83
Views
14
CrossRef citations to date
0
Altmetric
Review

Molecular pathways and genetic aspects of Parkinson’s disease: from bench to bedside

, &
Pages 1693-1729 | Published online: 09 Jan 2014

References

  • Twelves D, Perkins KS, Counsell C. Systematic review of incidence studies of Parkinson’s disease. Mov. Disord.18(1), 19–31 (2003).
  • Aarsland D, Andersen K, Larsen JP, Lolk A, Kragh-Sorensen P. Prevalence and characteristics of dementia in Parkinson disease: an 8-year prospective study. Arch. Neurol.60(3), 387–392 (2003).
  • Hughes AJ, Daniel SE, Lees AJ. Improved accuracy of clinical diagnosis of Lewy body Parkinson’s disease. Neurology57(8), 1497–1499 (2001).
  • Dorsey ER, Holloway RG, Ravina BM. Biomarkers in Parkinson’s disease. Expert Rev. Neurother.6(6), 823–831 (2006).
  • van Laere K, Casteels C, de Ceuninck L et al. Dual-tracer dopamine transporter and perfusion SPECT in differential diagnosis of parkinsonism using template-based discriminant analysis. J. Nucl. Med.47(3), 384–392 (2006).
  • Berg D, Hochstrasser H, Schweitzer KJ, Riess O. Disturbance of iron metabolism in Parkinson’s disease-ultrasonography as a biomarker. Neurotox. Res.9(1), 1–13 (2006).
  • Ponsen MM, Stoffers D, Booij J, Eck-Smit BL, Wolters EC, Berendse HW. Idiopathic hyposmia as a preclinical sign of Parkinson’s disease. Ann. Neurol.56(2), 173–181 (2004).
  • El Agnaf OM, Salem SA, Paleologou KE et al. Detection of oligomeric forms of α-synuclein protein in human plasma as a potential biomarker for Parkinson’s disease. FASEB J.20(3), 419–425 (2006).
  • Guilloteau D, Chalon S. PET and SPECT exploration of central monoaminergic transporters for the development of new drugs and treatments in brain disorders. Curr. Pharm. Des.11(25), 3237–3245 (2005).
  • Michell AW, Lewis SJ, Foltynie T, Barker RA. Biomarkers and Parkinson’s disease. Brain127(8), 1693–1705 (2004).
  • Braak H, Bohl JR, Muller CM, Rub U, de Vos RA, Del Tredici K. Stanley Fahn Lecture 2005: the staging procedure for the inclusion body pathology associated with sporadic Parkinson’s disease reconsidered. Mov. Disord.21(12), 2042–2051 (2006).
  • Wolters EC, Braak H. Parkinson’s disease: premotor clinico-pathological correlations. J. Neural Transm.70(Suppl.), 309–319 (2006).
  • Poewe WH, Wenning GK. The natural history of Parkinson’s disease. Ann. Neurol.44(3 Suppl. 1), S1–S9 (1998).
  • Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science219(4587), 979–980 (1983).
  • Jeon BS, Jackson-Lewis V, Burke RE. 6-hydroxydopamine lesion of the rat substantia nigra: time course and morphology of cell death. Neurodegeneration4(2), 131–137 (1995).
  • Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat. Neurosci.3(12), 1301–1306 (2000).
  • Benamer HT, Patterson J, Wyper DJ, Hadley DM, Macphee GJ, Grosset DG. Correlation of Parkinson’s disease severity and duration with 123I-FP-CIT SPECT striatal uptake. Mov. Disord.15(4), 692–698 (2000).
  • Braak H, Ghebremedhin E, Rub U, Bratzke H, del Tredici K. Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res.318(1), 121–134 (2004).
  • Iranzo A, Molinuevo JL, Santamaria J et al. Rapid-eye-movement sleep behaviour disorder as an early marker for a neurodegenerative disorder: a descriptive study. Lancet Neurol.5(7), 572–577 (2006).
  • Boeve BF, Silber MH, Saper CB et al. Pathophysiology of REM sleep behaviour disorder and relevance to neurodegenerative disease. BrainDOI:10.1093/brain/awm056 (Epub ahead of print) (2007).
  • Stiasny-Kolster K, Doerr Y, Moller JC et al. Combination of ‘idiopathic’ REM sleep behaviour disorder and olfactory dysfunction as possible indicator for α-synucleinopathy demonstrated by dopamine transporter FP-CIT-SPECT. Brain128(1), 126–137 (2005).
  • McNaught KS, Olanow CW, Halliwell B, Isacson O, Jenner P. Failure of the ubiquitin-proteasome system in Parkinson’s disease. Nat. Rev. Neurosci.2(8), 589–594 (2001).
  • McNaught KS, Jackson T, JnoBaptiste R, Kapustin A, Olanow CW. Proteasomal dysfunction in sporadic Parkinson’s disease. Neurology66(10 Suppl. 4), S37–S49 (2006).
  • Wolf DH, Hilt W. The proteasome: a proteolytic nanomachine of cell regulation and waste disposal. Biochim. Biophys. Acta1695(1–3), 19–31 (2004).
  • Adams J. The proteasome: structure, function, and role in the cell. Cancer Treat. Rev.29(Suppl. 1), 3–9 (2003).
  • Pines J, Lindon C. Proteolysis: anytime, any place, anywhere? Nat. Cell Biol.7(8), 731–735 (2005).
