84
Views
19
CrossRef citations to date
0
Altmetric
Perspective

Early diagnostics and therapeutics for Alzheimer’s disease – how early can we get there?

, &
Pages 1293-1306 | Published online: 10 Jan 2014

References

  • Hoyert DL, Kung HC, Smith BL. Deaths: preliminary data for 2003. Natl Vital Stat. Rep.53(15), 1–48 (2005).
  • Mori H, Kondo J, Ihara Y. Ubiquitin is a component of paired helical filaments in Alzheimer’s disease. Science235, 1641–1644 (1987).
  • Alzheimer A. Über einen eigenartigen schweren Erkrankungsprozeß der Hirnrinde. Neurologisches Centralblatt23, 1129–1136 (1906).
  • Lemere CA, Blusztajn JK, Yamaguchi H, Wisniewski T, Saido TC, Selkoe DJ. Sequence of deposition of heterogeneous amyloid β-peptides and APO E in Down’s syndrome: implications for initial events in amyloid plaque formation. Neurobiol. Dis.3(1), 16–32 (1996).
  • Lee VM, Goedert M, Trojanowski JQ. Neurodegenerative tauopathies. Annu. Rev. Neurosci.24, 1121–1159 (2001).
  • Morishima-Kawashima M, Hara Y. Alzheimer’s disease: β-amyloid protein and tau. J. Neurosci. Res.70(3), 392–401 (2002).
  • Kowalska A. Genetic basis of neurodegeneration in familial Alzheimer’s disease. Pol. J. Pharmacol.56(2), 171–178 (2004).
  • Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science256(5054), 184–185 (1992).
  • Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science297(5580), 353–356 (2002).
  • Klein WL, Stine WB Jr, Teplow DB. Small assemblies of unmodified amyloid β-protein are the proximate neurotoxin in Alzheimer’s disease. Neurobiol. Aging25(5), 569–580 (2004).
  • Walsh DM, Klyubin I, Fadeeva JV, Rowan MJ, Selkoe DJ. Amyloid-β oligomers: their production, toxicity and therapeutic inhibition. Biochem. Soc. Trans.30(4), 552–557 (2002).
  • Knopman DS, DeKosky ST, Cummings JL et al. Practice parameter: diagnosis of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology56(9), 1143–1153 (2001).
  • Cummings JL. Alzheimer’s disease. N. Engl. J. Med.351(1), 56–67 (2004).
  • Nestor PJ, Scheltens P, Hodges JR. Advances in the early detection of Alzheimer’s disease. Nat. Med.10(Suppl.), S34–S41 (2004).
  • Kawas CH, Corrada MM, Brookmeyer R et al. Visual memory predicts Alzheimer’s disease more than a decade before diagnosis. Neurology60(7), 1089–1093 (2003).
  • Price JL, Ko AI, Wade MJ, Tsou SK, McKeel DW, Morris JC. Neuron number in the entorhinal cortex and CA1 in preclinical Alzheimer disease. Arch. Neurol.58(9), 1395–1402 (2001).
  • Feldman HH, Jacova C. Mild cognitive impairment. Am. J. Geriatr. Psychiatry13(8), 645–655 (2005).
  • Bitan G, Kirkitadze MD, Lomakin A, Vollers SS, Benedek GB, Teplow DB. Amyloid β-protein (Aβ) assembly: Aβ40 and Aβ42 oligomerize through distinct pathways. Proc. Natl Acad. Sci. USA100(1), 330–335 (2003).
  • Riek R, Guntert P, Döbeli H, Wipf B, Wüthrich K. NMR studies in aqueous solution fail to identify significant conformational differences between the monomeric forms of two Alzheimer peptides with widely different plaque-competence, Aβ(1–40)ox and Aβ(1–42)ox. Eur. J. Biochem.268(22), 5930–5936 (2001).
