46
Views
45
CrossRef citations to date
0
Altmetric
Review

Development of a leishmaniasis vaccine: the importance of MPL

, &
Pages 239-252 | Published online: 09 Jan 2014

References

  • Grevelink SA, Lerner EA. Leishmaniasis. J. Am. Acad. Dermatol 34,257–272 (1996).
  • Baily GG, Nandy A. Visceral leishmaniasis: more prevalent and more problematic. J. Infect. 29,241–247 (1994).
  • Herwaldt BL. Leishmaniasis. Lancet 354, 1191–1199 (1999).
  • Marsden PD. Mucocutaneous leishmaniasis. Br. 11/Ied. 301,656-657 (1990).
  • Marsden, PD Mucosal leishmaniasis (espundia' Escomel, 1911). Trans. R. Soc. Trop. Med Hyg. 80,859-876 (1986).
  • Marsden PD, Sampaio RN, Rocha R, Radke M. Mucocutaneous leishmaniasis — an unsolved clinical problem. 7i-op. Dort. 7, 7–11 (1977).
  • Ramesh V, Mukherjee A. Post-kala-azar dermal leishmaniasis. Int. J. Dermatol 34,85–91 (1995).
  • Khan HM. Post-Kala-azar dermal leishmaniasis (a review of 10 cases). Bangladesh Med Res. Counc. Bull. 3, 130–136 (1977).
  • Marsden P Jones TC. Clinical manifestations, diagnosis and treatment of leishmaniasis. In: Leishmaniasis Chang KP, Bray RS (Eds). Elsevier Science, Amsterdam, The Netherlands, 183–198 (1985).
  • Marsden PD. Selective primary healthcare: strategies for control of disease in the developing world. XIV. Leishmaniasis. Rev Infect. Dis. 6, 736–744 (1984).
  • Sacks DL, Kenney RT, Kreutzer RD et al. Indian kala-azar caused by Leishmania tropica. Lancet 345,959–961 (1995).
  • TDR News. 37, 1–2. The World Health Organization (1991).
  • Hyams KC, Riddle J, Trump DH, Graham JT. Endemic infectious diseases and biological warfare during the Gulf War: a decade of analysis and final concerns. Am.j 7i-op. Med. Hyg. 65, 664–670 (2001).
  • Wolday D, Berhe N, Akuffo H, Desjeux P, Britton S. Emerging Leishmania/HIV co-infection in Africa. Med. Nlicrobiol Immunol (Berl) 190,65–67 (2001).
  • Desjeux P. Global control and Leishmania HIV co-infection. Clin. Dermatol 17, 317–325 (1999).
  • Launois P Louis JA, Milon G. The fate and persistence of Leishmania mdjorin mice of different genetic backgrounds: an example of exploitation of the immune system by intracellular parasites. Parasitology 115(Suppl.), S25—S32 (1997).
  • Bogdan C, Rollinghoff M. The immune response to Leishmania: mechanisms of parasite control and evasion. Int. J. Parasitol 28,121–134 (1998).
  • Aebischer T, Moody SF, Handman E. Persistence of virulent Leishmania major in murine cutaneous leishmaniasis: a possible hazard for the host. Infect. Immun. 61, 220–226 (1993).
  • Marsden PD, Llanos-Cuentas EA, Lago E et al. Human mucocutaneous leishmaniasis in Tres Bracos, Bahia-Brazil. An area of Leishmania brazi/iensistransmission. III. Mucosal disease: presentation and initial evolution. Rev. Soc. Bras. Med Pop. 17, 179–186 (1984).
  • Ashford RW. The leishmaniases as model zoonoses. Ann. Pop. Med Parasitol 91, 693–701 (1997).
  • Lainson R. The American leishmaniases: some observations on their ecology and epidemiology. Trans. R. Soc. Pop. Med Hyg: 77,569-596 (1983).
  • Ambroise-Thomas P Parasitic diseases and immunodeficiencies. Parasitology 122 (Suppl.), S65—S71 (2001).
  • Albrecht H. Leishmaniosis — new perspectives on an underappreciated opportunistic infection. AIDS12, 2225–2226 (1998).
  • Abath FG, Montenegro SM, Gornes YM. Vaccines against human parasitic diseases: an overview. Acta Trap. 71,237–254 (1998).
  • Cox FE. Designer vaccines for parasitic diseases. Int. Parasitol 27,1147–1157 (1997).
  • Higashi GI. Vaccines for parasitic diseases. Ann. Rev Public Ikalth 9,483–501 (1988).
  • Hommel M, Jaffe CL, Travi B, Milon G. Experimental models for leishmaniasis and for testing antileishmanial vaccines. Ann. 7i-op. Med Parasitol 89\(Suppl. 1), 55–73 (1995).