  • Sherman MY, Goldberg AL. Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron29(1), 15–32 (2001).
  • Sawada H, Kohno R, Kihara T et al. Proteasome mediates dopaminergic neuronal degeneration, and its inhibition causes α-synuclein inclusions. J. Biol. Chem.279(11), 10710–10719 (2004).
  • Schapira AH, Cleeter MW, Muddle JR, Workman JM, Cooper JM, King RH. Proteasomal inhibition causes loss of nigral tyrosine hydroxylase neurons. Ann. Neurol.60(2), 253–255 (2006).
  • McNaught KS, Bjorklund LM, Belizaire R, Isacson O, Jenner P, Olanow CW. Proteasome inhibition causes nigral degeneration with inclusion bodies in rats. Neuroreport13(11), 1437–1441 (2002).
  • Fornai F, Lenzi P, Gesi M et al. Fine structure and biochemical mechanisms underlying nigrostriatal inclusions and cell death after proteasome inhibition. J. Neurosci.23(26), 8955–8966 (2003).
  • McNaught KS, Perl DP, Brownell AL, Olanow CW. Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson’s disease. Ann. Neurol.56(1), 149–162 (2004).
  • Miwa H, Kubo T, Suzuki A, Nishi K, Kondo T. Retrograde dopaminergic neuron degeneration following intrastriatal proteasome inhibition. Neurosci. Lett.380(1–2), 93–98 (2005).
  • Zhang X, Xie W, Qu S, Pan T, Wang X, Le W. Neuroprotection by iron chelator against proteasome inhibitor-induced nigral degeneration. Biochem. Biophys. Res. Commun.333(2), 544–549 (2005).
  • Bove J, Zhou C, Jackson-Lewis V et al. Proteasome inhibition and Parkinson’s disease modeling. Ann. Neurol.60(2), 260–264 (2006).
  • Kordower JH, Kanaan NM, Chu Y et al. Failure of proteasome inhibitor administration to provide a model of Parkinson’s disease in rats and monkeys. Ann. Neurol.60(2), 264–268 (2006).
  • Manning-Bog AB, Reaney SH, Chou VP et al. Lack of nigrostriatal pathology in a rat model of proteasome inhibition. Ann. Neurol.60(2), 256–260 (2006).
  • Langston JW. Parkinson’s disease: current and future challenges. Neurotoxicology23(4–5), 443–450 (2002).
  • Tanner CM, Ottman R, Goldman SM. Parkinson disease in twins: an etiologic study. JAMA281(4), 341–346 (1999).
  • Fuente-Fernandez R. A note of caution on correlation between sibling pairs. Neurology60(9), 1561 (2003).
  • Lin MT, Simon DK. No evidence for heritability of Parkinson disease in Swedish twins. Neurology64(5), 932 (2005).
  • Maher NE, Golbe LI, Lazzarini AM et al. Epidemiologic study of 203 sibling pairs with Parkinson’s disease: the GenePD study. Neurology58(1), 79–84 (2002).
  • Sveinbjornsdottir S, Hicks AA, Jonsson T et al. Familial aggregation of Parkinson’s disease in Iceland. N. Engl. J. Med.343(24), 1765–1770 (2000).
  • Wirdefeldt K, Gatz M, Schalling M, Pedersen NL. No evidence for heritability of Parkinson disease in Swedish twins. Neurology63(2), 305–311 (2004).
  • Chade AR, Kasten M, Tanner CM. Nongenetic causes of Parkinson’s disease. J. Neural Transm.70(Suppl.), 147–151 (2006).
  • Brown RC, Lockwood AH, Sonawane BR. Neurodegenerative diseases: an overview of environmental risk factors. Environ. Health Perspect.113(9), 1250–1256 (2005).
  • Logroscino G. The role of early life environmental risk factors in Parkinson disease: what is the evidence? Environ. Health Perspect.113(9), 1234–1238 (2005).
  • Roth JA. Homeostatic and toxic mechanisms regulating manganese uptake, retention, and elimination. Biol. Res.39(1), 45–57 (2006).
  • Coon S, Stark A, Peterson E et al. Whole-body lifetime occupational lead exposure and risk of Parkinson’s disease. Environ. Health Perspect.114(12), 1872–1876 (2006).
  • Thiruchelvam M, Richfield EK, Baggs RB, Tank AW, Cory-Slechta DA. The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: implications for Parkinson’s disease. J. Neurosci.20(24), 9207–9214 (2000).
  • Williams DR. Tauopathies: classification and clinical update on neurodegenerative diseases associated with microtubule-associated protein tau. Intern. Med. J.36(10), 652–660 (2006).
  • Moore DJ, West AB, Dawson VL, Dawson TM. Molecular pathophysiology of Parkinson’s disease. Annu. Rev. Neurosci.28, 57–87 (2005).
  • Hardy J, Cai H, Cookson MR, Gwinn-Hardy K, Singleton A. Genetics of Parkinson’s disease and parkinsonism. Ann. Neurol.60(4), 389–398 (2006).
  • Ramirez A, Heimbach A, Grundemann J et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet.38(10), 1184–1191 (2006).
  • Hardy J, Langston JW. How many pathways are there to nigral death? Ann. Neurol.56(3), 316–318 (2004).
  • Singleton AB, Farrer M, Johnson J et al. α-synuclein locus triplication causes Parkinson’s disease. Science302(5646), 841 (2003).
