 383–421 (2000).
  • Pratico D, Trojanowski JQ. Inflammatory hypotheses: novel mechanisms of Alzheimer's neurodegeneration and new therapeutic targets? Neurobiol. Aging21, 441–445 (2000).
  • Weggen S, Eriksen JL, Das P et al. A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature414, 212–216 (2001).
  • Gasparini L, Rusconi L, Xu H, del Soldato P, Ongini E. Modulation of β-amyloid metabolism by non-steroidal anti-inflammatory drugs in neuronal cell cultures. J. Neurochem.88, 337–348 (2004).
  • Kukar T, Murphy MP, Eriksen JL et al. Diverse compounds mimic Alzheimer disease-causing mutations by augmenting Aβ42 production. Nat. Med.11, 545–550 (2005).
  • Eriksen JL, Sagi SA, Smith TE et al. NSAIDs and enantiomers of flurbiprofen target γ-secretase and lower Aβ 42in vivo. J. Clin. Invest.112, 440–449 (2003).
  • Szekely CA, Thorne JE, Zandi PP et al. Nonsteroidal anti-inflammatory drugs for the prevention of Alzheimer's disease: a systematic review. Neuroepidemiology23, 159–169 (2004).
  • Aisen PS, Schmeidler J, Pasinetti GM. Randomized pilot study of nimesulide treatment in Alzheimer's disease. Neurology58, 1050–1054 (2002).
  • Aisen PS, Schafer KA, Grundman M et al. Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA289, 2819–2826 (2003).
  • Reines SA, Block GA, Morris JC et al. Rofecoxib: no effect on Alzheimer's disease in a 1-year, randomized, blinded, controlled study. Neurology62, 66–71 (2004).
  • Townsend KP, Pratico D. Novel therapeutic opportunities for Alzheimer's disease: focus on nonsteroidal anti-inflammatory drugs. FASEB J.19, 1592–1601 (2005).
  • Cholerton B, Gleason CE, Baker LD, Asthana S. Estrogen and Alzheimer's disease: the story so far. Drugs Aging19, 405–427 (2002).
  • Asthana S, Baker LD, Craft S et al. High-dose estradiol improves cognition for women with AD: results of a randomized study. Neurology57, 605–612 (2001).
  • Baker LD, Sambamurti K, Craft S et al. 17β-estradiol reduces plasma Aβ40 for HRT-naive postmenopausal women with Alzheimer disease: a preliminary study. Am. J. Geriatr. Psych.11, 239–244 (2003).
  • Geerlings MI, Launer LJ, de Jong FH et al. Endogenous estradiol and risk of dementia in women and men: the Rotterdam Study. Ann. Neurol.53, 607–615 (2003).
  • Thal LJ, Thomas RG, Mulnard R et al. Estrogen levels do not correlate with improvement in cognition. Arch. Neurol.60, 209–212 (2003).
  • Pinkerton JV, Henderson VW. Estrogen and cognition, with a focus on Alzheimer's disease. Semin. Reprod. Med.23, 172–179 (2005).
  • Rapp SR, Espeland MA, Shumaker SA et al. Effect of estrogen plus progestin on global cognitive function in postmenopausal women: the Women's Health Initiative Memory Study: a randomized controlled trial. JAMA289, 2663–2672 (2003).
  • Webber KM, Casadesus G, Marlatt MW et al. Estrogen bows to a new master: the role of gonadotropins in Alzheimer pathogenesis. Ann. NY Acad. Sci.1052, 201–209 (2005).
  • Perry G, Castellani RJ, Smith MA et al. Oxidative damage in the olfactory system in Alzheimer's disease. Acta. Neuropathol.106, 552–556 (2003).
  • Ghanbari HA, Ghanbari K, Harris PL et al. Oxidative damage in cultured human olfactory neurons from Alzheimer's disease patients. Aging Cell3, 41–44 (2004).
  • Migliore L, Fontana I, Trippi F et al. Oxidative DNA damage in peripheral leukocytes of mild cognitive impairment and AD patients. Neurobiol. Aging26, 567–573 (2005).
  • Nunomura A, Perry G, Aliev G et al. Oxidative damage is the earliest event in Alzheimer disease. J. Neuropathol. Exp. Neurol.60, 759–767 (2001).
  • Honda K, Smith MA, Zhu X et al. Ribosomal RNA in Alzheimer disease is oxidized by bound redox-active iron. J. Biol. Chem.280, 20978–20986 (2005).