  • Jaffe CL. Recent trends in vaccine development and immunization. Clin. Dermatol 17,339–344 (1999).
  • Modabber E Experiences with vaccines against cutaneous leishmaniasis: of men and mice. Parasitology98(Suppl), S49—S60 (1989).
  • Modabber E Development of vaccines against leishmaniasis. Land. j Infect. Dis. Suppl 76,72–78 (1990).
  • Modabber E Vaccines against leishmaniasis. Ann. Trop. Med Parasitol 89\(Suppl. 1), 83–88 (1995).
  • Modabber E First generation leishmaniasis vaccines in clinical development: moving but what next? CI.117: Opin. Anti-infect. Investiff Drugs 2,35–39 (2000).
  • Jones DE, Elloso MM, Scott P Host susceptibility factors to cutaneous leishmaniasis. Front. Biosci. 3, D1171—D1180 (1998).
  • Reiner SL, Locksley RM. The regulation of vimmunity to Leishmania molar: Ann. Rev. Immunol 13,151–177 (1995).
  • Reed SG, Scott P T-cell and cytokine responses in leishmaniasis. Cun Opin. Immunol 5,524–531 (1993).
  • Russo DM, Barral-Netto M, Banal A, Reed SG. Human T-cell responses in Leishmania infections. Frog: Clin. Parasitol 3,119–144 (1993).
  • Liew FY, O'Donnell CA. Immunology of leishmaniasis. Adv. Parasitol 32,161–259 (1993).
  • Locksley RM, Louis JA. Immunology of leishmaniasis. Curr Opin. Immunol 4, 413–418 (1992).
  • Scott P, Pearce E, Cheever AW, Coffman RL, Sher A. Role of cytokines and CD4+ T-cell subsets in the regulation of parasite immunity and disease. Immunol Rev 112, 161–182 (1989).
  • Liew FY. Regulation of cell-mediated immunity in leishmaniasis. C1.117: Top. Mcrobiol Immunol 155,53–64 (1990).
  • Lohoff M, Gessner A, Bogdan C, Rollinghoff M. The Th1/Th2 paradigm and experimental murine leishmaniasis. Int. Arch. Allergy Immunol 115,191–202 (1998).
  • Soong L, Chang CH, Sun J etal. Role of CD4+ T-cells in pathogenesis associated with Leishmania amazonensis infection. J. Immunol 158,5374–5383 (1997).
  • Brown DR, Fowell DJ, Corry DB et al. β-microglobulin-dependent NK1.1± T-cells are not essential for T-helper cell 2 immune responses. J. Exp. Med 184,1295–1304 (1996).
  • Erb K, Blank C, Ritter U, Bluethmann H, Moll H. Leishmania mdjorinfection in major histocompatibility complex class II deficient mice: CD8* T-cells do not mediate a protective immune response. Immunobiology195,243–260 (1996).
  • Erb KJ, Blank C, Moll H. Susceptibility to Leishmania mdjorin IL-4 transgenic mice is not correlated with the lack of a Thl immune response. Immunol Cell Biol. 74, 239–244 (1996).
  • Chakkalath HR, Theodos CM, Markowitz JS, Grusby MJ, Glimcher LH, Titus RG. Class II major histocompatibility complex-deficient mice initially control an infection with Leishmania major but succumb to the disease. Infect. Dis. 171,1302–1308 (1995).
  • Locksley RM, Wakil AE, Corry DB, Pingel S, Bix M, Powell DJ. The development of effector T-cell subsets in murine Leishmania major infection. Ciba Found. Symp. 195,110–117 (1995).
  • Wang ZE, Reiner SL, Hatarn F et al Targeted activation of CD8 cells and infection of 02-microglobulin-deficient mice fail to confirm a primary protective role for CD8 cells in experimental leishmaniasis. Immunol 151,2077–2086 (1993).
  • Overath P, Harbecke D. Course of Leishmania infection in 02-microglobulin-deficient mice. Immunol Lett. 37,13–17 (1993).
  • Reiner SL, Seder RA. T-helper cell differentiation in immune response. CUI7: Opin. Immunol 7,360–366 (1995).
  • Malherbe L, Filippi C, Julia V et al. Selective activation and expansion of high-affinity CD4+ T-cells in resistant mice upon infection with Leishmania major Immunity13,771–782 (2000).
  • Reiner SL, Locksley RM. Cytokines in the differentiation of Th1/Th2 CD4+ subsets in leishmaniasis. j Cell Biochem. 53, 323–328 (1993).
  • Heinzel FP, Sadick MD, Holaday BJ, Coffman RL, Locksley RM. Reciprocal expression of interferon-y or interleukin-4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T-cell subsets. EAp. Merl 169,59–72 (1989).