  • Fuchs J, Nilsson C, Kachergus J et al. Phenotypic variation in a large Swedish pedigree due to SNCA duplication and triplication. Neurology68(12), 916–922 (2007).
  • Huang X, Chen PC, Poole C. APOE-ε2 allele associated with higher prevalence of sporadic Parkinson disease. Neurology62(12), 2198–2202 (2004).
  • Li YJ, Hauser MA, Scott WK et al. Apolipoprotein E controls the risk and age at onset of Parkinson disease. Neurology62(11), 2005–2009 (2004).
  • Christensen PM, Gotzsche PC, Brosen K. The sparteine/debrisoquine (CYP2D6) oxidation polymorphism and the risk of Parkinson’s disease: a meta-analysis. Pharmacogenetics8(6), 473–479 (1998).
  • Tan EK, Khajavi M, Thornby JI, Nagamitsu S, Jankovic J, Ashizawa T. Variability and validity of polymorphism association studies in Parkinson’s disease. Neurology55(4), 533–538 (2000).
  • Benmoyal-Segal L, Soreq H. Gene–environment interactions in sporadic Parkinson’s disease. J. Neurochem.97(6), 1740–1755 (2006).
  • Maraganore DM, de Andrade M, Elbaz A et al. Collaborative analysis of α-synuclein gene promoter variability and Parkinson disease. JAMA296(6), 661–670 (2006).
  • Evangelou E, Maraganore DM, Ioannidis JP. Meta-analysis in genome-wide association datasets: strategies and application in Parkinson disease. PLoS ONE2, e196 (2007).
  • Dawn TM, Barrett JH. Genetic linkage studies. Lancet366(9490), 1036–1044 (2005).
  • Mizuta I, Satake W, Nakabayashi Y et al. Multiple candidate gene analysis identifies α-synuclein as a susceptibility gene for sporadic Parkinson’s disease. Hum. Mol. Genet.15(7), 1151–1158 (2006).
  • Pardo LM, van Duijn CM. In search of genes involved in neurodegenerative disorders. Mutat. Res.592(1,2), 89–101 (2005).
  • Moore DJ. Parkin: a multifaceted ubiquitin ligase. Biochem. Soc. Trans.34(Part 5), 749–753 (2006).
  • Vigouroux S, Briand M, Briand Y. Linkage between the proteasome pathway and neurodegenerative diseases and aging. Mol. Neurobiol.30(2), 201–221 (2004).
  • Mukaetova-Ladinska EB, McKeith IG. Pathophysiology of synuclein aggregation in Lewy body disease. Mech. Ageing Dev.127(2), 188–202 (2006).
  • Cookson MR. The biochemistry of Parkinson’s disease. Annu. Rev. Biochem.74, 29–52 (2005).
  • Maries E, Dass B, Collier TJ, Kordower JH, Steece-Collier K. The role of α-synuclein in Parkinson’s disease: insights from animal models. Nat. Rev. Neurosci.4(9), 727–738 (2003).
  • Dawson TM, Dawson VL. Rare genetic mutations shed light on the pathogenesis of Parkinson disease. J. Clin. Invest.111(2), 145–151 (2003).
  • Chartier-Harlin MC, Kachergus J, Roumier C et al. α-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet364(9440), 1167–1169 (2004).
  • Ferreon AC, Deniz AA. α-synuclein multistate folding thermodynamics: implications for protein misfolding and aggregation. Biochemistry46(15), 4499–4509 (2007).
  • Martinez Z, Zhu M, Han S, Fink AL. GM1 specifically interacts with α-synuclein and inhibits fibrillation. Biochemistry46(7), 1868–1877 (2007).
  • Chandra S, Gallardo G, Fernandez-Chacon R, Schluter OM, Sudhof TC. α-synuclein cooperates with CSPα in preventing Neurodegeneration Cell123(3), 383–396 (2005).
  • Sung JY, Lee HJ, Jeong EI et al. α-synuclein overexpression reduces gap junctional intercellular communication in dopaminergic neuroblastoma cells. Neurosci. Lett.416(3), 289–293 (2007).
  • Maingay M, Romero-Ramos M, Kirik D. Viral vector mediated overexpression of human α-synuclein in the nigrostriatal dopaminergic neurons: a new model for Parkinson’s disease. CNS Spectr.10(3), 235–244 (2005).
  • Mochizuki H, Yamada M, Mizuno Y. α-synuclein overexpression model. J. Neural Transm.70(Suppl.), 281–284 (2006).
  • Eslamboli A, Romero-Ramos M, Burger C et al. Long-term consequences of human α-synuclein overexpression in the primate ventral midbrain. Brain130(Pt 3), 799–815 (2007).
  • Perez RG, Waymire JC, Lin E, Liu JJ, Guo F, Zigmond MJ. A role for α-synuclein in the regulation of dopamine biosynthesis. J. Neurosci.22(8), 3090–3099 (2002).
  • Abeliovich A, Schmitz Y, Farinas I et al. Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron25(1), 239–252 (2000).
  • Chandra S, Fornai F, Kwon HB et al. Double-knockout mice for α- and β-synucleins: effect on synaptic functions. Proc. Natl Acad. Sci. USA101(41), 14966–14971 (2004).
  • Sidhu A, Wersinger C, Moussa CE, Vernier P. The role of α-synuclein in both neuroprotection and neurodegeneration. Ann. NY Acad. Sci.1035(1), 250–270 (2004).
