126
Views
27
CrossRef citations to date
0
Altmetric
Review

The search for biomarkers in Parkinson’s disease: a critical review

&
Pages 1841-1852 | Published online: 09 Jan 2014

References

  • Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther.69, 89–95 (2001).
  • Rachakonda V, Pan TH, Le WD. Biomarkers of neurodegenerative disorders: how good are they? Cell Res.14(5), 349–360 (2004).
  • DeKosky ST, Marek K. Looking backward to move forward: early detection of neurodegenerative disorders. Science302(5646), 830–834 (2003).
  • Fearnley JM, Lees AJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain114(Pt 5), 2283–2301 (1991).
  • Brown RG, Marsden CD. Cognitive function in Parkinson’s disease: from description to theory. Trends Neurosci.13(1), 21–29 (1990).
  • Thomas B, Beal MF. Parkinson’s disease. Hum. Mol. Genet.16(Spec No. 2), R183–R194 (2007).
  • Dorsey ER, Constantinescu R, Thompson JP et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology68(5), 384–386 (2007).
  • Hughes AJ, Daniel SE, Ben-Shlomo Y, Lees AJ. The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain125, 861–870 (2002).
  • Hughes AJ, Ben-Shlomo Y, Daniel SE, Lees AJ. What features improve the accuracy of clinical diagnosis in Parkinson’s disease: a clinicopathologic study. Neurology42, 1142–1146 (1992).
  • Michell AW, Lewis SJ, Foltynie T, Barker RA. Biomarkers and Parkinson’s disease. Brain127(Pt 8), 1693–1705 (2004).
  • Taylor Tavares AL, Jefferis GS, Koop M et al. Quantitative measurements of alternating finger tapping in Parkinson’s disease correlate with UPDRS motor disability and reveal the improvement in fine motor control from medication and deep brain stimulation. Mov. Disord.20(10), 1286–1298 (2005).
  • Jobbagy A, Harcos P, Karoly R, Fazekas G. Analysis of finger-tapping movement. J. Neurosci. Methods141(1), 29–39 (2005).
  • Okuno R, Yokoe M, Akazawa K, Abe K, Sakoda S. Finger taps movement acceleration measurement system for quantitative diagnosis of Parkinson’s disease. Conf. Proc. IEEE Eng. Med. Biol. Soc. Suppl., 6623–6626 (2006).
  • Okuno R, Yokoe M, Fukawa K, Sakoda S, Akazawa K. Measurement system of finger-tapping contact force for quantitative diagnosis of Parkinson’s disease. Conf. Proc. IEEE Eng. Med. Biol. Soc.1354–1357 (2007).
  • de Frias CM, Dixon RA, Fisher N, Camicioli R. Intraindividual variability in neurocognitive speed: a comparison of Parkinson’s disease and normal older adults. Neuropsychologia45(11), 2499–2507 (2007).
  • Bazner H, Schanz J, Blahak C et al. Differential pattern of hand-tapping compromise in vascular versus idiopathic parkinsonism: a study based on computerized movement analysis. Mov. Disord.20(4), 504–508 (2005).
  • Accolla E, Caputo E, Cogiamanian F et al. Gender differences in patients with Parkinson’s disease treated with subthalamic deep brain stimulation. Mov. Disord.22(8), 1150–1156 (2007).
  • Camicioli RM, Wieler M, de Frias CM, Martin WR. Early, untreated Parkinson’s disease patients show reaction time variability. Neurosci. Lett.441(1), 77–80 (2008).
  • Armstrong IT, Chan F, Riopelle RJ, Munoz DP. Control of saccades in Parkinson’s disease. Brain Cogn.49(2), 198–201 (2002).
  • MacAskill MR, Anderson TJ, Jones RD. Adaptive modification of saccade amplitude in Parkinson’s disease. Brain125(Pt 7), 1570–1582 (2002).
  • Winograd-Gurvich C, Georgiou-Karistianis N, Fitzgerald PB, Millist L, White OB. Self-paced saccades and saccades to oddball targets in Parkinson’s disease. Brain Res.1106(1), 134–141 (2006).
  • Antoniades CA, Carpenter RS, Barker RA. Diagnostic potential of saccadometry in progressive supranuclear palsy. Biomark. Med.4(1), 487–490 (2007).
  • Mosimann UP, Muri RM, Burn DJ et al. Saccadic eye movement changes in Parkinson’s disease dementia and dementia with Lewy bodies. Brain128(Pt 6), 1267–1276 (2005).