  • Gutzmann H, Hadler D. Sustained efficacy and safety of idebenone in the treatment of Alzheimer's disease: update on a 2-year double-blind multicentre study. J. Neural. Transm.54, 301–310 (1998).
  • Weyer G, Babej-Dolle RM, Hadler D, Hofmann S, Herrmann WM. A controlled study of 2 doses of idebenone in the treatment of Alzheimer's disease. Neuropsychobiology36, 73–82 (1997).
  • Gutzmann H, Kuhl KP, Hadler D, Rapp MA. Safety and efficacy of idebenone versus tacrine in patients with Alzheimer's disease: results of a randomized, double-blind, parallel-group multicenter study. Pharmacopsychiatry35, 12–18 (2002).
  • Thal LJ, Grundman M, Berg J et al. Idebenone treatment fails to slow cognitive decline in Alzheimer's disease. Neurology61, 1498–1502 (2003).
  • Suh JH, Wang H, Liu RM, Liu J, Hagen TM. (R)-α-lipoic acid reverses the age-related loss in GSH redox status in post-mitotic tissues: evidence for increased cysteine requirement for GSH synthesis. Arch. Biochem. Biophys.423, 126–135 (2004).
  • Hager K, Marahrens A, Kenklies M, Riederer P, Munch G. Α-lipoic acid as a new treatment option for Azheimer type dementia. Arch. Gerontol. Geriatr.32, 275–282 (2001).
  • Frolich L, Gotz ME, Weinmuller M et al. (r)-, but not (s)-α lipoic acid stimulates deficient brain pyruvate dehydrogenase complex in vascular dementia, but not in Alzheimer dementia. J. Neural. Transm.111, 295–310 (2004).
  • Bianchetti A, Rozzini R, Trabucchi M. Effects of acetyl-L-carnitine in Alzheimer's disease patients unresponsive to acetylcholinesterase inhibitors. Curr. Med. Res. Opin.19, 350–353 (2003).
  • Montgomery SA, Thal LJ, Amrein R. Meta-analysis of double blind randomized controlled clinical trials of acetyl-L-carnitine versus placebo in the treatment of mild cognitive impairment and mild Alzheimer's disease. Int. Clin. Psychopharmacol.18, 61–71 (2003).
  • Hudson S, Tabet N. Acetyl-L-carnitine for dementia. Cochrane Database Syst. Rev.CD003158 (2003).
  • Sano M, Ernesto C, Thomas RG et al. A controlled trial of selegiline, α-tocopherol, or both as treatment for Alzheimer's disease. The Alzheimer's Disease Cooperative Study. N. Engl. J. Med.336, 1216–1222 (1997).
  • Grundman M. Vitamin E and Alzheimer disease: the basis for additional clinical trials. Am. J. Clin. Nutr.71, S630–S636 (2000).
  • Engelhart MJ, Geerlings MI, Ruitenberg A et al. Dietary intake of antioxidants and risk of Alzheimer disease. JAMA287, 3223–3229 (2002).
  • Morris MC, Evans DA, Bienias JL et al. Dietary intake of antioxidant nutrients and the risk of incident Alzheimer disease in a biracial community study. JAMA287, 3230–3237 (2002).
  • Zandi PP, Anthony JC, Khachaturian AS et al. Reduced risk of Alzheimer disease in users of antioxidant vitamin supplements: the Cache County Study. Arch. Neurol.61, 82–88 (2004).
  • Petersen RC, Thomas RG, Grundman M et al. Vitamin E and donepezil for the treatment of mild cognitive impairment. N. Engl. J. Med.352, 2379–2388 (2005).
  • Luchsinger JA, Tang MX, Shea S, Mayeux R. Antioxidant vitamin intake and risk of Alzheimer disease. Arch. Neurol.60, 203–208 (2003).
  • Laurin D, Masaki KH, Foley DJ, White LR, Launer LJ. Midlife dietary intake of antioxidants and risk of late-life incident dementia: the Honolulu-Asia Aging Study. Am. J. Epidemiol.159, 959–967 (2004).
  • Stackman RW, Eckenstein F, Frei B et al. Prevention of age-related spatial memory deficits in a transgenic mouse model of Alzheimer's disease by chronic Ginkgo biloba treatment. Exp. Neurol.184, 510–520 (2003).
