142
Views
35
CrossRef citations to date
0
Altmetric
Review

Role of glutamate in schizophrenia: integrating excitatory avenues of research

, &
Pages 1389-1406 | Published online: 09 Jan 2014

References

  • Miyamoto S, Duncan GE, Marx CE, 1 Lieberman JA. Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol. Psychiatry10(1), 79–104 (2005).
  • Woolley DW, Shaw E. Some neurophysiological aspects of serotonin. Br. Med. J.2(4880), 122–126 (1954).
  • Szara S. The hallucinogenic drugs – curse or blessing? Am. J. Psychiatry123(12), 1513–1518 (1967).
  • Hays P, Tilley JR. The differences between LSD psychosis and schizophrenia. Can. Psychiatr. Assoc. J.18(4), 331–333 (1973).
  • Creese I, Burt DR, Snyder SH. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science192(4238), 481–483 (1976).
  • Kane J, Honigfeld G, Singer J, Meltzer H. Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Arch. Gen. Psychiatry45(9), 789–796 (1988).
  • Meltzer HY, Li Z, Kaneda Y, Ichikawa J. Serotonin receptors: their key role in drugs to treat schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry27(7), 1159–1172 (2003).
  • Purdon SE. Cognitive improvement in schizophrenia with novel antipsychotic medications. Schizophr. Res.35(Suppl.), S51–S60 (1999).
  • Buchanan RW, Freedman R, Javitt DC, Abi-Dargham A, Lieberman JA. Recent advances in the development of novel pharmacological agents for the treatment of cognitive impairments in schizophrenia. Schizophr. Bull.33(5), 1120–1130 (2007).
  • Javitt DC, Zukin SR. Recent advances in the phencyclidine model of schizophrenia. Am. J. Psychiatry148(10), 1301–1308 (1991).
  • Breier A, Malhotra AK, Pinals DA, Weisenfeld NI, Pickar D. Association of ketamine-induced psychosis with focal activation of the prefrontal cortex in healthy volunteers. Am. J. Psychiatry154(6), 805–811 (1997).
  • Krystal JH, Karper LP, Seibyl JP et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatry51(3), 199–214 (1994).
  • Tamminga C. Glutamatergic aspects of schizophrenia. Br. J. Psychiatry37, 12–15 (1999).
  • Lahti AC, Koffel B, LaPorte D, Tamminga CA. Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology13(1), 9–19 (1995).
  • Coyle JT. Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell. Mol. Neurobiol.26(4–6), 365–384 (2006).
  • McCullumsmith RE, Clinton SM, Meador-Woodruff JH. Schizophrenia as a disorder of neuroplasticity. Int. Rev. Neurobiol.59, 19–45 (2004).
  • Meador-Woodruff JH, Clinton SM, Beneyto M, McCullumsmith RE. Molecular abnormalities of the glutamate synapse in the thalamus in schizophrenia. Ann. NY Acad. Sci.1003, 75–93 (2003).
  • Meador-Woodruff JH, Healy DJ. Glutamate receptor expression in schizophrenic brain. Brain Res.31(2–3), 288–294 (2000).
  • Ishimaru M, Kurumaji A, Toru M. Glutamate receptors and schizophrenia. Trends Neurosci.19(10), 416–417 (1996).
  • Lerma J, Morales M, Vicente MA, Herreras O. Glutamate receptors of the kainate type and synaptic transmission. Trends Neurosci.20(1), 9–12 (1997).
  • Seeburg PH. The TINS/TiPS Lecture. The molecular biology of mammalian glutamate receptor channels. Trends Neurosci.16(9), 359–365 (1993).
  • Conn PJ, Pin JP. Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol.37, 205–237 (1997).
  • Seeman P. Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse1(2), 133–152 (1987).
  • Kapur S, Seeman P. Does fast dissociation from the dopamine d2 receptor explain the action of atypical antipsychotics?: a new hypothesis. Am. J. Psychiatry158(3), 360–369 (2001).
  • Tandon R, Fleischhacker WW. Comparative efficacy of antipsychotics in the treatment of schizophrenia: a critical assessment. Schizophr. Res.79(2–3), 145–155 (2005).
  • Roth BL, Craigo SC, Choudhary MS et al. Binding of typical and atypical antipsychotic agents to 5-hydroxytryptamine-6 and 5-hydroxytryptamine-7 receptors. J. Pharmacol. Exp. Ther.268(3), 1403–1410 (1994).
  • Sodhi MS, Murray RM. Future therapies for schizophrenia. Expert Opin. Ther. Pat.7(2), 151–165 (1997).
  • Tuominen HJ, Tiihonen J, Wahlbeck K. Glutamatergic drugs for schizophrenia: a systematic review and meta-analysis. Schizophr. Res.72(2–3), 225–234 (2005).
  • Vollenweider FX, Geyer MA. A systems model of altered consciousness: integrating natural and drug-induced psychoses. Brain Res. Bull.56(5), 495–507 (2001).
  • Stone JM, Erlandsson K, Arstad E et al. Ketamine displaces the novel NMDA receptor SPET probe [123I]CNS-1261 in humans in vivo. Nucl. Med. Biol.33(2), 239–243 (2006).
  • Pilowsky LS, Bressan RA, Stone JM et al. First in vivo evidence of an NMDA receptor deficit in medication-free schizophrenic patients. Mol. Psychiatry11(2), 118–119 (2006).
