15
Views
3
CrossRef citations to date
0
Altmetric
Review

Boosting controlled autoimmunity: a new therapeutic target for CNS disorders

, , , &
Pages 819-825 | Published online: 09 Jan 2014

References

  • Cohen IR. The cognitive paradigm and the immunological homunculus. Immunol. Today13(12), 490–494 (1992).
  • Schwartz M, Kipnis J. Multiple sclerosis as a by-product of the failure to sustain protective autoimmunity: a paradigm shift. Neuroscientist8(5), 405–413 (2002).
  • Yoles E, Hauben E, Palgi O et al. Protective autoimmunity is a physiological response to CNS trauma. J. Neurosci.21(11), 3740–3748 (2001).
  • Kipnis J, Yoles E, Schori H, Hauben E, Shaked I, Schwartz M. Neuronal survival after CNS insult is determined by a genetically encoded autoimmune response. J. Neurosci.21(13), 4564–4571 (2001).
  • Schwartz M. Harnessing the immune system for neuroprotection: therapeutic vaccines for acute and chronic neurodegenerative disorders. Cell. Mol. Neurobiol.21(6), 617–627 (2001).
  • Schwartz M, Moalem G, Leibowitz-Amit R, Cohen IR. Innate and adaptive immune responses can be beneficial for CNS repair. Trends Neurosci.22(7), 295–299 (1999).
  • Lindholm D, Castren E, Kiefer R, Zafra F, Thoenen H. Transforming growth factor-β 1 in the rat brain: increase after injury and inhibition of astrocyte proliferation. J. Cell. Biol.117(2), 395–400 (1992).
  • Warrington AE, Asakura K, Bieber AJ et al. Human monoclonal antibodies reactive to oligodendrocytes promote remyelination in a model of multiple sclerosis. Proc. Natl Acad. Sci. USA97(12), 6820–6825 (2000).
  • Mitsunaga Y, Ciric B, Van K et al. Direct evidence that a human antibody derived from patient serum can promote myelin repair in a mouse model of chronic-progressive demyelinating disease. FASEB J.16(10), 1325–1327 (2002).
  • Schwartz M, Kipnis J. Protective autoimmunity and neuroprotection in inflammatory and noninflammatory neurodegenerative diseases. J. Neurol. Sci.233(1–2), 163–166 (2005).
  • Moalem G, Leibowitz-Amit R, Yoles E, Mor F, Cohen IR, Schwartz M. Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat. Med.5(1), 49–55 (1999).
  • Moalem G, Monsonego A, Shani Y, Cohen IR, Schwartz M. Differential T cell response in central and peripheral nerve injury: connection with immune privilege. FASEB J.13(10), 1207–1217 (1999).
  • Hauben E, Nevo U, Yoles E et al. Autoimmune T cells as potential neuroprotective therapy for spinal cord injury. Lancet355(9200), 286–287 (2000).
  • Hauben E, Butovsky O, Nevo U et al. Passive or active immunization with myelin basic protein promotes recovery from spinal cord contusion. J. Neurosci.20(17), 6421–6430 (2000).
  • Thoenen H, Bandtlow C, Heumann R, Lindholm D, Meyer M, Rohrer H. Nerve growth factor: cellular localization and regulation of synthesis. Cell. Mol. Neurobiol.8(1), 35–40 (1988).
  • Bieber AJ, Warrington A, Pease LR, Rodriguez M. Humoral autoimmunity as a mediator of CNS repair. Trends Neurosci.24(11 Suppl.), S39–S44 (2001).
  • Kipnis J, Mizrahi T, Hauben E, Shaked I, Shevach E, Schwartz M. Neuroprotective autoimmunity: naturally occurring CD4+CD25+ regulatory T cells suppress the ability to withstand injury to the central nervous system. Proc. Natl Acad. Sci. USA99(24), 15620–15625 (2002).
  • Kipnis J, Mizrahi T, Yoles E, Ben Nun A, Schwartz M. Myelin specific Th1 cells are necessary for post-traumatic protective autoimmunity. J. Neuroimmunol.130(1–2), 78–85 (2002).
  • Montero E, Nussbaum G, Kaye JF et al. Regulation of experimental autoimmune encephalomyelitis by CD4+, CD25+ and CD8+ T cells: analysis using depleting antibodies. J. Autoimmun.23(1), 1–7 (2004).
  • Mizrahi T, Hauben E, Schwartz M. The Tissue-specific self-pathogen is the protective self-antigen: the case of uveitis. J. Immunol.169(10), 5971–5977 (2002).
  • Fisher J, Levkovitch-Verbin H, Schori H et al. Vaccination for neuroprotection in the mouse optic nerve: implications for optic neuropathies. J. Neurosci.21(1), 136–142 (2001).
  • McFarland HF, Martin R. Multiple sclerosis: a complicated picture of autoimmunity. Nat. Immunol.8(9), 913–919 (2007).
  • Underhill DM, Ozinsky A. Toll-like receptors: key mediators of microbe detection. Curr. Opin. Immunol.14(1), 103–110 (2002).
  • Syed MM, Phulwani NK, Kielian T. Tumor necrosis factor-α (TNF-α) regulates toll-like receptor 2 (TLR2) expression in microglia. J. Neurochem.103(4), 1461–1471 (2007).
  • Kigerl KA, Lai W, Rivest S, Hart RP, Satoskar AR, Popovich PG. Toll-like receptor (TLR)-2 and TLR-4 regulate inflammation, gliosis, and myelin sparing after spinal cord injury. J. Neurochem.102(1), 37–50 (2007).
  • Beers DR, Henkel JS, Xiao Q et al. Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA103(43), 16021–16026 (2006).
  • Boillee S, Yamanaka K, Lobsiger CS et al. Onset and progression in inherited ALS determined by motor neurons and microglia. Science312(5778), 1389–1392 (2006).