  • Hou L, Shao H, Zhang Y et al. Solution NMR studies of the Aβ(1–40) and Aβ(1–42) peptides establish that the Met35 oxidation state affects the mechanism of amyloid formation. J. Am. Chem. Soc.126(7), 1992–2005 (2004).
  • Lazo ND, Grant MA, Condron MM, Rigby AC, Teplow DB. On the nucleation of amyloid β–protein monomer folding. Protein Sci.14, 1581–1596 (2005).
  • Sun XD, Mo ZL, Taylor BM, Epps DE. A slowly formed transient conformer of Aβ(1–40) is toxic to inward channels of dissociated hippocampal and cortical neurons of rats. Neurobiol. Dis.14(3), 567–578 (2003).
  • Walsh DM, Klyubin I, Fadeeva JV et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature416(6880), 535–539 (2002).
  • Bitan G, Lomakin A, Teplow DB. Amyloid β-protein oligomerization: prenucleation interactions revealed by photo-induced cross-linking of unmodified proteins. J. Biol. Chem.276(37), 35176–35184 (2001).
  • Lambert MP, Barlow AK, Chromy BA et al. Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc. Natl Acad. Sci. USA95(11), 6448–6453 (1998).
  • Gong Y, Chang L, Viola KL et al. Alzheimer’s disease-affected brain: presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc. Natl Acad. Sci. USA100(18), 10417–10422 (2003).
  • Barghorn S, Nimmrich V, Striebinger A et al. Globular amyloid β-peptide oligomer – a homogenous and stable neuropathological protein in Alzheimer’s disease. J. Neurochem.95(3), 834–847 (2005).
  • Lazo ND, Maji SK, Fradinger EA, Bitan G, Teplow DB. The amyloid β-protein. In: Amyloid Proteins - The β-Sheet Conformation and Disease. Sipe, JD (Ed.). Wiley-VCH, Weinheim, Germany, 385–448 (2005).
  • Walsh DM, Hartley DM, Kusumoto Y et al. Amyloid β-protein fibrillogenesis – structure and biological activity of protofibrillar intermediates. J. Biol. Chem.274(36), 25945–25952 (1999).
  • Serpell LC. Alzheimer’s amyloid fibrils: structure and assembly. Biochim. Biophys. Acta1502(1), 16–30 (2000).
  • Petkova AT, Leapman RD, Guo Z, Yau WM, Mattson MP, Tycko R. Self-propagating, molecular-level polymorphism in Alzheimer’s β-amyloid fibrils. Science307(5707), 262–265 (2005).
  • Anderson M, Bocharova OV, Makarava N, Breydo L, Salnikov VV, Baskakov IV. Polymorphism and ultrastructural organization of prion protein amyloid fibrils: an insight from high resolution atomic force microscopy. J. Mol. Biol.358(2), 580–596 (2006).
  • Gotz J, Chen F, van Dorpe J, Nitsch RM. Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Aβ42 fibrils. Science293(5534), 1491–1495 (2001).
  • Lewis J, Dickson DW, Lin WL et al. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science293(5534), 1487–1491 (2001).
  • Oddo S, Caccamo A, Tran L et al. Temporal profile of amyloid-β (Aβ) oligomerization in an in vivo model of Alzheimer disease. A link between Aβ and tau pathology. J. Biol. Chem.281(3), 1599–1604 (2006).
  • Maeda S, Sahara N, Saito Y, Murayama S, Ikai A, Takashima A. Increased levels of granular tau oligomers: an early sign of brain aging and Alzheimer’s disease. Neurosci. Res.54(3), 197–201 (2006).
  • McGeer PL, McGeer EG. Inflammation, autotoxicity and Alzheimer disease. Neurobiol. Aging22(6), 799–809 (2001).
  • Tuppo EE, Forman LJ. Free radical oxidative damage and Alzheimer’s disease. J. Am. Osteopath. Assoc.101(Suppl. 12 Pt 1), S11–S15 (2001).