  • Szulc A, Galinska B, Tarasow E et al. The effect of risperidone on metabolite measures in the frontal lobe, temporal lobe, and thalamus in schizophrenic patients. A proton magnetic resonance spectroscopy (1H MRS). Pharmacopsychiatry38(5), 214–219 (2005).
  • Coyle JT, Tsai G, Goff D. Converging evidence of NMDA receptor hypofunction in the pathophysiology of schizophrenia. Ann. NY Acad. Sci.1003, 318–327 (2003).
  • De Deurwaerdere P, Navailles S, Berg KA, Clarke WP, Spampinato U. Constitutive activity of the serotonin2C receptor inhibits in vivo dopamine release in the rat striatum and nucleus accumbens. J. Neurosci.24(13), 3235–3241 (2004).
  • Williams GV, Goldman-Rakic PS. Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature376(6541), 572–575 (1995).
  • Akil M, Pierri JN, Whitehead RE et al. Lamina-specific alterations in the dopamine innervation of the prefrontal cortex in schizophrenic subjects. Am. J. Psychiatry156(10), 1580–1589 (1999).
  • Weinberger DR, Aloia MS, Goldberg TE, Berman KF. The frontal lobes and schizophrenia. Neuropsychiatry Clin. Neurosci.6(4), 419–427 (1994).
  • Ceglia I, Carli M, Baviera M et al. The 5-HT receptor antagonist M100,907 prevents extracellular glutamate rising in response to NMDA receptor blockade in the mPFC. J. Neurochem.91(1), 189–199 (2004).
  • Lieberman JA, Kane JM, Safferman AZ et al. Predictors of response to clozapine. J. Clin. Psychiatry (55 Suppl. B), 126–128 (1994).
  • Cardno AG, Marshall EJ, Coid B et al. Heritability estimates for psychotic disorders: the Maudsley twin psychosis series. Arch. Gen. Psychiatry56(2), 162–168 (1999).
  • Owen MJ, Craddock N, Jablensky A. The genetic deconstruction of psychosis. Schizophr. Bull.33(4), 905–911 (2007).
  • Egan MF, Goldberg TE, Kolachana BS et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc. Natl Acad. Sci. USA98(12), 6917–6922 (2001).
  • Harrison PJ, Weinberger DR. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol. Psychiatry10(1), 40–68; image 45 (2005).
  • Cannon TD, Keller MC. Endophenotypes in the genetic analyses of mental disorders. Annu. Rev. Clin. Psychol.2, 267–290 (2006).
  • Carter CJ. Schizophrenia susceptibility genes converge on interlinked pathways related to glutamatergic transmission and long-term potentiation, oxidative stress and oligodendrocyte viability. Schizophr. Res.86(1–3), 1–14 (2006).
  • Li D, He L. Association study between the NMDA receptor 2B subunit gene (GRIN2B) and schizophrenia: a HuGE review and meta-analysis. Genet. Med.9(1), 4–8 (2007).
  • Sartorius LJ, Nagappan G, Lipska BK et al. Alternative splicing of human metabotropic glutamate receptor 3. J. Neurochem.96(4), 1139–1148 (2006).
  • Marti SB, Cichon S, Propping P, Nothen M. Metabotropic glutamate receptor 3 (GRM3) gene variation is not associated with schizophrenia or bipolar affective disorder in the German population. Am. J. Med. Genet.114(1), 46–50 (2002).
  • Fujii Y, Shibata H, Kikuta R et al. Positive associations of polymorphisms in the metabotropic glutamate receptor type 3 gene (GRM3) with schizophrenia. Psychiatr. Genet.13(2), 71–76 (2003).
  • Chen Q, He G, Chen Q et al. A case–control study of the relationship between the metabotropic glutamate receptor 3 gene and schizophrenia in the Chinese population. Schizophr. Res.73(1), 21–26 (2005).
  • Marenco S, Steele SU, Egan MF et al. Effect of metabotropic glutamate receptor 3 genotype on N-acetylaspartate measures in the dorsolateral prefrontal cortex. Am. J. Psychiatry163(4), 740–742 (2006).
  • Egan MF, Straub RE, Goldberg TE et al. Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia. Proc. Natl Acad. Sci. USA101(34), 12604–12609 (2004).
  • Tan HY, Chen Q, Sust S et al. Epistasis between catechol-O-methyltransferase and type II metabotropic glutamate receptor 3 genes on working memory brain function. Proc. Natl Acad. Sci. USA104(30), 12536–12541 (2007).
  • Lewis DA, Glantz LA, Pierri JN, Sweet RA. Altered cortical glutamate neurotransmission in schizophrenia: evidence from morphological studies of pyramidal neurons. Ann. NY Acad. Sci.1003, 102–112 (2003).
  • Badner JA, Gershon ES. Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol. Psychiatry7(4), 405–411 (2002).
  • Tosato S, Dazzan P, Collier D. Association between the neuregulin 1 gene and schizophrenia: a systematic review. Schizophr. Bull.31(3), 613–617 (2005).
  • Law AJ, Lipska BK, Weickert CS et al. Neuregulin 1 transcripts are differentially expressed in schizophrenia and regulated by 5´ SNPs associated with the disease. Proc. Natl Acad. Sci. USA103(17), 6747–6752 (2006).
  • Tan HY, Callicott JH, Weinberger DR. Dysfunctional and compensatory prefrontal cortical systems, genes and the pathogenesis of schizophrenia. Cereb. Cortex17(Suppl. 1), i171–i181 (2007).