  • Rivaud-Pechoux S, Vidailhet M, Brandel JP, Gaymard B. Mixing pro- and antisaccades in patients with parkinsonian syndromes. Brain130(Pt 1), 256–264 (2007).
  • Michell AW, Xu Z, Fritz D et al. Saccadic latency distributions in Parkinson’s disease and the effects of L-DOPA. Exp. Brain Res.174(1), 7–18 (2006).
  • Hood AJ, Amador SC, Cain AE et al. Levodopa slows prosaccades and improves antisaccades: an eye movement study in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry78(6), 565–570 (2007).
  • Stern MB. The preclinical detection of Parkinson’s disease: ready for prime time? Ann. Neurol.56(2), 169–171 (2004).
  • Hawkes CH, Shephard BC, Daniel SE. Olfactory dysfunction in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry62(5), 436–446 (1997).
  • Ansari KA, Johnson A. Olfactory function in patients with Parkinson’s disease. J. Chronic Dis.28(9), 493–497 (1975).
  • Double KL, Rowe DB, Hayes M et al. Identifying the pattern of olfactory deficits in Parkinson disease using the brief smell identification test. Arch. Neurol.60(4), 545–549 (2003).
  • Katzenschlager R, Lees AJ. Olfaction and Parkinson’s syndromes: its role in differential diagnosis. Curr. Opin. Neurol.17(4), 417–423 (2004).
  • Kranick SM, Duda JE. Olfactory dysfunction in Parkinson’s disease. Neurosignals16(1), 35–40 (2008).
  • Muller A, Reichmann H, Livermore A, Hummel T. Olfactory function in idiopathic Parkinson’s disease (IPD): results from cross-sectional studies in IPD patients and long-term follow-up of de-novo IPD patients. J. Neural Transm.109(5–6), 805–811 (2002).
  • Doty RL, Shaman P, Kimmelman CP, Dann MS. University of Pennsylvania smell identification test: a rapid quantitative olfactory function test for the clinic. Laryngoscope94(2 Pt 1), 176–178 (1984).
  • Suchowersky O, Reich S, Perlmutter J et al. Practice parameter: diagnosis and prognosis of new onset Parkinson disease (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology66(7), 968–975 (2006).
  • Rothwell JC, Obeso JA, Traub MM, Marsden CD. The behaviour of the long-latency stretch reflex in patients with Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry46(1), 35–44 (1983).
  • Berardelli A, Sabra AF, Hallett M. Physiological mechanisms of rigidity in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry46(1), 45–53 (1983).
  • Meigal AI, Rissanen S, Tarvainen MP et al. Novel parameters of surface EMG in patients with Parkinson’s disease and healthy young and old controls. J. Electromyogr. Kinesiol. (2008) (Epub ahead of print).
  • Valkovic P, Krafczyk S, Botzel K. Postural reactions to soleus muscle vibration in Parkinson’s disease: scaling deteriorates as disease progresses. Neurosci. Lett.401(1–2), 92–96 (2006).
  • Valkovic P, Krafczyk S, Saling M, Benetin J, Botzel K. Postural reactions to neck vibration in Parkinson’s disease. Mov. Disord.21(1), 59–65 (2006).
  • Grasso M, Mazzini L, Schieppati M. Muscle relaxation in Parkinson’s disease: a reaction time study. Mov. Disord.11(4), 411–420 (1996).
  • Wang L, Kuroiwa Y, Li M et al. The correlation between P300 alterations and regional cerebral blood flow in non-demented Parkinson’s disease. Neurosci. Lett.282(3), 133–136 (2000).
  • Falkenstein M, Hoormann J, Hohnsbein J. Changes of error-related ERPs with age. Exp. Brain Res.138(2), 258–262 (2001).
  • Valls-Sole J, Valldeoriola F. Neurophysiological correlate of clinical signs in Parkinson’s disease. Clin. Neurophysiol.113(6), 792–805 (2002).
  • Dubow JS. Autonomic dysfunction in Parkinson’s disease. Dis. Mon.53(5), 265–274 (2007).
  • Vodusek DB. Sphincter EMG and differential diagnosis of multiple system atrophy. Mov. Disord.16(4), 600–607 (2001).
  • Valldeoriola F, Valls-Sole J, Tolosa ES, Marti MJ. Striated anal sphincter denervation in patients with progressive supranuclear palsy. Mov. Disord.10(5), 550–555 (1995).
  • Libelius R, Johansson F. Quantitative electromyography of the external anal sphincter in Parkinson’s disease and multiple system atrophy. Muscle Nerve23(8), 1250–1256 (2000).