  • Takuma K, Yan SS, Stern DM, Yamada K. Mitochondrial dysfunction, endoplasmic reticulum stress, and apoptosis in Alzheimer’s disease. J. Pharmacol. Sci.97(3), 312–316 (2005).
  • Barger SW. An unconventional hypothesis of oxidation in alzheimer’s disease: intersections with excitotoxicity. Front. Biosci.9, 3286–3295 (2004).
  • Glabe CC. Amyloid accumulation and pathogensis of Alzheimer’s disease: significance of monomeric, oligomeric and fibrillar Aβ. Subcell. Biochem.38, 167–177 (2005).
  • Perry G, Nunomura A, Hirai K et al. Is oxidative damage the fundamental pathogenic mechanism of Alzheimer’s and other neurodegenerative diseases? Free Radic. Biol. Med.33(11), 1475–1479 (2002).
  • Kayed R, Head E, Thompson JL et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science300(5618), 486–489 (2003).
  • Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev.81(2), 741–766 (2001).
  • Ye CP, Selkoe DJ, Hartley DM. Protofibrils of amyloid β-protein inhibit specific K+ currents in neocortical cultures. Neurobiol. Dis.13(3), 177–190 (2003).
  • Ye C, Walsh DM, Selkoe DJ, Hartley DM. Amyloid β-protein induced electrophysiological changes are dependent on aggregation state: N-methyl-D-aspartate (NMDA) versus non-NMDA receptor/channel activation. Neurosci. Lett.366(3), 320–325 (2004).
  • Nilsberth C, Westlind-Danielsson A, Eckman CB et al. The ‘Arctic’ APP mutation (E693G) causes Alzheimer’s disease by enhanced Aβ protofibril formation. Nat. Neurosci.4(9), 887–893 (2001).
  • Haass C, Steiner H. Protofibrils, the unifying toxic molecule of neurodegenerative disorders? Nat. Neurosci.4(9), 859–860 (2001).
  • Rowan MJ, Klyubin I, Cullen WK, Anwyl R. Synaptic plasticity in animal models of early Alzheimer’s disease. Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci.358(1432), 821–828 (2003).
  • Morgan D. Learning and memory deficits in APP transgenic mouse models of amyloid deposition. Neurochem. Res.28(7), 1029–1034 (2003).
  • Hsia AY, Masliah E, McConlogue L et al. Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc. Natl Acad. Sci. USA96(6), 3228–3233 (1999).
  • Mucke L, Masliah E, Yu GQ et al. High-level neuronal expression of Aβ(1–42) in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J. Neurosci.20(11), 4050–4058 (2000).
  • Jacobsen JS, Wu C-C, Redwine JM et al. Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer’s disease. Proc. Natl Acad. Sci. USA103(13), 5161–5166 (2006).
  • Lesné S, Koh MT, Kotilinek L et al. A specific amyloid-β protein assembly in the brain impairs memory. Nature440(7082), 352–357 (2006).
  • Wang HY, Lee DHS, D’Andrea MR, Peterson PA, Shank RP, Reitz AB. β-amyloid(1–42) binds to α7 nicotinic acetylcholine receptor with high affinity – implications for Alzheimer’s disease pathology. J. Biol. Chem.275(8), 5626–5632 (2000).
  • Caughey B, Lansbury PT. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci.26, 267–298 (2003).
  • Kagan BL, Hirakura Y, Azimov R, Azimova R, Lin MC. The channel hypothesis of Alzheimer’s disease: current status. Peptides23(7), 1311–1315 (2002).
  • Kayed R, Sokolov Y, Edmonds B et al. Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. J. Biol. Chem.279(45), 46363–46366 (2004).
  • Crowther DC, Kinghorn KJ, Miranda E et al. Intraneuronal Aβ, non-amyloid aggregates and neurodegeneration in a Drosophila model of Alzheimer’s disease. Neuroscience132(1), 123–135 (2005).
  • Price JL, Morris JC. Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann. Neurol.45(3), 358–368 (1999).