  • Hahn CG, Wang HY, Cho DS et al. Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia. Nat. Med.12(7), 824–828 (2006).
  • Chumakov I, Blumenfeld M, Guerassimenko O et al. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc. Natl Acad. Sci. USA99(21), 13675–13680 (2002).
  • Mothet JP, Parent AT, Wolosker H et al.D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc. Natl Acad. Sci. USA97(9), 4926–4931 (2000).
  • Chen YS, Akula N, Detera-Wadleigh SD et al. Findings in an independent sample support an association between bipolar affective disorder and the G72/G30 locus on chromosome 13q33. Mol. Psychiatry9(1), 87–92; image 85 (2004).
  • Hattori E, Liu C, Badner JA et al. Polymorphisms at the G72/G30 gene locus, on 13q33, are associated with bipolar disorder in two independent pedigree series. Am. J. Hum.Genet.72(5), 1131–1140 (2003).
  • Schumacher J, Jamra RA, Freudenberg J et al. Examination of G72 and D-aminoacid oxidase as genetic risk factors for schizophrenia and bipolar affective disorder. Mol. Psychiatry9(2), 203–207 (2004).
  • Straub RE, Jiang Y, MacLean CJ et al. Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am. J. Hum. Genet.71(2), 337–348 (2002).
  • Mathews CA, Reus VI, Bejarano J et al. Genetic studies of neuropsychiatric disorders in Costa Rica: a model for the use of isolated populations. Psychiatr. Genet.14(1), 13–23 (2004).
  • Tang JX, Zhou J, Fan JB et al. Family-based association study of DTNBP1 in 6p22.3 and schizophrenia. Mol. Psychiatry8(8), 717–718 (2003).
  • Van Den Bogaert A, Schumacher J, Schulze TG et al. The DTNBP1 (dysbindin) gene contributes to schizophrenia, depending on family history of the disease. Am. J. Hum. Genet.73(6), 1438–1443 (2003).
  • van den Oord EJ, Sullivan PF, Jiang Y et al. Identification of a high-risk haplotype for the dystrobrevin binding protein 1 (DTNBP1) gene in the Irish study of high-density schizophrenia families. Mol. Psychiatry8(5), 499–510 (2003).
  • Kirov G, Ivanov D, Williams NM et al. Strong evidence for association between the dystrobrevin binding protein 1 gene (DTNBP1) and schizophrenia in 488 parent-offspring trios from Bulgaria. Biol. Psychiatry55(10), 971–975 (2004).
  • Williams NM, O’Donovan MC, Owen MJ. Is the dysbindin gene (DTNBP1) a susceptibility gene for schizophrenia? Schizophr. Bull.31(4), 800–805 (2005).
  • Tochigi M, Zhang X, Ohashi J et al. Association study of the dysbindin (DTNBP1) gene in schizophrenia from the Japanese population. Neurosci. Res.56(2), 154–158 (2006).
  • Liao HM, Chen CH. Mutation analysis of the human dystrobrevin-binding protein 1gene in schizophrenic patients. Schizophr. Res.71(1), 185–189 (2004).
  • Bray NJ, Preece A, Williams NM et al. Haplotypes at the dystrobrevin binding protein 1 (DTNBP1) gene locus mediate risk for schizophrenia through reduced DTNBP1 expression. Hum. Mol. Genet.14(14), 1947–1954 (2005).
  • Weickert CS, Straub RE, McClintock BW et al. Human dysbindin (DTNBP1) gene expression in normal brain and in schizophrenic prefrontal cortex and midbrain. Arch. Gen. Psychiatry61(6), 544–555 (2004).
  • Talbot K, Eidem WL, Tinsley CL et al. Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia. J. Clin. Invest.113(9), 1353–1363 (2004).
  • DeRosse P, Funke B, Burdick KEet al. Dysbindin genotype and negative symptoms in schizophrenia. Am. J. Psychiatry163(3), 532–534 (2006).
  • Burdick KE, Lencz T, Funke B et al. Genetic variation in DTNBP1 influences general cognitive ability. Hum. Mol. Genet.15(10), 1563–1568 (2006).
  • Vilella E, Costas J, Sanjuan J et al. Association of schizophrenia with DTNBP1 but not with DAO, DAOA, NRG1 and RGS4 nor their genetic interaction. J. Psychiatr. Res.42(4), 278–288 (2008).
  • Javitt DC. Glutamate and schizophrenia: phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. Int. Rev. Neurobiol.78, 69–108 (2007).
  • Goff DC, Tsai G, Manoach DS et al.D-cycloserine added to clozapine for patients with schizophrenia. Am. J. Psychiatry153(12), 1628–1630 (1996).
  • Goff DC, Herz L, Posever T et al. A six-month, placebo-controlled trial of D-cycloserine co-administered with conventional antipsychotics in schizophrenia patients. Psychopharmacology179(1), 144–150 (2005).
  • Leiderman E, Zylberman I, Zukin SR, Cooper TB, Javitt DC. Preliminary investigation of high-dose oral glycine on serum levels and negative symptoms in schizophrenia: an open-label trial. Biol. Psychiatry39(3), 213–215 (1996).
  • Heresco-Levy U, Javitt DC, Ermilov M et al. Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia. Arch. Gen. Psychiatry56(1), 29–36 (1999).
  • Javitt DC, Silipo G, Cienfuegos A et al. Adjunctive high-dose glycine in the treatment of schizophrenia. Int. J. Neuropsychopharmacol.4(4), 385–391 (2001).