  • Yao ZX, Han Z, Drieu K, Papadopoulos V. Ginkgo biloba extract (Egb 761) inhibits β-amyloid production by lowering free cholesterol levels. J. Nutr. Biochem.15, 749–756 (2004).
  • Le Bars PL, Katz MM, Berman N et al. A placebo-controlled, double-blind, randomized trial of an extract of Ginkgo biloba for dementia. North American EGb Study Group. JAMA278, 1327–1332 (1997).
  • Smith MA, Harris PL, Sayre LM, Perry G. Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc. Natl Acad. Sci. USA94, 9866–9868 (1997).
  • Sayre LM, Perry G, Harris PL et al. In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer's disease: a central role for bound transition metals. J. Neurochem.74, 270–279 (2000).
  • Raman B, Ban T, Yamaguchi K et al. Metal ion-dependent effects of clioquinol on the fibril growth of an amyloid {β} peptide. J. Biol. Chem.280, 16157–16162 (2005).
  • Cherny RA, Atwood CS, Xilinas ME et al. Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer's disease transgenic mice. Neuron30, 665–676 (2001).
  • Ritchie CW, Bush AI, Mackinnon A et al. Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Aβ amyloid deposition and toxicity in Alzheimer disease: a pilot Phase II clinical trial. Arch. Neurol.60, 1685–1691 (2003).
  • Ibach B, Haen E, Marienhagen J, Hajak G. Clioquinol treatment in familiar early onset of Alzheimer's disease: a case report. Pharmacopsychiatry38, 178–179 (2005).
  • Casadesus G, Atwood CS, Zhu X et al. Evidence for the role of gonadotropin hormones in the development of Alzheimer disease. Cell Mol. Life Sci.62, 293–298 (2005).
  • Webber KM, Casadesus G, Zhu X et al. The cell cycle and hormonal fluxes in Alzheimer disease: a novel therapeutic target. Curr. Pharm. Des.12, 691–697 (2006).
  • Casadesus G, Webber KM, Atwood CS et al. Luteinizing hormone modulates cognition and amyloid-β deposition in Alzheimer APP transgenic mice. Biochim. Biophys. Acta.1762, 447–452 (2006).
  • Smith MA, Casadesus G, Joseph JA, Perry G. Amyloid-β and tau serve antioxidant functions in the aging and Alzheimer brain. Free Radic. Biol. Med.33, 1194–1199 (2002).
  • Perry G, Taddeo MA, Nunomura A et al. Comparative biology and pathology of oxidative stress in Alzheimer and other neurodegenerative diseases: beyond damage and response. Comp. Biochem. Physiol. C Toxicol Pharmacol.133, 507–513 (2002).
  • Nunomura A, Perry G, Pappolla MA et al. Neuronal oxidative stress precedes amyloid-β deposition in Down syndrome. J. Neuropathol. Exp. Neurol.59, 1011–1017 (2000).
  • Nunomura A, Perry G, Pappolla MA et al. RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer's disease. J. Neurosci.19, 1959–1964 (1999).
  • Smith MA, Richey Harris PL, Sayre LM, Beckman JS, Perry G. Widespread peroxynitrite-mediated damage in Alzheimer's disease. J. Neurosci.17, 2653–2657 (1997).
  • Cras P, Smith MA, Richey PL et al. Extracellular neurofibrillary tangles reflect neuronal loss and provide further evidence of extensive protein cross-linking in Alzheimer disease. Acta. Neuropathol.89, 291–295 (1995).
  • Sayre LM, Zelasko DA, Harris PL et al. 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer's disease. J. Neurochem.68, 2092–2097 (1997).
  • Zhu X, Raina AK, Lee HG et al. Oxidative stress signalling in Alzheimer's disease. Brain Res.1000, 32–39 (2004).
  • Liu Q, Smith MA, Avila J et al. Alzheimer-specific epitopes of tau represent lipid peroxidation-induced conformations. Free Radic. Biol. Med.38, 746–754 (2005).
  • Castellani RJ, Harris PL, Sayre LM et al. Active glycation in neurofibrillary pathology of Alzheimer disease: N(ε)-(carboxymethyl) lysine and hexitol-lysine. Free Radic. Biol. Med.31, 175–180 (2001).
  • Scarmeas N, Stern Y, Tang MX, Mayeux R, Luchsinger JA. Mediterranean diet and risk for Alzheimer's disease. Ann. Neurol. (2006) (Epub ahead of print).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.