  • Duyckaerts C, Dickson DW. Neuropathology of Alzheimer’s disease. In: Neurodegeneration: The Molecular Pathology of Dementia and Movement Disorders. Dickson DW (Ed.). ISN Neuropath Press, Basel, Switzerland, 47–65 (2003).
  • Mesulam MM. Aging, Alzheimer’s disease and dementia. In: Principles of Behavioral and Cognitive Neurology. Mesulam MM (Ed.). Oxford University Press, Oxford, UK, 439–510 (2000).
  • Bennett DA, Schneider JA, Bienias JL, Evans DA, Wilson RS. Mild cognitive impairment is related to Alzheimer disease pathology and cerebral infarctions. Neurology64(5), 834–841 (2005).
  • Jicha GA, Parisi JE, Dickson DW et al. Neuropathologic outcome of mild cognitive impairment following progression to clinical dementia. Arch. Neurol.63(5), 674–681 (2006).
  • Knopman DS, Parisi JE, Salviati A et al. Neuropathology of cognitively normal elderly. J. Neuropathol. Exp. Neurol.62(11), 1087–1095 (2003).
  • Arendt T. Neurodegeneration and plasticity. Int. J. Dev. Neurosci.22(7), 507–514 (2004).
  • Giannakopoulos P, Hof PR, Bouras C. Selective vulnerability of neocortical association areas in Alzheimer’s disease. Microsc. Res. Tech.43(1), 16–23 (1998).
  • Bartzokis G. Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer’s disease. Neurobiol. Aging25(1), 5–18 (2004).
  • Braak H, Del Tredici K. Poor and protracted myelination as a contributory factor to neurodegenerative disorders. Neurobiol. Aging25(1), 19–23 (2004).
  • Larrieu S, Letenneur L, Orgogozo JM et al. Incidence and outcome of mild cognitive impairment in a population-based prospective cohort. Neurology59(10), 1594–1599 (2002).
  • Tervo S, Kivipelto M, Hanninen T et al. Incidence and risk factors for mild cognitive impairment: a population-based three-year follow-up study of cognitively healthy elderly subjects. Dement. Geriatr. Cogn.17(3), 196–203 (2004).
  • Petersen RC, Doody R, Kurz A et al. Current concepts in mild cognitive impairment. Arch. Neurol.58(12), 1985–1992 (2001).
  • Petersen RC. Aging, mild cognitive impairment, and Alzheimer’s disease. Neurol. Clin.18(4), 789–806 (2000).
  • Pasquier F. Early diagnosis of dementia: neuropsychology. J. Neurol.246(1), 6–15 (1999).
  • Cummings JL. Alzheimer’s disease. In: The Neuropsychiatry of Alzheimer’s Disease and Related Dementias. Cummings JL (Ed.). Martin Dunitz Ltd, London, UK, 57–116 (2003).
  • Nasreddine ZS, Phillips NA, Bedirian V et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc.53(4), 695–699 (2005).
  • Kalbe E, Kessler J, Calabrese P et al. DemTect: a new, sensitive cognitive screening test to support the diagnosis of mild cognitive impairment and early dementia. Int. J. Geriatr. Psychiatry19(2), 136–143 (2004).
  • Jack CR Jr, Petersen RC, Xu Y et al. Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology55(4), 484–489 (2000).
  • Du AT, Schuff N, Chao LL et al. White matter lesions are associated with cortical atrophy more than entorhinal and hippocampal atrophy. Neurobiol. Aging26(4), 553–559 (2005).
  • Jack CR Jr, Shiung MM, Gunter JL et al. Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology62(4), 591–600 (2004).
  • Apostolova LG, Dutton RA, Dinov ID et al. Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps. Arch. Neurol. (63), 693–699 (2006).
  • Thompson PM, Hayashi KM, De Zubicaray GI et al. Mapping hippocampal and ventricular change in Alzheimer disease. Neuroimage22(4), 1754–1766 (2004).