  • Watson GB, Bolanowski MA, Baganoff MP, Deppeler CL, Lanthorn TH. D-cycloserine acts as a partial agonist at the glycine modulatory site of the NMDA receptor expressed in Xenopus oocytes. Brain Res.510(1), 158–160 (1990).
  • Hashimoto A, Chiba S. Effect of systemic administration of D-serine on the levels of D- and L-serine in several brain areas and periphery of rat. Eur. J. Pharmacol.495(2–3), 153–158 (2004).
  • Tsai G, Yang P, Chung LC, Lange N, Coyle JT. D-serine added to antipsychotics for the treatment of schizophrenia. Biol. Psychiatry44(11), 1081–1089 (1998).
  • Heresco-Levy U, Javitt DC, Ermilov M et al. Double-blind, placebo-controlled, crossover trial of glycine adjuvant therapy for treatment-resistant schizophrenia. Br. J. Psychiatry169(5), 610–617 (1996).
  • Heresco-Levy U, Silipo G, Javitt DC. Glycinergic augmentation of NMDA receptor-mediated neurotransmission in the treatment of schizophrenia. Psychopharmacol. Bull.32(4), 731–740 (1996).
  • Heresco-Levy U, Javitt DC, Ebstein R et al.D-serine efficacy as add-on pharmacotherapy to risperidone and olanzapine for treatment-refractory schizophrenia. Biol. Psychiatry57(6), 577–585 (2005).
  • Tsai G, Lane HY, Yang P, Chong MY, Lange N. Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to antipsychotics for the treatment of schizophrenia. Biol. Psychiatry55(5), 452–456 (2004).
  • Lane HY, Liu YC, Huang CL et al. Sarcosine (N-methylglycine) treatment for acute schizophrenia: a randomized, double-blind study. Biol. Psychiatry63(1), 9–12 (2008).
  • Goff DC, Keefe R, Citrome L et al. Lamotrigine as add-on therapy in schizophrenia: results of 2 placebocontrolled trials. Clin. Psychopharmacol.27(6), 582–589 (2007).
  • Lourenco Da Silva A, Hoffmann A, Dietrich MO et al. Effect of riluzole on MK-801 and amphetamine-induced hyperlocomotion. Neuropsychobiology48(1), 27–30 (2003).
  • Goff DC, Leahy L, Berman I et al. A placebo-controlled pilot study of the ampakine CX516 added to clozapine in schizophrenia. Clin. Psychopharmacol.21(5), 484–487 (2001).
  • Wezenberg E, Verkes RJ, Ruigt GS, Hulstijn W, Sabbe BG. Acute effects of the ampakine farampator on memory and information processing in healthy elderly volunteers. Neuropsychopharmacology32(6), 1272–1283 (2007).
  • Goff DC, Lamberti JS, Leon AC et al. A placebo-controlled add-on trial of the Ampakine, CX516, for cognitive deficits in schizophrenia. Neuropsychopharmacology33(3), 465–472 (2008).
  • Marenco S, Egan MF, Goldberg TE et al. Preliminary experience with an ampakine (CX516) as a single agent for the treatment of schizophrenia: a case series. Schizophr. Res.57(2–3), 221–226 (2002).
  • Dursun SM, Deakin JF. Augmenting antipsychotic treatment with lamotrigine or topiramate in patients with treatmentresistant schizophrenia: a naturalistic case-series outcome study. J. Psychopharmacol. (Oxford)15(4), 297–301 (2001).
  • Tiihonen J, Hallikainen T, Ryynanen OP et al. Lamotrigine in treatment-resistant schizophrenia: a randomized placebocontrolled crossover trial. Biol. Psychiatry54(11), 1241–1248 (2003).
  • Kremer I, Vass A, Gorelik I et al. Placebo-controlled trial of lamotrigine added to conventional and atypical antipsychotics in schizophrenia. Biol. Psychiatry56(6), 441–446 (2004).
  • Farber NB, Jiang XP, Heinkel C, Nemmers B. Antiepileptic drugs and agents that inhibit voltage-gated sodium channels prevent NMDA antagonist neurotoxicity. Mol. Psychiatry7(7), 726–733 (2002).
  • Patil ST, Zhang L, Martenyi F et al. Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nat. Med.13(9), 1102–1107 (2007).
  • Harrison PJ. Metabotropic glutamate receptor agonists for schizophrenia. Br. J. Psychiatry192, 86–87 (2008).
  • Seeman P. Glutamate agonists for schizophrenia stimulate dopamine D2High receptors. Schizophr. Res.99(1–3), 373–374 (2008).
  • Seeman P, Caruso C, Lasaga M. Dopamine partial agonist actions of the glutamate receptor agonists LY 354,740 and LY 379,268. Synapse62(2), 154–158 (2008).
  • Bartz S, Jackson AL. How will RNAi facilitate drug development? Sci. STKE2005(295), pe39 (2005).
  • Boado RJ. Blood–brain barrier transport of non-viral gene and RNAi therapeutics. Pharm. Res.24(9), 1772–1787 (2007).
  • Myers SJ, Dingledine R, Borges K. Genetic regulation of glutamate receptor ion channels. Annu. Rev. Pharmacol. Toxicol.39, 221–241 (1999).
  • O’Tuathaigh CM, Babovic D, O’Meara G et al. Susceptibility genes for schizophrenia: characterisation of mutant mouse models at the level of phenotypic behaviour. Neurosci. Biobehav. Rev.31(1), 60–78 (2007).