  • Orth M, Tabrizi SJ. Models of Parkinson’s disease. Mov. Disord.18(7), 729–737 (2003).
  • Cappai R, Leck SL, Tew DJ et al. Dopamine promotes α-synuclein aggregation into SDS-resistant soluble oligomers via a distinct folding pathway. FASEB J.19(10), 1377–1379 (2005).
  • Miller DW, Hague SM, Clarimon J et al. α-synuclein in blood and brain from familial Parkinson disease with SNCA locus triplication. Neurology62(10), 1835–1838 (2004).
  • Fujiwara H, Hasegawa M, Dohmae N et al. α-synuclein is phosphorylated in synucleinopathy lesions. Nat. Cell Biol.4(2), 160–164 (2002).
  • Arawaka S, Wada M, Goto S et al. The role of G-protein-coupled receptor kinase 5 in pathogenesis of sporadic Parkinson’s disease. J. Neurosci.26(36), 9227–9238 (2006).
  • Takahashi M, Uchikado H, Caprotti D et al. Identification of G-protein coupled receptor kinase 2 in paired helical filaments and neurofibrillary tangles. J. Neuropathol. Exp. Neurol.65(12), 1157–1169 (2006).
  • Giasson BI, Duda JE, Murray IV et al. Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in synucleinopathy lesions. Science290(5493), 985–989 (2000).
  • Duda JE, Giasson BI, Chen Q et al. Widespread nitration of pathological inclusions in neurodegenerative synucleinopathies. Am. J. Pathol.157(5), 1439–1445 (2000).
  • Paxinou E, Chen Q, Weisse M et al. Induction of α-synuclein aggregation by intracellular nitrative insult. J. Neurosci.21(20), 8053–8061 (2001).
  • Mishizen-Eberz AJ, Norris EH, Giasson BI et al. Cleavage of α-synuclein by calpain: potential role in degradation of fibrillized and nitrated species of α-synuclein. Biochemistry44(21), 7818–7829 (2005).
  • Lashuel HA, Hartley D, Petre BM, Walz T, Lansbury PT Jr. Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature418(6895), 291 (2002).
  • Tsigelny IF, Bar-On P, Sharikov Y et al. Dynamics of α-synuclein aggregation and inhibition of pore-like oligomer development by β-synuclein. FEBS J.274(7), 1862–1877 (2007).
  • Chen Q, Thorpe J, Keller JN. α-synuclein alters proteasome function, protein synthesis, and stationary phase viability. J. Biol. Chem.280(34), 30009–30017 (2005).
  • Marx FP, Soehn AS, Berg D et al. The proteasomal subunit S6 ATPase is a novel synphilin-1 interacting protein – implications for Parkinson’s disease. FASEB J.21, 1759–1767 (2007).
  • Dekker MC, Bonifati V, van Duijn CM. Parkinson’s disease: piecing together a genetic jigsaw. Brain126(Pt 8), 1722–1733 (2003).
  • Lohmann E, Periquet M, Bonifati V et al. How much phenotypic variation can be attributed to parkin genotype? Ann. Neurol.54(2), 176–185 (2003).
  • Yamamura Y, Hattori N, Matsumine H, Kuzuhara S, Mizuno Y. Autosomal recessive early-onset parkinsonism with diurnal fluctuation: clinicopathologic characteristics and molecular genetic identification. Brain Dev.22(Suppl. 1), S87–S91 (2000).
  • Oliveira SA, Scott WK, Martin ER et al. Parkin mutations and susceptibility alleles in late-onset Parkinson’s disease. Ann. Neurol.53(5), 624–629 (2003).
  • Scott WK, Nance MA, Watts RL et al. Complete genomic screen in Parkinson disease: evidence for multiple genes. JAMA286(18), 2239–2244 (2001).
  • Kay DM, Moran D, Moses L et al. Heterozygous parkin point mutations are as common in control subjects as in Parkinson’s patients. Ann. Neurol.61(1), 47–54 (2007).
  • Shimura H, Hattori N, Kubo S et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet.25(3), 302–305 (2000).
  • Sakata E, Yamaguchi Y, Kurimoto E et al. Parkin binds the Rpn10 subunit of 26S proteasomes through its ubiquitin-like domain. EMBO Rep.4(3), 301–306 (2003).
  • Zhang Y, Gao J, Chung KK, Huang H, Dawson VL, Dawson TM. Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc. Natl Acad. Sci. USA97(24), 13354–13359 (2000).
  • Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, Takahashi R. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell105(7), 891–902 (2001).
  • Ren Y, Zhao J, Feng J. Parkin binds to α/β tubulin and increases their ubiquitination and degradation. J. Neurosci.23(8), 3316–3324 (2003).
  • Yang F, Jiang Q, Zhao J, Ren Y, Sutton MD, Feng J. Parkin stabilizes microtubules through strong binding mediated by three independent domains. J. Biol. Chem.280(17), 17154–17162 (2005).
  • Corti O, Hampe C, Koutnikova H et al. The p38 subunit of the aminoacyl-tRNA synthetase complex is a Parkin substrate: linking protein biosynthesis and neurodegeneration. Hum. Mol. Genet.12(12), 1427–1437 (2003).
  • Tsai YC, Fishman PS, Thakor NV, Oyler GA. Parkin facilitates the elimination of expanded polyglutamine proteins and leads to preservation of proteasome function. J. Biol. Chem.278(24), 22044–22055 (2003).