  • Hsieh CS, Macatonia SE, OGarra A, Murphy KM. T-cell genetic background determines default T-helper phenotype development in vitro. I Exp. Med. 181, 713–721 (1995).
  • Mosmann TR, Cherwinski H, Bond MW Giedlin MA, Coffman RL. Two types of murine helper T-cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. I Immunol 136,2348–2357 (1986).
  • Muller I, Pedrazzini T, Farrell JP, Louis J. T-cell responses and immunity to experimental infection with Leishmania major Ann. Rev. Immunol 7,561–578 (1989).
  • Noben-Trauth N, Kropf P, Muller I Susceptibility to Leishmania majorinfection in interleukin-4-deficient mice. Science 271,987–990 (1996).
  • Scott P, Natovitz P, Coffman RL, Pearce E, Sher A. CDT- T-cell subsets in experimental cutaneous leishmaniasis. Mem Inst. Oswaldo Cruz83\(Suppl. 1), 256–259 (1988).
  • Scott P, Natovitz P, Coffman RL, Pearce E, Sher A. Immunoregulation of cutaneous leishmaniasis. T-cell lines that transfer protective immunity or exacerbation belong to different T-helper subsets and respond to distinct parasite antigens. Exp. Merl 168,1675–1684 (1988).
  • Solbach W Laskay T The host response to Leishmania infection. Adv. Immunol 74, 275–317 (2000).
  • Blackwell JM. Leishmaniasis epidemiology: all down to the DNA. Parasitology 104(Suppl), S19—S34 (1992).
  • Blackwell JM, Roach TI, Atkinson SE, Ajioka JW, Barton CH, Shaw MA. Genetic regulation of macrophage priming/activation: the Lsh gene story. Immunol Lett. 30,241–248 (1991).
  • Blackwell JM. Genetic susceptibility to leishmanial infections: studies in mice and man. Parasitology 112 (Suppl.), S67—S74 (1996).
  • Kaye PM, Roberts MB, Blackwell JM. Analysing the immune response to L. donovani infection. Ann. Inst. Pasteur Immunol 138,762–768 (1987).
  • Kaye PM, Curry AJ, Bancroft GJ, Lang T Antigen processing and presentation: modelling with Leishmania. Behting Inst. Nlitt.13–19 (1991).
  • McLeod R, Buschman E, Arbuckle LD, Skamene E. Immunogenetics in the analysis of resistance to intracellular pathogens. Curr. Opin. Immunol 7,539–552 (1995).
  • Mock B, Blackwell J, Hilgers J, Potter M, Nacy C. Genetic control of Leishmania majorinfection in congenic, recombinant inbred and F2 populations of mice. Eur. Immunogenet. 20,335-348 (1993).
  • Wassom DL, Kelly EA. The role of the major histocompatibility complex in resistance to parasite infections. Crit. Rev Immunol 10,31–52 (1990).
  • Launois P, Himmelrich H, Tacchini-Cottier F, Milon G, Louis JA. New insight into the mechanisms underlying Th2 cell development and susceptibility to Leishmania major in BALB/c mice. Maybes Infect. 1,59-64 (1999).
  • Gorczynski RM. Nature of resistance to leishmaniasis in experimental rodents. Dev. Comp. Immunol 6,199–207 (1982).
  • Guler ML, Gorham JD, Hsieh CS et al. Genetic susceptibility to Leishmania: IL-12 responsiveness in Thl cell development. Science 271,984–987 (1996).
  • Scharton-Kersten T, Afonso LC, Wysocka M, Trinchieri G, Scott P. IL-12 is required for natural killer cell activation and subsequent T-helper 1 cell development in experimental leishmaniasis. I immunol 154,5320–5330 (1995).
  • Scott P, Scharton T Interaction between the innate and the acquired immune system following infection of different mouse strains with Leishmania major Ann. NY Acad. Li. 730,84–92 (1994).
  • Scott P. Th cell development and regulation in experimental cutaneous leishmaniasis. Chem. Immunol 63,98–114 (1996).
  • Locksley RM, Reiner SL, Hatam F, Littman DR, Killeen N. Helper T-cells without CD4: control of leishmaniasis in CD4-deficient mice. Science 261,1448–1451 (1993).
  • Sacks DL, Scott PA, Asofsky R, Sher FA. Cutaneous leishmaniasis in antiIgM-treated mice: enhanced resistance due to functional depletion of a B-cell-dependent T-cell involved in the suppressor pathway. Immunol 132,2072–2077 (1984).
  • Babai B, Louzir H, Cazenave PA, Dellagi K. Depletion of peritoneal CD5* B-cells has no effect on the course of Leishmania major infection in susceptible and resistant mice. Clin. Exp. Immunol 117,123–129 (1999).