  • Apostolova LG, Dinov ID, Dutton RA et al. 3D comparison of hippocampal atrophy in mild cognitive impairment and Alzheimer’s disease. Neurology665(Suppl. 2 5), A60 (2006).
  • Du AT, Schuff N, Kramer JH et al. Higher atrophy rate of entorhinal cortex than hippocampus in AD. Neurology62(3), 422–427 (2004).
  • deToledo-Morrell L, Stoub TR, Bulgakova M et al. MRI-derived entorhinal volume is a good predictor of conversion from MCI to AD. Neurobiol. Aging25(9), 1197–1203 (2004).
  • Karas GB, Scheltens P, Rombouts SA et al. Global and local gray matter loss in mild cognitive impairment and Alzheimer’s disease. Neuroimage23(2), 708–716 (2004).
  • Thompson PM, Hayashi KM, de Zubicaray G et al. Dynamics of gray matter loss in Alzheimer’s disease. J. Neurosci.23(3), 994–1005 (2003).
  • Apostolova LG, Steiner CA, Akopyan GG, Toga AW, Cummings JL, Thompson PM. Gray matter atrophy in mild cognitive impairment and mild Alzheimer’s disease. Neurology66(5), Suppl. 2(5) (2006).
  • Kantarci K, Reynolds G, Petersen RC et al. Proton MR spectroscopy in mild cognitive impairment and Alzheimer disease: comparison of 1.5 and 3 T. AJNR Am. J. Neuroradiol.24(5), 843–849 (2003).
  • Kantarci K, Petersen RC, Boeve BF et al. DWI predicts future progression to Alzheimer disease in amnestic mild cognitive impairment. Neurology64(5), 902–904 (2005).
  • Rombouts SA, Barkhof F, Veltman DJ et al. Functional MR imaging in Alzheimer’s disease during memory encoding. AJNR Am. J. Neuroradiol.21(10), 1869–1875 (2000).
  • Sperling RA, Bates JF, Chua EF et al. fMRI studies of associative encoding in young and elderly controls and mild Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry74(1), 44–50 (2003).
  • Dickerson BC, Salat DH, Bates JF et al. Medial temporal lobe function and structure in mild cognitive impairment. Ann. Neurol.56(1), 27–35 (2004).
  • Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. FDG-PET studies in MCI and AD. Eur. J. Nucl. Med. Mol. Imaging32(4), 486–510 (2005).
  • Silverman DH, Truong CT, Kim SK et al. Prognostic value of regional cerebral metabolism in patients undergoing dementia evaluation: comparison to a quantifying parameter of subsequent cognitive performance and to prognostic assessment without PET. Mol. Genet. Metab.80(3), 350–355 (2003).
  • Nordberg A. PET imaging of amyloid in Alzheimer’s disease. Lancet Neurol.3(9), 519–527 (2004).
  • Andreasen N, Blennow K. CSF biomarkers for mild cognitive impairment and early Alzheimer’s disease. Clin. Neurol. Neurosurg.107(3), 165–173 (2005).
  • Strozyk D, Blennow K, White LR, Launer LJ. CSF Aβ 42 levels correlate with amyloid-neuropathology in a population-based autopsy study. Neurology60(4), 652–656 (2003).
  • Blennow K. CSF biomarkers for mild cognitive impairment. J. Intern. Med.256(3), 224–234 (2004).
  • Hampel H, Teipel SJ, Fuchsberger T et al. Value of CSF β-amyloid1–42 and tau as predictors of Alzheimer’s disease in patients with mild cognitive impairment. Mol. Psychiatry9(7), 705–710 (2004).
  • Irizarry MC. Biomarkers of Alzheimer disease in plasma. NeuroRx1(2), 226–234 (2004).
  • Pitschke M, Prior R, Haupt M, Riesner D. Detection of single amyloid β-protein aggregates in the cerebrospinal fluid of Alzheimer’s patients by fluorescence correlation spectroscopy. Nat. Med.4(7), 832–834 (1998).