  • Huynh DP, Scoles DR, Nguyen D, Pulst SM. The autosomal recessive juvenile Parkinson disease gene product, parkin, interacts with and ubiquitinates synaptotagmin XI. Hum. Mol. Genet.12(20), 2587–2597 (2003).
  • Staropoli JF, McDermott C, Martinat C, Schulman B, Demireva E, Abeliovich A. Parkin is a component of an SCF-like ubiquitin ligase complex and protects postmitotic neurons from kainate excitotoxicity. Neuron37(5), 735–749 (2003).
  • Ko HS, Kim SW, Sriram SR, Dawson VL, Dawson TM. Identification of far upstream element-binding protein-1 as an authentic Parkin substrate. J. Biol. Chem.281(24), 16193–16196 (2006).
  • Chung KK, Zhang Y, Lim KL et al. Parkin ubiquitinates the α-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat. Med.7(10), 1144–1150 (2001).
  • Shimura H, Schlossmacher MG, Hattori N et al. Ubiquitination of a new form of α-synuclein by parkin from human brain: implications for Parkinson’s disease. Science293(5528), 263–269 (2001).
  • Kalia SK, Lee S, Smith PD et al. BAG5 inhibits parkin and enhances dopaminergic neuron degeneration. Neuron44(6), 931–945 (2004).
  • Fallon L, Moreau F, Croft BG, Labib N, Gu WJ, Fon EA. Parkin and CASK/LIN-2 associate via a PDZ-mediated interaction and are co-localized in lipid rafts and postsynaptic densities in brain. J. Biol. Chem.277(1), 486–491 (2002).
  • Fallon L, Belanger CM, Corera AT et al. A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3)K-Akt signalling. Nat. Cell Biol.8(8), 834–842 (2006).
  • Farrer M, Chan P, Chen R et al. Lewy bodies and parkinsonism in families with parkin mutations. Ann. Neurol.50(3), 293–300 (2001).
  • Dawson TM. Parkin and defective ubiquitination in Parkinson’s disease. J. Neural Transm.70(Suppl.), 209–213 (2006).
  • Kahns S, Kalai M, Jakobsen LD, Clark BF, Vandenabeele P, Jensen PH. Caspase-1 and caspase-8 cleave and inactivate cellular parkin. J. Biol. Chem.278(26), 23376–23380 (2003).
  • Wang C, Ko HS, Thomas B et al. Stress-induced alterations in parkin solubility promote parkin aggregation and compromise parkin’s protective function. Hum. Mol. Genet.14(24), 3885–3897 (2005).
  • Hampe C, Ardila-Osorio H, Fournier M, Brice A, Corti O. Biochemical analysis of Parkinson’s disease-causing variants of Parkin, an E3 ubiquitin-protein ligase with monoubiquitylation capacity. Hum. Mol. Genet.15(13), 2059–2075 (2006).
  • Wong ES, Tan JM, Wang C et al. Relative sensitivity of parkin and other cysteine-containing enzymes to stress-induced solubility alterations. J. Biol. Chem.282(16), 12310–12318 (2007).
  • Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT Jr. The UCH-L1 gene encodes two opposing enzymatic activities that affect α-synuclein degradation and Parkinson’s disease susceptibility. Cell111(2), 209–218 (2002).
  • Levecque C, Destee A, Mouroux V et al. No genetic association of the ubiquitin carboxy-terminal hydrolase-L1 gene S18Y polymorphism with familial Parkinson’s disease. J. Neural Transm.108(8–9), 979–984 (2001).
  • Satoh J, Kuroda Y. A polymorphic variation of serine to tyrosine at codon 18 in the ubiquitin C-terminal hydrolase-L1 gene is associated with a reduced risk of sporadic Parkinson’s disease in a Japanese population. J. Neurol. Sci.189(1–2), 113–117 (2001).
  • Nishikawa K, Li H, Kawamura R et al. Alterations of structure and hydrolase activity of parkinsonism-associated human ubiquitin carboxyl-terminal hydrolase L1 variants. Biochem. Biophys. Res. Commun.304(1), 176–183 (2003).
  • Cuervo AM. Autophagy: many paths to the same end. Mol. Cell Biochem.263(1–2), 55–72 (2004).
  • Massey AC, Zhang C, Cuervo AM. Chaperone-mediated autophagy in aging and disease. Curr. Top. Dev. Biol.73205–73235 (2006).
  • Menzies FM, Ravikumar B, Rubinsztein DC. Protective roles for induction of autophagy in multiple proteinopathies. Autophagy2(3), 224–225 (2006).
  • Rubinsztein DC, DiFiglia M, Heintz N et al. Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy1(1), 11–22 (2005).
  • Stefanis L, Larsen KE, Rideout HJ, Sulzer D, Greene LA. Expression of A53T mutant but not wild-type α-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J. Neurosci.21(24), 9549–9560 (2001).
  • Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D. Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science305(5688), 1292–1295 (2004).
  • Bandhyopadhyay U, Cuervo AM. Chaperone-mediated autophagy in aging and neurodegeneration: Lessons from α-synuclein. Exp. Gerontol.42(1–2), 120–128 (2007).
  • Andersen JK. Oxidative stress in neurodegeneration: cause or consequence? Nat. Med.10(Suppl.), S18–S25 (2004).