  • Giladi N, Simon ES, Korczyn AD et al. Anal sphincter EMG does not distinguish between multiple system atrophy and Parkinson’s disease. Muscle Nerve23(5), 731–734 (2000).
  • Piccini P, Whone A. Functional brain imaging in the differential diagnosis of Parkinson’s disease. Lancet Neurol.3(5), 284–290 (2004).
  • Piccini P, Brooks DJ. New developments of brain imaging for Parkinson’s disease and related disorders. Mov. Disord.21(12), 2035–2041 (2006).
  • Hutchinson M, Raff U. Structural changes of the substantia nigra in Parkinson’s disease as revealed by MR imaging. AJNR Am. J. Neuroradiol.21(4), 697–701 (2000).
  • Hu MT, White SJ, Herlihy AH et al. A comparison of (18)F-DOPA PET and inversion recovery MRI in the diagnosis of Parkinson’s disease. Neurology56(9), 1195–1200 (2001).
  • Minati L, Grisoli M, Carella F et al. Imaging degeneration of the substantia nigra in Parkinson disease with inversion-recovery MR imaging. AJNR Am. J. Neuroradiol.28(2), 309–313 (2007).
  • Chan LL, Rumpel H, Yap K et al. Case control study of diffusion tensor imaging in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry78(12), 1383–1386 (2007).
  • Ito M, Watanabe H, Kawai Y et al. Usefulness of combined fractional anisotropy and apparent diffusion coefficient values for detection of involvement in multiple system atrophy. J. Neurol. Neurosurg. Psychiatry78(7), 722–728 (2007).
  • Berg D, Siefker C, Becker G. Echogenicity of the substantia nigra in Parkinson’s disease and its relation to clinical findings. J. Neurol.248(8), 684–689 (2001).
  • Berg D, Merz B, Reiners K, Naumann M, Becker G. Five-year follow-up study of hyperechogenicity of the substantia nigra in Parkinson’s disease. Mov. Disord.20(3), 383–385 (2005).
  • Schweitzer KJ, Hilker R, Walter U, Burghaus L, Berg D. Substantia nigra hyperechogenicity as a marker of predisposition and slower progression in Parkinson’s disease. Mov. Disord.21(1), 94–98 (2006).
  • Behnke S, Berg D, Naumann M, Becker G. Differentiation of Parkinson’s disease and atypical parkinsonian syndromes by transcranial ultrasound. J. Neurol. Neurosurg. Psychiatry76(3), 423–425 (2005).
  • Walter U, Dressler D, Probst T et al. Transcranial brain sonography findings in discriminating between parkinsonism and idiopathic Parkinson disease. Arch. Neurol.64(11), 1635–1640 (2007).
  • Stockner H, Sojer M, K KS et al. Midbrain sonography in patients with essential tremor. Mov. Disord.22(3), 414–417 (2007).
  • Seibyl JP, Marek KL, Quinlan D et al. Decreased single-photon emission computed tomographic [123I]β-CIT striatal uptake correlates with symptom severity in Parkinson’s disease. Ann. Neurol.38(4), 589–598 (1995).
  • Pirker W, Djamshidian S, Asenbaum S et al. Progression of dopaminergic degeneration in Parkinson’s disease and atypical parkinsonism: a longitudinal β-CIT SPECT study. Mov. Disord.17(1), 45–53 (2002).
  • Winogrodzka A, Bergmans P, Booij J et al. [123I]FP-CIT SPECT is a useful method to monitor the rate of dopaminergic degeneration in early-stage Parkinson’s disease. J. Neural Transm.108(8–9), 1011–1019 (2001).
  • Kim YJ, Ichise M, Ballinger JR et al. Combination of dopamine transporter and D2 receptor SPECT in the diagnostic evaluation of PD, MSA, and PSP. Mov. Disord.17(2), 303–312 (2002).
  • Vlaar AM, de Nijs T, Kessels AG et al. Diagnostic value of I-ioflupane and 123I-iodobenzamide SPECT scans in 248 patients with parkinsonian syndromes. Eur. Neurol.59(5), 258–266 (2008).
  • Marek K, Jennings D, Seibyl J. Do dopamine agonists or levodopa modify Parkinson’s disease progression? Eur. J. Neurol.9(Suppl. 3), 15–22 (2002).
  • Eckert T, Feigin A, Lewis DE et al. Regional metabolic changes in parkinsonian patients with normal dopaminergic imaging. Mov. Disord.22(2), 167–173 (2007).
  • Ravina B, Eidelberg D, Ahlskog JE et al. The role of radiotracer imaging in Parkinson disease. Neurology64(2), 208–215 (2005).