  • Georganopoulou DG, Chang L, Nam JM et al. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc. Natl Acad. Sci. USA102(7), 2273–2276 (2005).
  • Kamali-Moghaddam M, Englund H, Schallmeiner E et al. Proximity ligation-based detection of biomarkers of protein folding disorders. Cambridge Healthtech Institute’s 10th Annual Transmissible Spongiform Encepalopathies Meeting, Baltimore, MD, USA (2006).
  • Fradinger EA, Bitan G. En route to early diagnosis of Alzheimer’s disease – are we there yet? Trends Biotechnol.23(11), 531–533 (2005).
  • Tariot PN, Farlow MR, Grossberg GT, Graham SM, McDonald S, Gergel I. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA291(3), 317–324 (2004).
  • Jelic V, Kivipelto M, Winblad B. Clinical trials in mild cognitive impairment: lessons for the future. J. Neurol. Neurosurg. Psychiatry77(4), 429–438 (2006).
  • Vassar R. BACE1: the β-secretase enzyme in Alzheimer’s disease. J. Mol. Neurosci.23(1–2), 105–114 (2004).
  • Hook V, Toneff T, Bogyo M et al. Inhibition of cathepsin B reduces β-amyloid production in regulated secretory vesicles of neuronal chromaffin cells: evidence for cathepsin B as a candidate β-secretase of Alzheimer’s disease. Biol. Chem.386(9), 931–940 (2005).
  • Schmidt B, Baumann S, Braun HA, Larbig G. Inhibitors and modulators of β- and γ-secretase. Curr. Top. Med. Chem.6(4), 377–392 (2006).
  • Citron M. β-secretase inhibition for the treatment of Alzheimer’s disease – promise and challenge. Trends Pharmacol. Sci.25(2), 92–97 (2004).
  • Chen F, Hasegawa H, Schmitt-Ulms G et al. TMP21 is a presenilin complex component that modulates γ-secretase but not ε-secretase activity. Nature440(7088), 1208–1212 (2006).
  • Churcher I, Beher D. γ-secretase as a therapeutic target for the treatment of Alzheimer’s disease. Curr. Pharm. Des.11(26), 3363–3382 (2005).
  • Spires TL, Hyman BT. Transgenic models of Alzheimer’s disease: learning from animals. NeuroRx2(3), 423–437 (2005).
  • Tomita T, Iwatsubo T. γ-secretase as a therapeutic target for treatment of Alzheimer’s disease. Curr. Pharm. Des.12(6), 661–670 (2006).
  • Espeseth AS, Xu M, Huang Q et al. Compounds that bind APP and inhibit Aβ processing in vitro suggest a novel approach to Alzheimer disease therapeutics. J. Biol. Chem.280(18), 17792–17797 (2005).
  • Wilcock GK, Black S, Haworth J et al. A placebo-controlled, double-blind trial of the selective Aβ-42 lowering agent, flurizan (MPC-7869, (R)-flurbiprofen) in patients with mild to moderate Alzheimer’s disease. Alzheimer’s Association International Conference on Prevention of Dementia, Washington, DC, USA (2005).
  • Caccamo A, Oddo S, Billings LM et al. M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron49(5), 671–682 (2006).
  • Solomon B, Koppel R, Frankel D, Hanan-Aharon E. Disaggregation of Alzheimer β-amyloid by site-directed mAb. Proc. Natl Acad. Sci. USA94(8), 4109–4112 (1997).
  • Schenk D, Barbour R, Dunn W et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature400(6740), 173–177 (1999).
  • Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO. Neuropathology of human Alzheimer disease after immunization with amyloid-β peptide: a case report. Nat. Med.9(4), 448–452 (2003).
  • Gilman S, Koller M, Black RS et al. Clinical effects of Aβ immunization (AN1792) in patients with AD in an interrupted trial. Neurology64(9), 1553–1562 (2005).