  • Bonifati V, Rizzu P, van Baren MJ et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science299(5604), 256–259 (2003).
  • Kubo S, Hattori N, Mizuno Y. Recessive Parkinson’s disease. Mov. Disord.21(7), 885–893 (2006).
  • Bandopadhyay R, Kingsbury AE, Cookson MR et al. The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson’s disease. Brain127(Pt 2), 420–430 (2004).
  • Olzmann JA, Brown K, Wilkinson KD et al. Familial Parkinson’s disease-associated L166P mutation disrupts DJ-1 protein folding and function. J. Biol. Chem.279(9), 8506–8515 (2004).
  • Zhou W, Zhu M, Wilson MA, Petsko GA, Fink AL. The oxidation state of DJ-1 regulates its chaperone activity toward α-synuclein. J. Mol. Biol.356(4), 1036–1048 (2006).
  • Kim RH, Smith PD, Aleyasin H et al. Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proc. Natl Acad. Sci. USA102(14), 5215–5220 (2005).
  • Canet-Aviles RM, Wilson MA, Miller DW et al. The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc. Natl Acad. Sci. USA101(24), 9103–9108 (2004).
  • Kinumi T, Kimata J, Taira T, Ariga H, Niki E. Cysteine-106 of DJ-1 is the most sensitive cysteine residue to hydrogen peroxide-mediated oxidation in vivo in human umbilical vein endothelial cells. Biochem. Biophys. Res. Commun.317(3), 722–728 (2004).
  • Moore DJ, Zhang L, Troncoso J et al. Association of DJ-1 and parkin mediated by pathogenic DJ-1 mutations and oxidative stress. Hum. Mol. Genet.14(1), 71–84 (2005).
  • Borrelli E. Without DJ-1, the D2 receptor doesn’t play. Neuron45(4), 479–481 (2005).
  • Valente EM, Bentivoglio AR, Dixon PH et al. Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35–p36. Am. J. Hum. Genet.68(4), 895–900 (2001).
  • Valente EM, Abou-Sleiman PM, Caputo V et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science304(5674), 1158–1160 (2004).
  • Tan JM, Dawson TM. Parkin blushed by PINK1. Neuron50(4), 527–529 (2006).
  • Muqit MM, Abou-Sleiman PM, Saurin AT et al. Altered cleavage and localization of PINK1 to aggresomes in the presence of proteasomal stress. J. Neurochem.98(1), 156–169 (2006).
  • Park J, Lee SB, Lee S et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature441(7097), 1157–1161 (2006).
  • Yang Y, Gehrke S, Imai Y et al. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc. Natl Acad. Sci. USA103(28), 10793–10798 (2006).
  • Singleton A. What does PINK1 mean for Parkinson diseases? Neurology63(8), 1350–1351 (2004).
  • Strauss KM, Martins LM, Plun-Favreau H et al. Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson’s disease. Hum. Mol. Genet.14(15), 2099–2111 (2005).
  • Abou-Sleiman PM, Muqit MM, Wood NW. Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat. Rev. Neurosci.7(3), 207–219 (2006).
  • Schapira AH. Mitochondrial disease. Lancet368(9529), 70–82 (2006).
  • Bolton JL, Trush MA, Penning TM, Dryhurst G, Monks TJ. Role of quinones in toxicology. Chem. Res. Toxicol.13(3), 135–160 (2000).
  • Cavalieri EL, Rogan EG, Chakravarti D. Initiation of cancer and other diseases by catechol ortho-quinones: a unifying mechanism. Cell. Mol. Life Sci.59(4), 665–681 (2002).
  • Cavalieri EL, Li KM, Balu N et al. Catechol ortho-quinones: the electrophilic compounds that form depurinating DNA adducts and could initiate cancer and other diseases. Carcinogenesis23(6), 1071–1077 (2002).
  • Fitzmaurice PS, Ang L, Guttman M, Rajput AH, Furukawa Y, Kish SJ. Nigral glutathione deficiency is not specific for idiopathic Parkinson’s disease. Mov. Disord.18(9), 969–976 (2003).
  • Cohen G. Oxidative stress, mitochondrial respiration, and Parkinson’s disease. Ann. NY Acad. Sci.899, 112–120 (2000).
  • Shults CW. Mitochondrial dysfunction and possible treatments in Parkinson’s disease – a review. Mitochondrion4(5–6), 641–648 (2004).
  • Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR. Iron, brain ageing and neurodegenerative disorders. Nat. Rev. Neurosci.5(11), 863–873 (2004).
  • Floor E. Iron as a vulnerability factor in nigrostriatal degeneration in aging and Parkinson’s disease. Cell. Mol. Biol. (Noisy-le-grand)46(4), 709–720 (2000).
  • Zhu BT. On the mechanism of homocysteine pathophysiology and pathogenesis: a unifying hypothesis. Histol. Histopathol.17(4), 1283–1291 (2002).
  • Zhu BT. Catechol-O-Methyltransferase (COMT)-mediated methylation metabolism of endogenous bioactive catechols and modulation by endobiotics and xenobiotics: importance in pathophysiology and pathogenesis. Curr. Drug Metab.3(3), 321–349 (2002).
  • Etminan M, Gill SS, Samii A. Intake of vitamin E, vitamin C, and carotenoids and the risk of Parkinson’s disease: a meta-analysis. Lancet Neurol.4(6), 362–365 (2005).