  • Zhao W, Xie W, Xiao Q, Beers DR, Appel SH. Protective effects of an anti-inflammatory cytokine, interleukin-4, on motoneuron toxicity induced by activated microglia. J. Neurochem.99(4), 1176–1187 (2006).
  • Xiao Q, Zhao W, Beers DR et al. Mutant SOD1(G93A) microglia are more neurotoxic relative to wild-type microglia. J. Neurochem.102(6), 2008–2019 (2007).
  • Hohlfeld R, Kerschensteiner M, Stadelmann C, Lassmann H, Wekerle H. The neuroprotective effect of inflammation: implications for the therapy of multiple sclerosis. Neurol. Sci.27(Suppl. 1), S1–S7 (2006).
  • Kerschensteiner M, Stadelmann C, Dechant G, Wekerle H, Hohlfeld R. Neurotrophic cross-talk between the nervous and immune systems: implications for neurological diseases. Ann. Neurol.53(3), 292–304 (2003).
  • Hauben E, Agranov E, Gothilf A et al. Posttraumatic therapeutic vaccination with modified myelin self-antigen prevents complete paralysis while avoiding autoimmune disease. J. Clin. Invest.108(4), 591–599 (2001).
  • Montero E, Alonso L, Perez R, Lage A. Interleukin-2 mastering regulation in cancer and autoimmunity. Ann. NY Acad. Sci.1107, 239–250 (2007).
  • Adamus G, Chan CC. Experimental autoimmune uveitides: multiple antigens, diverse diseases. Int. Rev. Immunol.21(2–3), 209–229 (2002).
  • Avichezer D, Chan CC, Silver PB, Wiggert B, Caspi RR. Residues 1–20 of IRBP and whole IRBP elicit different uveitogenic and immunological responses in interferon γ deficient mice. Exp. Eye Res.71(2), 111–118 (2000).
  • Hauben E, Ibarra A, Mizrahi T, Barouch R, Agranov E, Schwartz M. Vaccination with a Nogo-A-derived peptide after incomplete spinal-cord injury promotes recovery via a T-cell-mediated neuroprotective response: comparison with other myelin antigens. Proc. Natl Acad. Sci. USA98(26), 15173–15178 (2001).
  • Kipnis J, Yoles E, Porat Z et al. T cell immunity to copolymer 1 confers neuroprotection on the damaged optic nerve: Possible therapy for optic neuropathies. Proc. Natl Acad. Sci. USA97(13), 7446–7451 (2000).
  • Schori H, Kipnis J, Yoles E et al. Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: implications for glaucoma. Proc. Natl Acad. Sci. USA98(6), 3398–3403 (2001).
  • Schwartz M. Physiological approaches to neuroprotection. boosting of protective autoimmunity. Surv. Ophthalmol.45(Suppl. 3), S256–S260; discussion S273–S276 (2001).
  • Bar-Or A, Vollmer T, Antel J et al. Induction of antigen-specific tolerance in multiple sclerosis after immunization with DNA encoding myelin basic protein in a randomized, placebo-controlled phase 1/2 trial. Arch. Neurol.64(10), 1407–1415 (2007).
  • Bailey SL, Schreiner B, McMahon EJ, Miller SD. CNS myeloid DCs presenting endogenous myelin peptides ‘preferentially’ polarize CD4+ TH-17 cells in relapsing EAE. Nat. Immunol.8(2), 172–180 (2007).
  • Appel E, Kolman O, Kazimirsky G, Blumberg PM, Brodie C. Regulation of GDNF expression in cultured astrocytes by inflammatory stimuli. Neuroreport8(15), 3309–3312 (1997).
  • Stromnes IM, Cerretti LM, Liggitt D, Harris RA, Goverman JM. Differential regulation of central nervous system autoimmunity by TH1 and TH17 cells. Nat. Med.14(3), 337–342 (2008).
  • Kebir H, Kreymborg K, Ifergan I et al. Human TH17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation. Nat. Med.13(10), 1173–1175 (2007).
  • Kappos L, Duda P. The Janus face of CNS-directed autoimmune response: a therapeutic challenge. Brain125(11), 2379–2380 (2002).
  • Hohlfeld R. Biotechnological agents for the immunotherapy of multiple sclerosis. Principles, problems and perspectives. Brain120(Pt 5), 865–916 (1997).
  • Noseworthy JH, Gold R, Hartung HP. Treatment of multiple sclerosis: recent trials and future perspectives. Curr. Opin. Neurol.12(3), 279–293 (1999).
  • Gielen A, Khademi M, Muhallab S, Olsson T, Piehl F. Increased brain-derived neurotrophic factor expression in white blood cells of relapsing-remitting multiple sclerosis patients. Scand. J. Immunol.57(5), 493–497 (2003).
  • Hohlfeld R, Kerschensteiner M, Stadelmann C, Lassmann H, Wekerle H. The neuroprotective effect of inflammation: implications for the therapy of multiple sclerosis. J. Neuroimmunol.107(2), 161–166 (2000).
  • Kerschensteiner M, Gallmeier E, Behrens L et al. Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J. Exp. Med.189(5), 865–870 (1999).
  • Besser M, Wank R. Cutting edge: clonally restricted production of the neurotrophins brain-derived neurotrophic factor and neurotrophin-3 mRNA by human immune cells and Th1/Th2-polarized expression of their receptors. J. Immunol.162(11), 6303–6306 (1999).
  • Stadelmann C, Kerschensteiner M, Misgeld T, Bruck W, Hohlfeld R, Lassmann H. BDNF and gp145trkB in multiple sclerosis brain lesions: neuroprotective interactions between immune and neuronal cells? Brain125(Pt 1), 75–85 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.