  • Magri C, Gardella R, Barlati SD et al. Glutamate AMPA receptor subunit 1 gene (GRIA1) and DSM-IV-TR schizophrenia: a pilot case–control association study in an Italian sample. Am. J. Med. Genet. B Neuropsychiatr. Genet.141(3), 287–293 (2006).
  • Mead AN, Stephens DN. Involvement of AMPA receptor GluR2 subunits in stimulus-reward learning: evidence from glutamate receptor gria2 knock-out mice. J. Neurosci.23(29), 9500–9507 (2003).
  • Mead AN, Zamanillo D, Becker N, Stephens DN. AMPA-receptor GluR1 subunits are involved in the control over behavior by cocaine-paired cues. Neuropsychopharmacology32(2), 343–353 (2007).
  • Makino C, Fujii Y, Kikuta R et al. Positive association of the AMPA receptor subunit GluR4 gene (GRIA4) haplotype with schizophrenia: linkage disequilibrium mapping using SNPs evenly distributed across the gene region. Am. J. Med. Genet. B Neuropsychiatr. Genet.116(1), 17–22 (2003).
  • Guo S, Shi Y, Zhao X et al. No genetic association between polymorphisms in the AMPA receptor subunit GluR4 gene (GRIA4) and schizophrenia in the Chinese population. Neurosci. Lett.369(2), 168–172 (2004).
  • Begni S, Popoli M, Moraschi S et al. Association between the ionotropic glutamate receptor kainate 3 (GRIK3) ser310ala polymorphism and schizophrenia. Mol. Psychiatry7(4), 416–418 (2002).
  • Lai IC, Liou YJ, Chen JY, Wang YC. No association between the ionotropic glutamate receptor kainate 3 gene ser310ala polymorphism and schizophrenia. Neuropsychobiology51(4), 211–213 (2005).
  • Shibata H, Aramaki T, Sakai M et al. Association study of polymorphisms in the GluR7, KA1 and KA2 kainate receptor genes (GRIK3, GRIK4, GRIK5) with schizophrenia. Psychiatry Res.141(1), 39–51 (2006).
  • Pickard BS, Malloy MP, Christoforou A et al. Cytogenetic and genetic evidence supports a role for the kainate-type glutamate receptor gene, GRIK4, in schizophrenia and bipolar disorder. Mol. Psychiatry11(9), 847–857 (2006).
  • Blackwood DH, Pickard BJ, Thomson PA 121 et al. Are some genetic risk factors common to schizophrenia, bipolar disorder and depression? Evidence from DISC1, GRIK4 and NRG1. Neurotox. Res.11(1), 73–83 (2007).
  • Li Z, He Z, Tang W et al. No genetic association between polymorphisms in the kainate-type glutamate receptor gene, GRIK4, and schizophrenia in the Chinese population. Prog. Neuropsychopharmacol. Biol. Psychiatry32(3), 876–880 (2008).
  • Hung CC, Chen HY, Chen CH. Systematic mutation analysis of the human glutamate receptor, ionotropic, N-methyl-D-aspartate 1 gene (GRIN1) in schizophrenic patients. Psychiatr. Genet.12(4), 225–230 (2002).
  • Georgi A, Jamra RA, Klein K et al. Possible association between genetic variants at the GRIN1 gene and schizophrenia with lifetime history of depressive symptoms in a German sample. Psychiatr. Genet.17(5), 308–310 (2007).
  • Martucci L, Wong AH, Trakalo J et al.N-methyl-D-aspartate receptor NR1 subunit gene (GRIN1) in schizophrenia: TDT and case–control analyses. Am. J. Med. Genet. B Neuropsychiatr. Genet.119(1), 24–27 (2003).
  • Sakurai K, Toru M, Yamakawa-Kobayashi K, Arinami T. Mutation analysis of the N-methyl-D-aspartate receptor NR1 subunit gene (GRIN1) in schizophrenia. Neurosci. Lett.296(2–3), 168–170 (2000).
  • Williams NM, Bowen T, Spurlock G et al. Determination of the genomic structure and mutation screening in schizophrenic individuals for five subunits of the N-methyl-D-aspartate glutamate receptor. Mol. Psychiatry7(5), 508–514 (2002).
  • Zhao X, Li H, Shi Y et al. Significant association between the genetic variations in the 5´ end of the N-methyl-D-aspartate receptor subunit gene GRIN1 and schizophrenia. Biol. Psychiatry59(8), 747–753 (2006).
  • Aoki-Suzuki M, Yamada K, Meerabux J et al. A family-based association study and gene expression analyses of netrin-G1 and -G2 genes in schizophrenia. Biol. Psychiatry57(4), 382–393 (2005).
  • Guo SZ, Huang K, Shi YY 130 et al. A case–control association study between the GRID1 gene and schizophrenia in the Chinese Northern Han population. Schizophr. Res.93(1–3), 385–390 (2007).
  • Fallin MD, Lasseter VK, Avramopoulos D et al. Bipolar I disorder and schizophrenia: a 440-single-nucleotide polymorphism screen of 64 candidate genes among Ashkenazi Jewish case-parent trios. Am. J. Hum. Genet.77(6), 918–936 (2005).
  • Deng X, Shibata H, Takeuchi N et al. Association study of polymorphisms in the glutamate transporter genes SLC1A1, SLC1A3, and SLC1A6 with schizophrenia. Am. J. Med. Genet. B Neuropsychiatr. Genet.144(3), 271–278 (2007).