  • Bretscher PA, Wei G, Menon JN, Bielefeldt-Ohmann H. Establishment of stable, cell-mediated immunity that makes 'susceptible' mice resistant to Leishmania major. Science 257,539–542 (1992).
  • Smelt SC, Cotterell SE, Engwerda CR, Kaye PM. B-cell-deficient mice are highly resistant to Leishmania donovani infection but develop neutrophil-mediated tissue pathology. I Immunol 164,3681–3688 (2000).
  • Akuffo H, Maasho K, Blostedt M, Hojeberg B, Britton S, Bakhiet M. Leishmania aethiopica derived from diffuse leishmaniasis patients preferentially induce mRNA for interleukin-10 while those from localized leishmaniasis patients induce interferon-y. I Infect. Dis. 175, 737–741 (1997).
  • Kemp K. Cytokine-producing T-cell subsets in human leishmaniasis. Arch. Immunol Ther. Exp. (Warsz) 48,173–176 (2000).
  • Pirmez C, Yamamura M, Uyemura K, Paes-Oliveira M, Conceicao-Silva F, Modlin RL. Cytokine patterns in the pathogenesis of human leishmaniasis. I Clin. Invest. 91, 1390–1395 (1993).
  • Caceres-Dittmar G, Tapia FJ, Sanchez MA et al Determination of the cytokine profile in American cutaneous leishmaniasis using the polymerase chain reaction. Clin. Exp. Immunol 91,500–505 (1993).
  • Kharazmi A, Kemp K, Ismail A etal. T-cell response in human leishmaniasis. Immunol Lett. 65,105–108 (1999).
  • Kenney RT, Sacks DL, Gam AA, Murray HW, Sundar S. Splenic cytokine responses in Indian kala-azar before and after treatment. J. Infect. Dis. 177,815–818 (1998).
  • Karp CL, El Safi SL, Wynn TA et a/. In vivo cytokine profiles in patients with kala-azar. Marked elevation of both interleukin-10 and interferon-y. j Clin. Invest. 91,1644-1648 (1993).
  • Holaday BJ. Role of CD8+ T-cells in endogenous interleukin-10 secretion associated with visceral leishmaniasis..11/km. Inst. Oswald° Cruz95, 217–220 (2000).
  • Ghalib HW, Piuvezam MR, Skeiky YA et al. Interleukin-10 production correlates with pathology in human Leishmania donovani infections. J. Clin. Invest. 92, 324–329 (1993).
  • Antunes CM, Mayrink W Magalhaes PA et al Controlled field trials of a vaccine against New World cutaneous leishmaniasis. int. j Epidemiol 15, 572–580 (1986).
  • Armijos RX, Weigel MM, Aviles H, Maldonado R, Racines J. Field trial of a vaccine against New World cutaneous leishmaniasis in an at-risk child population: safety, immunogenicity and efficacy during the first 12 months of follow-up. J. Infect. Dir. 177,1352-1357 (1998).
  • Genaro O, de Toledo VP, da Costa CA, Hermeto MV, Afonso LC, Mayrink W Vaccine for prophylaxis and immunotherapy, Brazil. Clin. Dermatol 14, 503–512 (1996).
  • Green MS, Kark JD, Witztum E, Greenblatt CL, Spira DT Frozen stored Leishmania bvpica vaccine: the effects of dose, route of administration and storage on the evolution of the clinical lesion. Two field trials in the Israel Defense Forces. Trans R. Soc. Trop. Med. Hyg. 77,152–159 (1983).
  • Gunders AE, Naggan L, Michaeli D. Follow-up study of a vaccination programme against cutaneous leishmaniasis. I. Vaccination with a 5 year-old human strain of L. tropica from the Negev. Trans. R. Soc. Pop. Med. Hyg. 66, 235–238 (1972).
  • Khalil EA, El Hassan AM, Zijlstra EE et al. Autoclaved Leishmania majorvaccine for prevention of visceral leishmaniasis: a randomised, double-blind, BCG-controlled trial in Sudan. Lancet 356,1565–1569 (2000).
  • Marzochi KB, Marzochi MA, Silva AF et al. Phase 1 study of an inactivated vaccine against American tegumentary leishmaniasis in normal volunteers in Brazil. Mem. Inst. Oswaldo Cruz 93, 205–212 (1998).
  • Mayrink W, Antunes CM, da Costa CA et al. Further trials of a vaccine against American cutaneous leishmaniasis. Trans R. Soc. 7i-op. Med. Hyg. 80,1001 (1986).