  • Muller T, Buttner T, Gholipour AF, Kuhn W. Coenzyme Q10 supplementation provides mild symptomatic benefit in patients with Parkinson’s disease. Neurosci. Lett.341(3), 201–204 (2003).
  • Storch A, Jost WH, Vieregge P et al. Randomized, double-blind, placebo-controlled trial on symptomatic effects of coenzyme Q10 in Parkinson disease. Arch. Neurol.64, 938–944 (2007).
  • Whitton PS. Inflammation as a causative factor in the aetiology of Parkinson’s disease. Br. J. Pharmacol.150(8), 963–976 (2007).
  • Kim YS, Joh TH. Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Exp Mol Med.38(4), 333–347 (2006).
  • Sawada M, Imamura K, Nagatsu T. Role of cytokines in inflammatory process in Parkinson’s disease. J. Neural Transm. Suppl.70, 373–381 (2006).
  • Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B. Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J. Neurochem.81(6), 1285–1297 (2002).
  • Gao HM, Hong JS, Zhang W, Liu B. Synergistic dopaminergic neurotoxicity of the pesticide rotenone and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson’s disease. J. Neurosci.23(4), 1228–1236 (2003).
  • Zhang W, Qin L, Wang T et al. 3-hydroxymorphinan is neurotrophic to dopaminergic neurons and is also neuroprotective against LPS-induced neurotoxicity. FASEB J.19(3), 395–397 (2005).
  • Ahlskog JE. Challenging conventional wisdom: the etiologic role of dopamine oxidative stress in Parkinson’s disease. Mov. Disord.20(3), 271–282 (2005).
  • Mancuso C, Scapagini G, Curro D et al. Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Front. Biosci.121107–121123 (2007).
  • Funayama M, Hasegawa K, Ohta E et al. An LRRK2 mutation as a cause for the parkinsonism in the original PARK8 family. Ann. Neurol.57(6), 918–921 (2005).
  • Whaley NR, Uitti RJ, Dickson DW, Farrer MJ, Wszolek ZK. Clinical and pathologic features of families with LRRK2-associated Parkinson’s disease. J. Neural Transm. Suppl.70, 221–229 (2006).
  • Hatano T, Kubo S, Imai S et al. Leucine-rich repeat kinase 2 associates with lipid rafts. Hum. Mol. Genet.16(6), 678–690 (2007).
  • Biskup S, Moore DJ, Celsi F et al. Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Ann. Neurol.60(5), 557–569 (2006).
  • West AB, Moore DJ, Biskup S et al. Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc. Natl Acad. Sci. USA102(46), 16842–16847 (2005).
  • Galter D, Westerlund M, Carmine A, Lindqvist E, Sydow O, Olson L. LRRK2 expression linked to dopamine-innervated areas. Ann. Neurol.59(4), 714–719 (2006).
  • Taymans JM, Van den Haute C, Baekelandt V. Distribution of PINK1 and LRRK2 in rat and mouse brain. J. Neurochem.98(3), 951–961 (2006).
  • White LR, Toft M, Kvam SN, Farrer MJ, Aasly JO. MAPK-pathway activity, Lrrk2 G2019S, and Parkinson’s disease. J. Neurosci. Res.85(6), 1288–1294 (2007).
  • Miklossy J, Arai T, Guo JP et al. LRRK2 expression in normal and pathologic human brain and in human cell lines. J. Neuropathol. Exp. Neurol.65(10), 953–963 (2006).
  • Giasson BI, Covy JP, Bonini NM et al. Biochemical and pathological characterization of LRRK2. Ann. Neurol.59(2), 315–322 (2006).
  • Higashi S, Biskup S, West AB et al. Localization of Parkinson’s disease-associated LRRK2 in normal and pathological human brain. Brain Res.1155, 208–219 (2007).
  • Mata IF, Wedemeyer WJ, Farrer MJ, Taylor JP, Gallo KA. LRRK2 in Parkinson’s disease: protein domains and functional insights. Trends Neurosci.29(5), 286–293 (2006).
  • Paisan-Ruiz C, Jain S, Evans EW et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron44(4), 595–600 (2004).
  • Ito G, Okai T, Fujino G et al. GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson’s disease. Biochemistry46(5), 1380–1388 (2007).
  • Smith WW, Pei Z, Jiang H et al. Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. Proc. Natl Acad. Sci. USA102(51), 18676–18681 (2005).
  • Jaleel M, Nichols RJ, Deak M et al. LRRK2 phosphorylates moesin at threonine-558: characterization of how Parkinson’s disease mutants affect kinase activity. Biochem. J.405(2), 307–317 (2007).
  • Gloeckner CJ, Kinkl N, Schumacher A et al. The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Hum. Mol. Genet.15(2), 223–232 (2006).
  • Schapira AH. The importance of LRRK2 mutations in Parkinson disease. Arch. Neurol.63(9), 1225–1228 (2006).
  • Olanow CW, Jankovic J. Neuroprotective therapy in Parkinson’s disease and motor complications: a search for a pathogenesis-targeted, disease-modifying strategy. Mov. Disord.20(Suppl. 11), S3–S10 (2005).
  • Parkinson Study Group. Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression. JAMA287(13), 1653–1661 (2002).
  • Whone AL, Watts RL, Stoessl AJ et al. Slower progression of Parkinson’s disease with ropinirole versus levodopa: the REAL-PET study. Ann. Neurol.54(1), 93–101 (2003).