  • Wallen-Mackenzie A, Gezelius H, Thoby-Brisson M et al. Vesicular glutamate transporter 2 is required for central respiratory rhythm generation but not for locomotor central pattern generation. J. Neurosci.26(47), 12294–12307 (2006).
  • Deng X, Shibata H, Ninomiya H et al. Association study of polymorphisms in the excitatory amino acid transporter 2 gene (SLC1A2) with schizophrenia. BMC Psychiatry4, 21 (2004).
  • Johnson J, Fremeau RT Jr, Duncan JL et al. Vesicular glutamate transporter 1 is required for photoreceptor synaptic signaling but not for intrinsic visual functions. J. Neurosci.27(27), 7245–7255 (2007).
  • Yamashita A, Makita K, Kuroiwa T, Tanaka K. Glutamate transporters GLAST and EAAT4 regulate postischemic Purkinje cell death: an in vivo study using a cardiac arrest model in mice lacking GLAST or EAAT4. Neurosci. Res.55(3), 264–270 (2006).
  • Joo A, Shibata H, Ninomiya H et al. Structure and polymorphisms of the human metabotropic glutamate receptor type 2 gene (GRM2): analysis of association with schizophrenia. Mol. Psychiatry6(2), 186–192 (2001).
  • Morishima Y, Miyakawa T, Furuyashiki T et al. Enhanced cocaine responsiveness and impaired motor coordination in metabotropic glutamate receptor subtype 2 knockout mice. Proc. Natl Acad. Sci. USA102(11), 4170–4175 (2005).
  • Tochigi M, Suga M, Ohashi J et al. No association between the metabotropic glutamate receptor type 3 gene (GRM3) and schizophrenia in a Japanese population. Schizophr. Res.88(1–3), 260–264 (2006).
  • Norton N, Williams HJ, Dwyer S et al. No evidence for association between polymorphisms in GRM3 and schizophrenia. BMC Psychiatry5, 23 (2005).
  • Schwab SG, Plummer C, Albus M et al. DNA sequence variants in the metabotropic glutamate receptor 3 and risk to schizophrenia: an association study. Psychiatr. Genet.18(1), 25–30 (2008).
  • Nunokawa A, Watanabe Y, Kitamura H et al. Large-scale case–control study of a functional polymorphism in the glutamate receptor, metabotropic 3 gene in patients with schizophrenia. Psychiatry Clin. Neurosci.62(2), 239–240 (2008).
  • Albalushi T, Horiuchi Y, Ishiguro H et al. Replication study and meta-analysis of the genetic association of GRM3 gene polymorphisms with schizophrenia in a large Japanese case–control population. Am. J. Med. Genet. B Neuropsychiatr. Genet.147(3), 392–396 (2008).
  • Linden AM, Shannon H, Baez M et al. Anxiolytic-like activity of the mGLU2/3 receptor agonist LY354740 in the elevated plus maze test is disrupted in metabotropic glutamate receptor 2 and 3 knock-out mice. Psychopharmacology179(1), 284–291 (2005).
  • Ohtsuki T, Toru M, Arinami T. Mutation screening of the metabotropic glutamate receptor mGluR4 (GRM4) gene in patients with schizophrenia. Psychiatr. Genet.11(2), 79–83 (2001).
  • Blednov YA, Walker D, Osterndorf-Kahanek E, Harris RA. Mice lacking metabotropic glutamate receptor 4 do not show the motor stimulatory effect of ethanol. Alcohol34(2–3), 251–259 (2004).
  • Bolonna AA, Kerwin RW, Munro J, Arranz MJ, Makoff AJ. Polymorphisms in the genes for mGluR types 7 and 8: association studies with schizophrenia. Schizophr. Res.47(1), 99–103 (2001).
  • Bray NJ, Williams NM, Bowen T et al. No evidence for association between a non-synonymous polymorphism in the gene encoding human metabotropic glutamate receptor 7 and schizophrenia. Psychiatr. Genet.10(2), 83–86 (2000).
  • Ohtsuki T, Koga M, Ishiguro H et al. A polymorphism of the metabotropic glutamate receptor mGluR7 (GRM7) gene is associated with schizophrenia. Schizophr. Res.101(1–3), 9–16 (2008).
  • Holscher C, Schmid S, Pilz PK et al. Lack of the metabotropic glutamate receptor subtype 7 selectively impairs short-term working memory but not long-term memory. Behav. Brain Res.154(2), 473–481 (2004).
  • Takaki H, Kikuta R, Shibata H et al. Positive associations of polymorphisms in the metabotropic glutamate receptor type 8 gene (GRM8) with schizophrenia. Am. J. Med. Genet. B Neuropsychiatr. Genet.128(1), 6–14 (2004).
  • Duvoisin RM, Zhang C, Pfankuch TF et al. Increased measures of anxiety and weight gain in mice lacking the group III metabotropic glutamate receptor mGluR8. Eur. J. Neurosci.22(2), 425–436 (2005).
  • Numakawa T, Yagasaki Y, Ishimoto T et al. Evidence of novel neuronal functions of dysbindin, a susceptibility gene for schizophrenia. Hum. Mol. Genet.13(21), 2699–2708 (2004).
  • Fanous AH, van den Oord EJ, Riley BP et al. Relationship between a high-risk haplotype in the DTNBP1 (dysbindin) gene and clinical features of schizophrenia. Am. J. Psychiatry162(10), 1824–1832 (20055).
  • Joo EJ, Lee KY, Jeong SH et al. The dysbindin gene (DTNBP1) and schizophrenia: no support for an association in the Korean population. Neurosci. Lett.407(2), 101–106 (2006).