  • Nadim A, Javadian E, Tahvildar-Bidruni G, Ghorbani M. Effectiveness of leishmanization in the control of cutaneous leishmaniasis. Bull. Soc. Pathol Erot. Palates 76,377–383 (1983).
  • Sharifi I, FeKri AR, Aflatonian MR et al. Randomised vaccine trial of single dose of killed Leishmania major plus BCG against anthroponotic cutaneous leishmaniasis in Bam, Iran. Lancet 351,1540–1543 (1998).
  • Palanova L, Volf P. Carbohydrate-binding specificities and physicochemical properties of lectins in various tissue of phlebotominaesandflies. Folia ParasitoL (Praha) 44,71–76 (1997).
  • Sacks DL, Pimenta PF, McConville MJ, Schneider P, Turco SJ. Stage-specific binding of Leishmania donovani to the sand fly vector midgut is regulated by conformational changes in the abundant surface lipophosphoglycan. J. Exp. Med. 181,685–697 (1995).
  • Saraiva EM, Pimenta PF, Brodin TN, Rowton E, Modi GB, Sacks DL. Changes in lipophosphoglycan and gene expression associated with the development of Leishmania major in Phlebotomus papatasi Parasitology 111 (Pt 3), 275–287 (1995).
  • Volf P, Kiewegova A, Svobodova M. Sandfly midgut lectin: effect of galactosamine on Leishmania major infections. Med. Vet. Entomol. 12, 151–154 (1998).
  • Tonui WK. Leishmania transmission-blocking vaccines: a review. F.ost Ah: Med. J. 76,93-96 (1999).
  • Valenzuela JG, Belkaid Y, Garfield MK et al. Toward a defined antileishmania vaccine targeting vector antigens. Characterization of a protective salivary protein. J. Exp. Med. 194,331–342 (2001).
  • Donnelly KB, Lima HC, Titus RG. Histologic characterization of experimental cutaneous leishmaniasis in mice infected with Leishmania braziliensis in the presence or absence of sand fly vector salivary gland lysate. I Parasita 84,97–103 (1998).
  • Titus RG, Ribeiro JM. Salivary gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infectivity. Science 239,1306–1308 (1988).
  • Tonui WK, Mbati PA, Anjili CO et al. Transmission blocking vaccine studies in leishmaniasis: II. Effect of immunisation using Leishmania major derived 63 kilodalton glycoprotein, lipophosphoglycan and whole parasite antigens on the course of L. major infection in BALB/c mice. Fast Ah: Med 78,90–92 (2001).
  • Aebischer T, Wolfram M, Patzer SI, Ilg T, Wiese M, Overath P. Subunit vaccination of mice against New World cutaneous leishmaniasis: comparison of three proteins expressed in amastigotes and six adjuvants. Infect. Immun. 68,1328–1336 (2000).
  • Campos-Neto A, Porrozzi R, Greeson K et al Protection against cutaneousleishmaniasis induced by recombinant antigens in murine and nonhuman primate models of the human disease. Infect. Immun. 69,4103–4108 (2001).
  • Colmenares M, Tiemeyer M, Kima P, McMahon—Pratt D. Biochemical and biological characterization of the protective Leishmania pifanoi amastigote antigen P-8. Infect. Immun. 69, 6776–6784 (2001).
  • Connell ND, Medina-Acosta E, McMaster WR, Bloom BR, Russell DG. Effective immunization against cutaneous leishmaniasis with recombinant bacille Calmette—Guerin expressing the Leishmania surface proteinase gp63. Proc. Natl Acad. Sci. USA 90,11473–11477 (1993).
  • Dole VS, Raj VS, Ghosh A, Madhubala R, Myler PJ, Stuart KD. Immunization with recombinant LD1 antigens protects against experimental leishmaniasis. Vaccine 19, 423–430 (2000).
  • Ghosh A, Zhang WW, Matlashewski G. Immunization with A2 protein results in a mixed Thl/Th2 and a humoral response which protects mice against Leishmania donovard infections. Vaccine 20,59–66 (2001).
  • Gurunathan S, Sacks DL, Brown DR et al Vaccination with DNA encoding the immunodominant LACK parasite antigen confers protective immunity to mice infected with Leishmania major J. Exp. Med. 186,1137–1147 (1997).
  • Handman E, Symons FM, Baldwin TM, Curtis JM, Scheerlinck JR 1995. Protective vaccination with promastigote surface antigen 2 from Leishmania majoris mediated by a Thl type of immune response. Infect. Immun. 63,4261–4267.
  • Kenney RT, Sacks DL, Sypek JP, Vilela L, Gam AA, Evans-Davis K. Protectiveimmunity using recombinant human IL-12 and alum as adjuvants in a primate model of cutaneous leishmaniasis. Immunol 163,4481–4488 (1999).