  • Brooks DJ. Technology insight: imaging neurodegeneration in Parkinson’s disease. Nat. Clini. Pract.4(5), 267–277 (2008).
  • Whone AL, Moore RY, Piccini PP, Brooks DJ. Plasticity of the nigropallidal pathway in Parkinson’s disease. Ann. Neurol.53(2), 206–213 (2003).
  • A randomized controlled trial comparing pramipexole with levodopa in early Parkinson’s disease: design and methods of the CALM-PD Study. Parkinson Study Group. Clin. Neuropharmacol.23(1), 34–44 (2000).
  • Whone AL, Watts RL, Stoessl AJ et al. Slower progression of Parkinson’s disease with ropinirole versus levodopa: the REAL-PET study. Ann. Neurol.54(1), 93–101 (2003).
  • Burn DJ, Mark MH, Playford ED et al. Parkinson’s disease in twins studied with 18F-Dopa and positron emission tomography. Neurology42(10), 1894–1900 (1992).
  • Laihinen A, Ruottinen H, Rinne JO et al. Risk for Parkinson’s disease: twin studies for the detection of asymptomatic subjects using [18F]6-fluorodopa PET. J. Neurol.247(Suppl. 2), II110–II113 (2000).
  • Bruck A, Aalto S, Nurmi E et al. Striatal subregional 6-[18F]fluoro-L-DOPA uptake in early Parkinson’s disease: a two-year follow-up study. Mov. Disord.21(7), 958–963 (2006).
  • Wang J, Zuo CT, Jiang YP et al.18F-FP-CIT PET imaging and SPM analysis of dopamine transporters in Parkinson’s disease in various Hoehn and Yahr stages. J. Neurol.254(2), 185–190 (2007).
  • Nurmi E, Ruottinen HM, Bergman J et al. Rate of progression in Parkinson’s disease: a 6-[18F]fluoro-L-dopa PET study. Mov. Disord.16(4), 608–615 (2001).
  • Martin WR, Wieler M, Stoessl AJ, Schulzer M. Dihydrotetrabenazine positron emission tomography imaging in early, untreated Parkinson’s disease. Ann. Neurol.63(3), 388–394 (2008).
  • Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci.19(8), 312–318 (1996).
  • Ouchi Y, Yoshikawa E, Sekine Y et al. Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann. Neurol.57(2), 168–175 (2005).
  • Gerhard A, Pavese N, Hotton G et al.In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol. Dis.21(2), 404–412 (2006).
  • Courbon F, Brefel-Courbon C, Thalamas C et al. Cardiac MIBG scintigraphy is a sensitive tool for detecting cardiac sympathetic denervation in Parkinson’s disease. Mov. Disord.18(8), 890–897 (2003).
  • Goldstein DS, Holmes C, Li ST et al. Cardiac sympathetic denervation in Parkinson disease. Ann. Intern. Med.133(5), 338–347 (2000).
  • Braak H, Del Tredici K, Rub U et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging24(2), 197–211 (2003).
  • Spiegel J, Hellwig D, Farmakis G et al. Myocardial sympathetic degeneration correlates with clinical phenotype of Parkinson’s disease. Mov. Disord.22(7), 1004–1008 (2007).
  • Orimo S, Takahashi A, Uchihara T et al. Degeneration of cardiac sympathetic nerve begins in the early disease process of Parkinson’s disease. Brain Pathol.17(1), 24–30 (2007).
  • Quattrone A, Bagnato A, Annesi G et al. Myocardial 123metaiodobenzylguanidine uptake in genetic Parkinson’s disease. Mov. Disord.23(1), 21–27 (2008).
  • Spiegel J, Mollers MO, Jost WH et al. FP-CIT and MIBG scintigraphy in early Parkinson’s disease. Mov. Disord.20(5), 552–561 (2005).
  • Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica29(11), 1181–1189 (1999).
  • Nicholson JK, Wilson ID. Opinion: understanding ‘global’ systems biology: metabonomics and the continuum of metabolism. Nat. Rev.2(8), 668–676 (2003).
  • Holmes E, Tsang TM, Tabrizi SJ. The application of NMR-based metabonomics in neurological disorders. NeuroRx3(3), 358–372 (2006).
  • Underwood BR, Broadhurst D, Dunn WB et al. Huntington disease patients and transgenic mice have similar pro-catabolic serum metabolite profiles. Brain129(Pt 4), 877–886 (2006).
  • Michell AW, Mosedale D, Grainger DJ, Barker RA. Metabolomic analysis of urine and serum in Parkinson’s disease. Metabolomics4(3), 191–201 (2008).