  • Schwab SG, Knapp M, Mondabon S et al. Support for association of schizophrenia with genetic variation in the 6p22.3 gene, dysbindin, in sib-pair families with linkage and in an additional sample of triad families. Am. J. Hum. Genet.72(1), 185–190 (2003).
  • Williams NM, Preece A, Morris DW et al. Identification in 2 independent samples of a novel schizophrenia risk haplotype of the dystrobrevin binding protein gene (DTNBP1). Arch. Gen. Psychiatry61(4), 336–344 (2004).
  • Tosato S, Ruggeri M, Bonetto C et al. Association study of dysbindin gene with clinical and outcome measures in a representative cohort of Italian schizophrenic patients. Am. J. Med. Genet. B Neuropsychiatr. Genet.144(5), 647–659 (2007).
  • Turunen JA, Peltonen JO, Pietilainen OP et al. The role of DTNBP1, NRG1, and AKT1 in the genetics of schizophrenia in Finland. Schizophr. Res.91(1–3), 27–36 (2007).
  • Zinkstok JR, de Wilde O, van Amelsvoort TA et al. Association between the DTNBP1 gene and intelligence: a case–control study in young patients with schizophrenia and related disorders and unaffected siblings. Behav. Brain Funct.3, 19 (2007).
  • Peters K, Wiltshire S, Henders AK et al. Comprehensive analysis of tagging sequence variants in DTNBP1 shows no association with schizophrenia or with its composite neurocognitive endophenotypes. Am. J. Med. Genet. B Neuropsychiatr. Genet. (2008) (Epub ahead of print).
  • Sanders AR, Duan J, Levinson DF et al. No significant association of 14 candidate genes with schizophrenia in a large European ancestry sample: implications for psychiatric genetics. Am. J. Psychiatry165(4), 497–506 (2008).
  • Murotani T, Ishizuka T, Hattori S et al. High dopamine turnover in the brains of Sandy mice. Neurosci. Lett.421(1), 47–51 (2007).
  • Stefansson H, Sigurdsson E, Steinthorsdottir V et al. Neuregulin 1 and susceptibility to schizophrenia. Am. J.Hum. Genet.71(4), 877–892 (2002).
  • Harrison PJ, Owen MJ. Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet361(9355), 417–419 (2003).
  • Yang JZ, Si TM, Ruan Y et al. Association study of neuregulin 1 gene with schizophrenia. Mol. Psychiatry8(7), 706–709 (2003).
  • Hall D, Gogos JA, Karayiorgou M. The contribution of three strong candidate schizophrenia susceptibility genes in demographically distinct populations. Genes Brain Behav.3(4), 240–248 (2004).
  • Iwata N, Suzuki T, Ikeda M et al. No association with the neuregulin 1 haplotype to Japanese schizophrenia. Mol. Psychiatry9(2), 126–127 (2004).
  • Li T, Stefansson H, Gudfinnsson E et al. Identification of a novel neuregulin 1 at-risk haplotype in Han schizophrenia Chinese patients, but no association with the Icelandic/Scottish risk haplotype. Mol. Psychiatry9(7), 698–704 (2004).
  • Thiselton DL, Webb BT, Neale BM et al. No evidence for linkage or association of neuregulin-1 (NRG1) with disease in the Irish study of high-density schizophrenia families (ISHDSF). Mol. Psychiatry9(8), 777–783; image 729 (2004).
  • Zhao X, Shi Y, Tang J et al. A case–control and family based association study of the neuregulin1 gene and schizophrenia. J. Med. Genet.41(1), 31–34 (2004).
  • Fukui N, Muratake T, Kaneko N, Amagane H, Someya T. Supportive evidence for neuregulin 1 as a susceptibility gene for schizophrenia in a Japanese population. Neurosci. Lett.396(2), 117–120 (2006).
  • Zou F, Li C, Duan S et al. A family-based study of the association between the G72/G30 genes and schizophrenia in the Chinese population. Schizophr. Res.73(2–3), 257–261 (2005).
  • Petryshen TL, Middleton FA, Kirby A et al. Support for involvement of neuregulin 1 in schizophrenia pathophysiology. Mol. Psychiatry10(4), 366–374, 328 (2005).
  • Walss-Bass C, Liu W, Lew DF et al. A novel missense mutation in the transmembrane domain of neuregulin 1 is associated with schizophrenia. Biol. Psychiatry60(6), 548–553 (2006).
  • Lachman HM, Pedrosa E, Nolan KA et al. Analysis of polymorphisms in AT-rich domains of neuregulin 1 gene in schizophrenia. Am. J. Med. Genet. B Neuropsychiatr. Genet.141(1), 102–109 (2006).
  • Lin HF, Liu YL, Liu CM et al. Neuregulin 1 gene and variations in perceptual aberration of schizotypal personality in adolescents. Psychol. Med.35(11), 1589–1598 (2005).
  • Li D, Collier DA, He L. Meta-analysis shows strong positive association of the neuregulin 1 (NRG1) gene with schizophrenia. Hum. Mol. Genet.15(12), 1995–2002 (2006).
  • Thomson PA, Christoforou A, Morris SW et al. Association of neuregulin 1 with schizophrenia and bipolar disorder in a second cohort from the Scottish population. Mol. Psychiatry12(1), 94–104 (2007).