  • Lohman KL, Langer PJ, McMahon-Pratt D. Molecular cloning and characterization of the immunologically protective surface glycoprotein GP46/M-2 of Leishmania amazonensis Proc. Natl Acad. Sci. USA 87, 8393–8397 (1990).
  • McMahon-Pratt D, Rodriguez D, Rodriguez JR, et al. Recombinant vaccinia viruses expressing GP46/M-2 protect against Leishmania infection. Infect. Immun. 61,3351-3359 (1993).
  • Melby PC, Ogden GB, Flores HA et al. Identification of vaccine candidates for experimental visceral leishmaniasis by immunization with sequential fractions of a cDNA expression library. Infect. Immun. 68,5595–5602 (2000).
  • Melby PC, Yang J, Zhao W Perez LE, Cheng J. Leishmania donovani p36(LACK) DNA vaccine is highly immunogenic but not protective against experimental visceral leishmaniasis. Infect. Imutun. 69, 4719–4725 (2001).
  • Mora AM, Mayrink W Costa RT, Costa Costa C, Genaro Nascimento, O. E. Protection of C57BU10 mice by vaccination with association of purified proteins from Leishmania (Leishmania) amazonensis. Rev. Inst. Merl 7i-op. Sao Paulo 41,243–248 (1999).
  • Mougneau W Altare F, Walcil AE et al Expression cloning of a protective Leishmania antigen. Science268, 563–566 (1995).
  • Olobo JO, Anjili CO, Gicheru MM et al. Vaccination of vervet monkeys against cutaneous leishmaniosis using recombinant Leishmania 'major surface glycoprotein' (gp63). Vet. Patositol 60,199–212 (1995).
  • Rafati S, Salmanian AH, Taheri T, Vafa M, Fasel N. A protective cocktail vaccine against murine cutaneous leishmaniasis with DNA encoding cysteine proteinases of Leishmania major Vaccine 19, 3369–3375 (2001).
  • Rivier D, Bovay P Shah Didisheim, R. Mauel, S. J. Vaccination against Leishmania major in a CBA mouse model of infection: role of adjuvants and mechanism of protection. Parasite Immunol 21,461–473 (1999).
  • Russell DG, Alexander J. Effective immunization against cutaneous leishmaniasis with defined membrane antigens reconstituted into liposomes. Imutunol. 140,1274-1279 (1988) (Published erratum appears in J Immunol 140(8), 2858 [19881).
  • Skeiky YA, Kennedy M, Kaufman D et al. LeIF: a recombinant Leishmania protein that induces an IL-12-mediated Thl cytokine profile. I immund 161, 6171–6179 (1998).
  • Solioz N, Blum-Tirouvanziam U, Jacquet R et al., The protective capacities of histone H1 against experimental murine cutaneous leishmaniasis. Vaccine 18,850–859 (1999).
  • Soong L, Duboise SM, Kima P, McMahon-Pratt D. Leishmania pifanoi amastigote antigens protect mice against cutaneous leishmaniasis. Infect. IMMUIL 63, 3559–3566 (1995).
  • Spitzer N, Jardim A, Lippert D, Olafson RW Long-term protection of mice against Leishmania major with a synthetic peptide vaccine. Vaccine 17,1298–1300 (1999).
  • Stager S, Smith DF, Kaye PM. Immunization with a recombinant stage-regulated surface protein from Leishmania donovani induces protection against visceral leishmaniasis. j Imutunol. 165, 7064–7071 (2000).
  • Walker PS, Scharton-Kersten T, Rowton ED et al Genetic immunization with glycoprotein 63 cDNA results in a helper T—cell Type 1 immune response and Protection in a murine model of leishmaniasis. Hum. Gene Ther. 9, 1899–1907 (1998).
  • Webb JR, Kaufmann D, Campos-Neto A, Reed SG. Molecular cloning of a novel protein antigen of Leishmania major that elicits a potent immune response in experimental murine leishmaniasis. Imutunol. 157,5034–5041 (1996).
  • Webb JR, Campos-Neto A, Skeiky YA, Reed SG. Molecular characterization of the heat-inducible LmSTI1 protein of Leishmania major Mal Biochem. Patositol 89,179–193 (1997).
  • Webb JR, Campos-Neto A, Ovendale PJ etal. Human and murine immune responses to a novel Leishmania major recombinant protein encoded by members of a multicopy gene family. Infect. Imutun. 66,3279–3289 (1998).
  • Xu D, Liew FY. Protection against leishmaniasis by injection of DNA encoding a major surface glycoprotein, gp63, of L. major Imutunology84, 173–176 (1995).