  • Bogdanov M, Matson WR, Wang L et al. Metabolomic profiling to develop blood biomarkers for Parkinson’s disease. Brain131(Pt 2), 389–396 (2008).
  • Spillantini MG, Schmidt ML, Lee VM et al. α-synuclein in Lewy bodies. Nature388(6645), 839–840 (1997).
  • Michell AW, Luheshi LM, Barker RA. Skin and platelet α-synuclein as peripheral biomarkers of Parkinson’s disease. Neurosci. Lett.381(3), 294–298 (2005).
  • Li QX, Campbell BC, McLean CA et al. Platelet α- and γ-synucleins in Parkinson’s disease and normal control subjects. J. Alzheimers Dis.4(4), 309–315 (2002).
  • El-Agnaf OM, Salem SA, Paleologou KE et al. Detection of oligomeric forms of α-synuclein protein in human plasma as a potential biomarker for Parkinson’s disease. FASEB J.20(3), 419–425 (2006).
  • Tokuda T, Salem SA, Allsop D et al. Decreased α-synuclein in cerebrospinal fluid of aged individuals and subjects with Parkinson's disease. Biochem. Biophys. Res. Comm.349(1), 162–166 (2006).
  • Mollenhauer B, Cullen V, Kahn I et al. Direct quantification of CSF α-synuclein by ELISA and first cross-sectional study in patients with neurodegeneration. Exp. Neurol.213(2), 315–325 (2008).
  • Zhou G, Miura Y, Shoji H, Yamada S, Matsuishi T. Platelet monoamine oxidase B and plasma β-phenylethylamine in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry70(2), 229–231 (2001).
  • Trimmer PA, Swerdlow RH, Parks JK et al. Abnormal mitochondrial morphology in sporadic Parkinson’s and Alzheimer’s disease cybrid cell lines. Exp. Neurol.162(1), 37–50 (2000).
  • Mizuno Y, Ohta S, Tanaka M et al. Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem. Biophys. Res. Comm.163(3), 1450–1455 (1989).
  • Schapira AH, Mann VM, Cooper JM et al. Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J. Neurochem.55(6), 2142–2145 (1990).
  • Parker WD Jr, Boyson SJ, Parks JK. Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann. Neurol.26(6), 719–723 (1989).
  • Keeney PM, Xie J, Capaldi RA, Bennett JP Jr. Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J. Neurosci.26(19), 5256–5264 (2006).
  • Esteves AR, Domingues AF, Ferreira IL et al. Mitochondrial function in Parkinson’s disease cybrids containing an nt2 neuron-like nuclear background. Mitochondrion8(3), 219–228 (2008).
  • Zhang J, Sokal I, Peskind ER et al. CSF multianalyte profile distinguishes Alzheimer and Parkinson diseases. Am. J. Clin. Pathol.129(4), 526–529 (2008).
  • Mollenhauer B, Steinacker P, Bahn E et al. Serum heart-type fatty acid-binding protein and cerebrospinal fluid tau: marker candidates for dementia with Lewy bodies. Neurodegener. Dis.4(5), 366–375 (2007).
  • Abdo WF, Bloem BR, Van Geel WJ, Esselink RA, Verbeek MM. CSF neurofilament light chain and tau differentiate multiple system atrophy from Parkinson’s disease. Neurobiol. Aging28(5), 742–747 (2007).
  • Molina JA, Benito-Leon J, Jimenez-Jimenez FJ et al. Tau protein concentrations in cerebrospinal fluid of non-demented Parkinson’s disease patients. Neurosci. Lett.238(3), 139–141 (1997).
  • Shalon D, Smith SJ, Brown PO. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res.6(7), 639–645 (1996).
  • Hauser MA, Li YJ, Xu H et al. Expression profiling of substantia nigra in Parkinson disease, progressive supranuclear palsy, and frontotemporal dementia with parkinsonism. Arch. Neurol.62(6), 917–921 (2005).
  • Anantharam V, Lehrmann E, Kanthasamy A et al. Microarray analysis of oxidative stress regulated genes in mesencephalic dopaminergic neuronal cells: relevance to oxidative damage in Parkinson’s disease. Neurochem. Int.50(6), 834–847 (2007).
  • Scherzer CR, Eklund AC, Morse LJ et al. Molecular markers of early Parkinson’s disease based on gene expression in blood. Proc. Natl Acad. Sci. USA104(3), 955–960 (2007).
  • Hennecke G, Scherzer CR. RNA biomarkers of Parkinson’s disease: developing tools for novel therapies. Biomark. Med.2(1), 41–53 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.