  • Cribbs DH, Ghochikyan A, Vasilevko V et al. Adjuvant-dependent modulation of Th1 and Th2 responses to immunization with β-amyloid. Int. Immunol.15(4), 505–514 (2003).
  • Lemere CA, Maier M, Jiang L, Peng Y, Seabrook TJ. Amyloid-β immunotherapy for the prevention and treatment of Alzheimer disease: lessons from mice, monkeys, and humans. Rejuvenation Res.9(1), 77–84 (2006).
  • Ghochikyan A, Mkrtichyan M, Petrushina I et al. Prototype Alzheimer’s disease epitope vaccine induced strong Th2-type anti-Aβ antibody response with Alum to Quil A adjuvant switch. Vaccine24(13), 2275–2282 (2006).
  • Morelli L, Bulloj A, Leal MC, Castano EM. Amyloid β degradation: a challenging task for brain peptidases. Subcell. Biochem.38, 129–145 (2005).
  • Iwata N, Higuchi M, Saido TC. Metabolism of amyloid-β peptide and Alzheimer’s disease. Pharmacol. Ther.108(2), 129–148 (2005).
  • Soto C, Estrada L. Amyloid inhibitors and β-sheet breakers. Subcell. Biochem.38, 351–364 (2005).
  • Lowe TL, Strzelec A, Kiessling LL, Murphy RM. Structure–function relationships for inhibitors of β-amyloid toxicity containing the recognition sequence KLVFF. Biochemistry40(26), 7882–7889 (2001).
  • Gordon DJ, Sciarretta KL, Meredith SC. Inhibition of β-amyloid(40) fibrillogenesis and disassembly of β-amyloid(40) fibrils by short β-amyloid congeners containing N-methyl amino acids at alternate residues. Biochemistry40(28), 8237–8245 (2001).
  • Mason JM, Kokkoni N, Stott K, Doig AJ. Design strategies for anti-amyloid agents. Curr. Opin. Struct. Biol.13(4), 526–532 (2003).
  • Yang F, Lim GP, Begum AN et al. Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem.280(7), 5892–5901 (2005).
  • De Felice FG, Vieira MN, Saraiva LM et al. Targeting the neurotoxic species in Alzheimer’s disease: inhibitors of Aβ oligomerization. FASEB J.18(12), 1366–1372 (2004).
  • Wang Z, Chang L, Klein WL, Thatcher GR, Venton DL. Per-6-substituted-per-6-deoxy β-cyclodextrins inhibit the formation of β-amyloid peptide derived soluble oligomers. J. Med. Chem.47(13), 3329–3333 (2004).
  • Walsh DM, Townsend M, Podlisny MB et al. Certain inhibitors of synthetic amyloid β-peptide (Aβ) fibrillogenesis block oligomerization of natural Aβ and thereby rescue long-term potentiation. J. Neurosci.25(10), 2455–2462 (2005).
  • McLaurin J, Kierstead ME, Brown ME et al. Cyclohexanehexol inhibitors of Aβ aggregation prevent and reverse Alzheimer phenotype in a mouse model. Nat. Med.12(7), 801–808 (2006).
  • Atwood CS, Moir RD, Huang X et al. Dramatic aggregation of Alzheimer abeta by Cu(II) is induced by conditions representing physiological acidosis. J. Biol. Chem.273(21), 12817–12826 (1998).
  • Maynard CJ, Bush AI, Masters CL, Cappai R, Li QX. Metals and amyloid-β in Alzheimer’s disease. Int. J. Exp. Pathol.86(3), 147–159 (2005).
  • Ritchie CW, Bush AI, Mackinnon A et al. Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Aβ amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch. Neurol.60(12), 1685–1691 (2003).
  • Takeda M, Tanaka T, Cacabelos R. In: Molecular Neurobiology of Alzheimer Disease and Related Disorders. Takeda M, Tanaka T, Cacabelos R (Eds). Karger AG, Basel, Switzerland, X–XII (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.