  • Afonso LC, Scharton TM, Vieira LQ, Wysocka M, Trinchieri G, Scott P Theadjuvant effect of interleukin-12 in a vaccine against Leishmania major Science 263,235–237 (1994).
  • Miller MA, Skeen MJ, Ziegler HK. Protective immunity to Listeria monocytogenes elicited by immunization with heat-killed Listetia and IL-12. Potential mechanism of IL-12 adjuvanticity. Ann. NY Acad. Sci. 797, 207–227 (1996).
  • Romani L, Puccetti P, Bistoni P Interleukin-12 in infectious diseases. Gun. Nlicrobiol Rev 10,611–636 (1997).
  • Trinchieri G. Function and clinical use of interleukin-12. Cutr Opia Hematol 4, 59–66 (1997).
  • Wynn TA, Cheever AW, Jankovic D et al. An IL-12-based vaccination method for preventing fibrosis induced by schistosome infection. Nature 376, 594–596 (1995).
  • Melby PC. Vaccination against cutaneous leishmaniasis: current status. Am J Clin. Dermatol 3,557–570 (2002).
  • Gonzalo RM, Del Real G, Rodriguez JR et al. 2002. A heterologous prime-boost regime using DNA and recombinant vaccinia virus expressing the Leishmania infant= P36/LACK antigen protects BALM mice from cutaneous leishmaniasis. Vaccine 20,1226–1231.
  • Cruz A, Coburn CM, Beverley SM. Double targeted gene replacement for creating null mutants. Floc. Natl Acad Sci. USA 88, 7170–7174 (1991).
  • Campos-Neto A, Webb JR, Greeson K, Coler RN, Skeiky YA, Reed SG. Vaccination with plasmid DNA encoding TSA/LmSTI1 leishmanial fusion proteins confers protection against Leishmania major infection in susceptible BALB/c mice. Infect. Immun. 70(6), 2828–2836 (2002).
  • Gurunathan S, Prussin C, Sacks DL, Seder RA. Vaccine requirements for sustained cellular immunity to an intracellular parasitic infection. Nat. Merl 4, 1409–1415 (1998).
  • Gurunathan S, Klinman DM, Seder RA. DNA vaccines: immunology, application and optimization*. Ann. Rev Immunol 18, 927–974 (2000).
  • Gurunathan S, Wu CY, Freidag BL, Seder RA. DNA vaccines: a key for inducing long-term cellular immunity. Curr Opin. Imutunol. 12,442–447 (2000).
  • Gurunathan S, Stobie L, Prussin C et al. Requirements for the maintenance of Thl immunity in vivo following DNA vaccination: a potential immunoregulatory role for CD8+ T-cells. j Immunol 165, 915–924 (2000).
  • Mendez S, Gurunathan S, Kamhawi S et al. The potency and durability of DNA- and protein-based vaccines against Leishmania major evaluated using low-dose, intradermal challenge. J. Immunol 166, 5122–5128 (2001).
  • Stacey KJ, Blackwell JM. Immunostimulatory DNA as an adjuvant in vaccination against Leishmania major Infect. Immun. 67, 3719–3726 (1999).
  • Walker PS, Scharton-Kersten T, Krieg AM et al Immunostimulatory oligodeoxynucleotides promote protective immunity and provide systemic therapy for leishmaniasis via IL-12- and IFN-y-dependent mechanisms. Proc. Natl Acad. Sc]. USA 96, 6970–6975 (1999).
  • Zimmermann S, Egeter O, Hausmann S et al. CpG oligodeoxynucleotides trigger protective and curative Thl responses in lethal murine leishmaniasis. j Immunol 160, 3627–3630 (1998).
  • Borges MM, Campos-Neto A, Sleath P et al Potent stimulation of the innate immune system by a Leishmania btasiliensis recombinant protein. Infect. Immun. 69, 5270–5277 (2001).
  • Probst P, Skeiky YA, Steeves M, Gervassi A, Grabstein KH, Reed SG. A Leishmania protein that modulates interleukin (IL)-12, IL-10 and tumor necrosis factor-a production and expression of B7-1 in human monocyte-derived antigen-presenting cells. Eur. Immunol 27, 2634–2642 (1997).
  • Skeiky YA, Guderian JA, Benson DR et al. A recombinant Leishmania antigenthat stimulates human peripheral blood mononuclear cells to express a Thl-type cytokine profile and to produce interleukin-12. J. Exp. Med. 181, 1527–1537 (1995).
  • Amaral VF, Ransatto VA, Conceicao-Silva F et al Leishmania arnazonensis the Asian rhesus macaques (Macaca mulatt4 as an experimental model for study of cutaneous leishmaniasis. Exp. Parasitol 82, 34–44 (1996).