  • Crowley JJ, Keefe RS, Perkins DO et al. The neuregulin 1 promoter polymorphism rs6994992 is not associated with chronic schizophrenia or neurocognition. Am. J. Med. Genet. B Neuropsychiatr. Genet. (2008) (Epub ahead of print).
  • Georgieva L, Dimitrova A, Ivanov D et al. Support for neuregulin 1 as a susceptibility gene for bipolar disorder and schizophrenia. Biol. Psychiatry64(5), 419–427 (2008).
  • Ikeda M, Takahashi N, Saito S et al. Failure to replicate the association between NRG1 and schizophrenia using Japanese large sample. Schizophr. Res.101(1–3), 1–8 (2008).
  • Addington AM, Gornick M, Sporn AL et al. Polymorphisms in the 13q33.2 gene G72/G30 are associated with childhoodonset schizophrenia and psychosis not otherwise specified. Biol. Psychiatry55(10), 976–980 (2004).
  • Korostishevsky M, Kaganovich M, Cholostoy A et al. Is the G72/G30 locus associated with schizophrenia? single nucleotide polymorphisms, haplotypes, and gene expression analysis. Biol. Psychiatry56(3), 169–176 (2004).
  • Korostishevsky M, Kremer I, Kaganovich M et al. Transmission disequilibrium and haplotype analyses of the G72/G30 locus: suggestive linkage to schizophrenia in Palestinian Arabs living in the North of Israel. Am. J. Med. Genet. B Neuropsychiatr. Genet.141(1), 91–95 (2006).
  • Wang JQ, Tang Q, Parelkar NK et al. Glutamate signaling to Ras-MAPK in striatal neurons: mechanisms for inducible gene expression and plasticity. Mol. Neurobiol.29(1), 1–14 (2004).
  • Shinkai T, De Luca V, Hwang R et al. Association analyses of the DAOA/G30 and D-amino-acid oxidase genes in schizophrenia: further evidence for a role in schizophrenia. Neuromol. Med.9(2), 169–177 (2007).
  • Mulle JG, Chowdari KV, Nimgaonkar V, Chakravarti A. No evidence for association to the G72/G30 locus in an independent sample of schizophrenia families. Mol. Psychiatry10(5), 431–433 (2005).
  • Ma J, Qin W, Wang XY et al. Further evidence for the association between G72/G30 genes and schizophrenia in two ethnically distinct populations. Mol. Psychiatry11(5), 479–487 (2006).
  • Liu YL, Fann CS, Liu CM et al. No association of G72 and D-amino acid oxidase genes with schizophrenia. Schizophr. Res.87(1–3), 15–20 (2006).
  • Nicodemus KK, Kolachana BS, Vakkalanka R et al. Evidence for statistical epistasis between catechol-O-methyltransferase (COMT) and polymorphisms in RGS4, G72 (DAOA), GRM3, and DISC1: influence on risk of schizophrenia. Hum. Genet.120(6), 889–906 (2007).
  • Goldberg TE, Straub RE, Callicott JH et al. The G72/G30 gene complex and cognitive abnormalities in schizophrenia. Neuropsychopharmacology31(9), 2022–2032 (2006).
  • Hong CJ, Hou SJ, Yen FC, Liou YJ, Tsai SJ. Family-based association study between G72/G30 genetic polymorphism and schizophrenia. Neuroreport17(10), 1067–1069 (2006).
  • Yue W, Liu Z, Kang G et al. Association of G72/G30 polymorphisms with early-onset and male schizophrenia. Neuroreport17(18), 1899–1902 (2006).
  • Yue W, Kang G, Zhang Y et al. Association of DAOA polymorphisms with schizophrenia and clinical symptoms or therapeutic effects. Neurosci. Lett.416(1), 96–100 (2007).
  • Li D, He L. G72/G30 genes and schizophrenia: a systematic meta-analysis of association studies. Genetics175(2), 917–922 (2007).
  • Corvin A, Donohoe G, McGhee K et al.D-amino acid oxidase (DAO) genotype and mood symptomatology in schizophrenia. Neurosci. Lett.426(2), 97–100 (2007).
  • Corvin A, McGhee KA, Murphy K et al. Evidence for association and epistasis at the DAOA/G30 and D-amino acid oxidase loci in an Irish schizophrenia sample. Am. J. Med. Genet. B Neuropsychiatr. Genet.144(7), 949–953 (2007).
  • Wood LS, Pickering EH, Dechairo BM. Significant support for DAO as a schizophrenia susceptibility locus: examination of five genes putatively associated with schizophrenia. Biol. Psychiatry61(10), 1195–1199 (2007). Almond SL, Fradley RL, Armstrong EJ et al. Behavioral and biochemical characterization of a mutant mouse strain lacking D-amino acid oxidase activity and its implications for schizophrenia. Mol. Cell. Neurosci.32(4), 324–334 (2006).
  • Makino C, Shibata H, Ninomiya H, Tashiro N, Fukumaki Y. Identification of single-nucleotide polymorphisms in the human N-methyl-D-aspartate receptor subunit NR2D gene, GRIN2D, and association study with schizophrenia. Psychiatric Genetics15(3), 215–221 (2005).
  • Shibata H, Joo A, Fujii Y et al. Association study of polymorphisms in the GluR5 kainate receptor gene (GRIK1) with schizophrenia. Psychiatric Genetics11(3), 139–144 (2001).
  • Li D, He L. Association study between the NMDA receptor 2B subunit gene (GRIN2B) and schizophrenia: a HuGE review and meta-analysis. Genet. Med.9(1), 4–8 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.