457
Views
1
CrossRef citations to date
0
Altmetric
Editorial

Using chips to simulate the brain as a tool to investigate brain development

&
Pages 1001-1004 | Published online: 09 Jan 2014

References

  • Park TH, Shuler ML. Integration of cell culture and microfabrication technology. Biotechnol. Prog.19, 243–253 (2003).
  • Jeon NL, Dertinger SK, Chiu DT et al. Generation of solution and surface gradients using microfluidic system. Langmuir16, 8311–8316 (2000).
  • Paliwal S, Iglesias PA, Campbell K et al. MAPK-mediated bimodal gene expression and adaptive gradient sensing in yeast. Nature446, 46–51 (2007).
  • Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. Geometric control of cell life and death. Science276, 1425–1428 (1997).
  • Cho H, Jonsson H, Campbell K et al. Self-organization in high-density bacterial colonies: efficient crowd control. PLoS Biol.5(11), 2614–2623 (2007).
  • Wang CJ, Li X, Lin B et al. A microfluidics-based turning assay reveals complex growth cone responses to integrated gradients of substrate-bound ECM molecules and diffusible guidance cues. Lab. Chip8, 227–237 (2008).
  • Ming G-l, Song H-J. Adult neurogenesis in the mammalian central nervous system. Annu. Rev. Neurosci.28, 232–250 (2005).
  • Chung B, Flanagan L, Rhee S et al. Human neuronal stem cell growth and differentiation in a gradient-generating microfluidic device. Lab. Chip5(4), 401–406 (2005).
  • Soen Y, Mori A, Palmer TD, Brown PO. Exploring the regulating of human neural precursor cell differentiation using arrays of signaling microenvironments. Mol. Syst. Biol.2, 37–50 (2006).
  • Chin VI, Taupin P, Sanga S et al. Microfabricated platform for studying stem cell fates. Biotech. Bioeng.88(3), 399–415 (2004).
  • Recknor J, Sakaguchi D, Mallapragada S. Directed growth and selective differentation of neural progenitor cells on micropatterned polymer substrate. Biomaterials27(22), 4098–4108 (2006).
  • Tessier-Lavigne M, Goodman CS. The molecular biology of axon guidance. Science274(5290), 1123–1133 (1996).
  • Clark P, Britland s, Connolly P. Growth cone guidance and neuron morphology on micropatterned laminin surfaces. J. Cell Sci.105, 203–212 (1993).
  • Drescher U, Bonhoeffer F, Muller BK. The Eph family in retinal axon guidance. Curr. Opin. Neurobiol.7(1), 75–80 (1997).
  • Philipsborn ACV, Lang S, Loeschinger J et al. Growth cone navigation in substrate-bound ephrin gradients. Development133, 2487–2495 (2006).
  • Kim JY, Ming G-l. Adaptation mechanisms in long-range growth cone guidance. Cellsci. Rev.4(4), 97–109 (2008).
  • Guan C-b, Xu H-T, Jin M, Yuan X-B, Poo M-M. Long-range Ca2+ signaling from growth cones to soma mediates reversal of neuronal migration induced by slit-2. Cell129(2), 385–395 (2007).
  • Xu H-T, Yuan X-B, Guan C-B et al. Calcium signaling in chemorepellant slit2-dependent regulation of neuronal migration. Proc. Natl Acad. Sci. USA101(12), 4296–4301 (2004).
  • Hassoun AT, Erdelyi F, Szabo G, Davis MI. A rapid screening method for population-specific neuronal motogens, substrate and associated signaling pathways. J. Neurosci. Methods166(2), 178–194 (2007).
  • Mao H, Cremer PS, Manson MD. A sensitive, versatile microfluidic assay for bacterial chemotaxis. Proc. Natl Acad. Sci. USA100(9), 5449–5454 (2003).
  • Lin F, Nguyen CM-C, Wang S-J et al. Effective neutrophil chemotaxis is strongly influenced by mean IL-8 concentration. Biochem. Biophys. Res. Commun.319, 576–581 (2004).
  • Song L, Nadkarni SM, Bodeker HU et al. Dictyostelium discoideum chemotaxis: threshold for directed motion. Eur. J. Cell Biol.85, 981–989 (2006).
  • Yoshimura T, Arimura N, Kaibuchi K. Signaling networks in neuronal polarization. J. Neurosci.26(42), 10626–10630 (2006).
  • Esch T, Lemmon V, Banker G. Local presentation of substrate molecules directs axon specification by cultured hippocampal neurons. J. Neurosci.19(15), 6417–6426 (1999).
  • Dertinger S, Jiang X, Li Z, Murthy V, Whitesides G. Gradients of substrate-bound laminin orient axonal specification of neurons. Proc. Natl Acad. Sci. USA74(11), 2451–2457 (2002).
  • Francisco H, Yellen BB, Halverson DS, Friedman G, Gallo G. Regulation of axon guidance and extension by three-dimensional constraints. Biomaterials28, 3398–3407 (2007).
  • Bogorff DJ, Messerli MA, Malchow RP, Smith PJ. Development and characterization of a self-referencing glutamate-selective micro-biosensor. Biol. Bull.205, 207–208 (2003).
  • Crespi F. In vivo voltammetry with micro-biosensors for analysis of neurotransmitter release and metabolism. J. Neurosci. Methods34, 53–65 (1990).
  • Koester P, Sakowski J, Baumann W, Glock H-W, Gimsa J. A new exposure system for the in vitro detection of GHz field effects on neuronal networks. Bioelectrochemistry70, 104–114 (2007).
  • Cornish T, Branch D, Wheeler B, Campanelli J. Microcontact printing: a versatile technique enhances polylysine transfer and neuronal cell patterning. Mol. Cell. Neurosci.20(1), 140–153 (2002).
  • Nam Y, Chang J, Wheeler B, Brewer G. Gold-coated microelectrode array with thiol linked self-assembled monolayers for engineering neuronal cultures. IEEE Trans. Biomed. Eng.51(1), 158–165 (2004).
  • James CD, Spence AJ, Dowell-Mesfin NM et al. Extracellular recordings from patterned neuronal networks using planar microelectrode arrays. IEEE Trans. Biomed. Eng.51(9), 1640–1648 (2004).
  • Chang J, Brewer G, Wheeler B. Modulation of neural network activity by patterning. Biosens. Bioelectron.16(7–8), 527–533 (2001).
  • Peterman MC, Mehenti NZ, Bilbao KV et al. The artificial synapse chip: a flexible retinal interface based on directed retinal cell growth and neurotransmitter stimulation. Artif. Organs27(11), 975–985 (2003).
  • Yu Z, Xiang G, Pan L et al. Negative dielectrophoretic force assisted construction of ordered neuronal networks on cell positioning bioelectronic chips. Biomed. Microdevices6(4), 311–324 (2004).
  • Morin F, Nishimura N, Griscom L et al. Constraining the connectivity of neuronal networks cultured on microelectrode arrays with microfluidic techniques: a step towards neuron-based functional chips. Biosens. Bioelectron.21, 1093–1100 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.