  • Fahn S, Oakes D, Shoulson I et al. Levodopa and the progression of Parkinson’s disease. N. Engl. J. Med.351(24), 2498–2508 (2004).
  • Shoulson I. DATATOP: a decade of neuroprotective inquiry. Parkinson study group. deprenyl and tocopherol antioxidative therapy of parkinsonism. Ann. Neurol.44(3 Suppl. 1), S160–S166 (1998).
  • Parkinson Study Group. A controlled trial of rasagiline in early Parkinson disease: the TEMPO Study. Arch. Neurol.59(12), 1937–1943 (2002).
  • Hara MR, Thomas B, Cascio MB et al. Neuroprotection by pharmacologic blockade of the GAPDH death cascade. Proc. Natl Acad. Sci. USA103(10), 3887–3889 (2006).
  • Hallett PJ, Standaert DG. Rationale for and use of NMDA receptor antagonists in Parkinson’s disease. Pharmacol. Ther.102(2), 155–174 (2004).
  • Jankovic J, Hunter C. A double-blind, placebo-controlled and longitudinal study of riluzole in early Parkinson’s disease. Parkinsonism Relat. Disord.8(4), 271–276 (2002).
  • Kordower JH, Emborg ME, Bloch J et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science290(5492), 767–773 (2000).
  • Nutt JG, Burchiel KJ, Comella CL et al. Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology60(1), 69–73 (2003).
  • Patel NK, Bunnage M, Plaha P, Svendsen CN, Heywood P, Gill SS. Intraputamenal infusion of glial cell line-derived neurotrophic factor in PD: a two-year outcome study. Ann. Neurol.57(2), 298–302 (2005).
  • Lang AE, Gill S, Patel NK et al. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann. Neurol.59(3), 459–466 (2006).
  • Bespalov MM, Saarma M. GDNF family receptor complexes are emerging drug targets. Trends Pharmacol. Sci.28(2), 68–74 (2007).
  • Ahn M, Kim S, Kang M, Ryu Y, Kim TD. Chaperone-like activities of αsynuclein: α-synuclein assists enzyme activities of esterases. Biochem. Biophys. Res. Commun.346(4), 1142–1149 (2006).
  • Winklhofer KF, Tatzelt J. The role of chaperones in Parkinson’s disease and prion diseases. Handb. Exp. Pharmacol.172, 221–258 (2006).
  • Gregersen N. Protein misfolding disorders: pathogenesis and intervention. J. Inherit. Metab. Dis.29(2–3), 456–470 (2006).
  • Snyder BJ, Olanow CW. Stem cell treatment for Parkinson’s disease: an update for 2005. Curr. Opin. Neurol.18(4), 376–385 (2005).
  • Kaplitt MG, Feigin A, Tang C et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, Phase I trial. Lancet369(9579), 2097–2105 (2007).
  • Gilgun-Sherki Y, Djaldetti R, Melamed E, Offen D. Polymorphism in candidate genes: implications for the risk and treatment of idiopathic Parkinson’s disease. Pharmacogenomics J.4(5), 291–306 (2004).
  • Acuna G, Foernzler D, Leong D et al. Pharmacogenetic analysis of adverse drug effect reveals genetic variant for susceptibility to liver toxicity. Pharmacogenomics J.2(5), 327–334 (2002).
  • Arbouw ME, van Vugt JP, Egberts TC, Guchelaar HJ. Pharmacogenetics of antiparkinsonian drug treatment: a systematic review. Pharmacogenomics8(2), 159–176 (2007).
  • Farrer MJ. Genetics of Parkinson disease: paradigm shifts and future prospects. Nat. Rev. Genet.7(4), 306–318 (2006).
  • Schapira AH, Bezard E, Brotchie J et al. Novel pharmacological targets for the treatment of Parkinson’s disease. Nat. Rev. Drug Discov.5(10), 845–854 (2006).
  • Hattori N, Mizuno Y. Pathogenetic mechanisms of parkin in Parkinson’s disease. Lancet364(9435), 722–724 (2004).
  • Huang Y, Cheung L, Rowe D, Halliday G. Genetic contributions to Parkinson’s disease. Brain Res. Brain Res. Rev.46(1), 44–70 (2004).
  • Park J, Lee SB, Lee S et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature441(7097), 1157–1161 (2006).
  • Yang Y, Gehrke S, Imai Y et al. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc. Natl Acad. Sci. USA103(28), 10793–10798 (2006).
  • Naidu Y, Chaudhuri KR. Transdermal rotigotine: a new non-ergot dopamine agonist for the treatment of Parkinson’s disease. Expert Opin. Drug Deliv.4(2), 111–118 (2007).
  • Olanow CW, Agid Y, Mizuno Y et al. Levodopa in the treatment of Parkinson’s disease: current controversies. Mov. Disord.19(9), 997–1005 (2004).
  • Uc EY, Follett KA. Deep brain stimulation in movement disorders. Semin. Neurol.27(2), 170–182 (2007).
  • Gan J, Xie-Brustolin J, Mertens P et al. Bilateral subthalamic nucleus stimulation in advanced Parkinson’s disease: three years follow-up. J Neurol254(1), 99–106 (2007).

Website

  • Bagade S, Allen NC, Tanzi R, Bertram L. The PDGene database: Alzheimer research forum www.pdgene.org

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.