  • Walsh GP, Tan EV, Dela Cruz EC et al The Philippine cynomolgus monkey (Nkcaca fasiculad) provides a new nonhuman primate model of tuberculosis that resembles human disease. Nat. Med. 2, 430–436 (1996).
  • Gormus BJ, Baskin GB, Xu K etal. Antileprosy protective vaccination of rhesus monkeys with BCG or BCG plus heat-killed Mycobacterium leprae immunologic observations. Int. J. Lepr. Other 4cobact. Dis. 68, 27–39 (2000).
  • Gormus BJ, Baskin GB, Xu K etal. Protective immunization of monkeys with BCG or BCG plus heat-killed Mycobacterium leprae: clinical results. Lepr. Rev. 69, 6–23 (1998).
  • Githure JI, Reid GD, Binhazim AA, Anjili CO, Shatry AM, Hendricks LD. Leishmania major the suitability of East African nonhuman primates as animal models for cutaneous leishmaniasis. Exp. Patasitol 64, 438–447 (1987).
  • Githure JI, Shatry AM, Tarara R et al. The suitability of East African primates as animal models of visceral leishmaniasis. Trans. R. Sx. Tivp. Med. 48: 80, 575–576 (1986).
  • Baba TW, Liska V, Hofmann-Lehmann R, et al Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian-human immunodeficiency virus infection. Nat. Med. 6, 200–206 (2000).
  • Skeiky YA, Coler RN, Brannon M et al. Protective efficacy of a tandemly linked,multi-subunit recombinant leishmanial vaccine (Leish-111f) formulated in MPL adjuvant. Vaccine 10, 3292–3303 (2002).
  • Fries LF, Gordon DM, Richards RL et al Liposomal malaria vaccine in humans: a safe and potent adjuvant strategy. Proc. Nat! Acad. Sc]. USA 89, 358–362 (1992).
  • Leroux-Roels G, Moreux E, Verhasselt B et al. Immunogenicity and reactogenicity of a recombinant HSV-2-glycoprotein D vaccine with or without monophosphoryl lipid A in HSV seronegative and seropositive subjects. 331r1 Intetscience Conference on Antimicrobial Agents and Chemotherapy 341 (1993) (Abstract 1209).
  • Thoelen S, Van Damme P, Mathei C et al. Safety and immunogenicity of a hepatitis B vaccine formulated with a novel adjuvant system. Vaccine 16, 708–714 (1998).
  • Kawasaki K, Nishijima M. Molecular basis for innate immune recognition of microbial components. Jpn. I Infect. Dis. 54, 220–224 (2001).
  • Vasselon T, Detmers PA. Toll receptors: a central element in innate immune responses. Infect. Irnmun. 70, 1033–1041 (2002).
  • Michie CA. Triage by Toll-like receptors. Trends Mal Ned. 8, 6 (2002).
  • Underhill DM, Ozinsky A. Toll-like receptors: key mediators of microbe detection. Curr. Opin. Immunol 14, 103–110 (2002).
  • Persing DH, Coler RN, Lacy MJ, Johnson DA, Baldridge JR, Hershberg RM, Reed SG. Taking toll: lipid A mimetics as adjuvants and immunomodulators. Trends Microbial 10, S32—S37 (2002).
  • Agger EM, Andersen P. Tuberculosis subunit vaccine development: on the role of interferon-y. Vaccine 19, 2298–2302 (2001).
  • Brandt L, Elhay M, Rosenkrands I, Lindblad EB, Andersen P. ESAT-6 subunit vaccination against 4cobacterium tuberculosis 2383. Infect. Immun. 68, 791–795 (2000).
  • Lindblad EB, Elhay MJ, Silva R, Appelberg R and Andersen P. Adjuvant modulation of immune responses to tuberculosis subunit vaccines. Infect. Immun. 65, 623–629 (1997).
  • Weinrich OA, van Pinxteren LA, Meng OL, Birk RP, Andersen P. Protection of mice with a tuberculosis subunit vaccine based on a fusion protein of antigen 85b and esat-6. Infect. Immun. 69, 2773–2778. (2001).
  • Coler RN, Bemards K, Greeson K et al. Immunization with a poly-protein vaccine consisting of the T cell antigens thiol-specific antioxidant, Leishmania major stress-inducible protein 1, and Leishmania elongation initiation factor protects against leishmaniasis. Infect. Immun. 70(8), 4215–4225 (2002).
  • Machado-Pinto JJ. Pinto CA, daCosta O et al. Immunochemotherapy for cutaneousleishmaniasis: a controlled trial using killed Leishmania a,eishmania) amazonensis vaccine plus antimonial. Int. J. Dermatol 41, 73–78 (2002).

Website

  • www.who.indinf-fsien WHO: Information office — Facts Sheets Index.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.