492
Views
16
CrossRef citations to date
0
Altmetric
Reviews

Vaccines based on structure-based design provide protection against infectious diseases

&
Pages 1301-1311 | Published online: 09 Jan 2014

References

  • Rezza G, Nicoletti L, Angelini R et al; CHIKV study group. Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370, 1840–1846 (2007).
  • González-Parra G, Arenas AJ, Aranda DF, Segovia L. Modeling the epidemic waves of AH1N1/09 influenza around the world. Spat. Spatiotemporal Epidemiol. 2, 219–226 (2011).
  • Vivancos R, Keenan A, Sopwith W et al. Norovirus outbreak in a cruise ship sailing around the British Isles: investigation and multi-agency management of an international outbreak. J. Infect. 60, 478–485 (2010).
  • Doménech-Sánchez A, Juan C, Pérez JL, Berrocal CI. Unmanageable norovirus outbreak in a single resort located in the Dominican Republic. Clin. Microbiol. Infect. 17, 952–954 (2011).
  • de Quadros CA, Carrasco P, Olivé JM. The desired field-performance characteristics of new improved vaccines for the developing world. Int. J. Technol. Assess Health Care 10, 65–70 (1994).
  • Fenner F, Henderon DA, Arita I, Jezek Z, Ladnyi ID. Smallpox and its Eradication. World Health Organization, Geneva (1988).
  • Horzinek MC. Rinderpest: the second viral disease eradicated. Vet. Microbiol. 149, 295–297 (2011).
  • Plowright W, Ferris RD. Studies with rinderpest virus in tissue culture. The use of attenuated culture virus as a vaccine for cattle. Res. Vet. Sci. 3, 172–182 (1962).
  • Sztein MB. Cell-mediated immunity and antibody responses elicited by attenuated Salmonella enterica Serovar Typhi strains used as live oral vaccines in humans. Clin. Infect. Dis. 45( Suppl. 1), S15–S19 (2007).
  • Amorij JP, Huckriede A, Wilschut J, Frijlink HW, Hinrichs WL. Development of stable influenza vaccine powder formulations: challenges and possibilities. Pharm. Res. 25, 1256–1273 (2008).
  • Baxter D. Specific immunization issues in the occupational health setting. Occup. Med. 57, 557–563 (2007).
  • Wei H, Huang D, Fortman J, Wang R, Shao L, Chen ZW. Coadministration of cidofovir and smallpox vaccine reduced vaccination side effects but interfered with vaccine-elicited immune responses and immunity to monkeypox. J. Virol. 83, 1115–1125 (2009).
  • Levine MM, Tacket CO, Sztein MB. Host-Salmonella interaction: human trials. Microbes Infect. 3, 1271–1279 (2001).
  • Mitsuyama M, Igarashi K, Kawamura I, Ohmori T, Nomoto K. Difference in the induction of macrophage interleukin-1 production between viable and killed cells of Listeria monocytogenes. Infect. Immun. 58, 1254–1260 (1990).
  • Biesova Z, Miller MA, Schneerson R et al. Preparation, characterization, and immunogenicity in mice of a recombinant influenza H5 hemagglutinin vaccine against the avian H5N1 A/Vietnam/1203/2004 influenza virus. Vaccine 27, 6234–6238 (2009).
  • Hu AY, Tseng YF, Weng TC et al. Production of inactivated influenza H5N1 vaccines from MDCK cells in serum-free medium. PLoS ONE 6, e14578 (2011).
  • Lee SW, Markham PF, Coppo MJ et al. Attenuated vaccines can recombine to form virulent field viruses. Science 337, 188 (2012).
  • Romanos MA, Clare JJ, Beesley KM et al. Recombinant Bordetella pertussis pertactin (P69) from the yeast Pichia pastoris: high-level production and immunological properties. Vaccine 9, 901–906 (1991).
  • Coffman JD, Zhu J, Roach JM, Bavari S, Ulrich RG, Giardina SL. Production and purification of a recombinant Staphylococcal enterotoxin B vaccine candidate expressed in Escherichia coli. Protein Expr. Purif. 24, 302–312 (2002).
  • Song L, Nakaar V, Kavita U et al. Efficacious recombinant influenza vaccines produced by high yield bacterial expression: a solution to global pandemic and seasonal needs. PLoS ONE 3, e2257 (2008).
  • Cox MM. Recombinant protein vaccines produced in insect cells. Vaccine 30, 1759–1766 (2012).
  • Cunha T, Aires-Barros R. Large-scale extraction of proteins. Mol. Biotechnol. 20, 29–40 (2002).
  • Rigano MM, Walmsley AM. Expression systems and developments in plant-made vaccines. Immunol. Cell Biol. 83, 271–277 (2005).
  • Dertzbaugh MT. Genetically engineered vaccines: an overview. Plasmid 39, 100–113 (1998).
  • Yu YZ, Li N, Wang RL, Zhu HQ, Wang S, Yu WY, Sun ZW. Evaluation of a recombinant Hc of Clostridium botulinum neurotoxin serotype F as an effective subunit vaccine. Clin. Vaccine Immunol. 15, 1819–1823 (2008).
  • Patil A, Khanna N. Novel membrane extraction procedure for the purification of hepatitis B surface antigen from Pichia pastoris. J. Chromatogr. B Analyt. Technol. Biomed Life Sci. 898, 7–14 (2012).
  • Velu V, Nandakumar S, Shanmugam S, Jadhav SS, Kulkarni PS, Thyagarajan SP. Comparison of three different recombinant hepatitis B vaccines: GeneVac-B, Engerix B and Shanvac B in high risk infants born to HBsAg positive mothers in India. World J. Gastroenterol. 13, 3084–3089 (2007).
  • Goldblatt D. Conjugate vaccines. Clin. Exp. Immunol. 119, 1–3 (2000).
  • Pneumococcal conjugate vaccine for childhood immunization –WHO position paper. Wkly Epidemiol. Rec. 82, 93–104 (2007).
  • Palumbo E, Fiaschi L, Brunelli B, Marchi S, Savino S, Pizza M. Antigen identification starting from the genome: a “reverse vaccinology” approach applied to MenB. Methods Mol. Biol. 799, 361–403 (2012).
  • Pizza M, Scarlato V, Masignani V et al. Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287, 1816–1820 (2000).
  • Rappuoli R. Reverse vaccinology. Curr. Opin. Microbiol. 3, 445–450 (2000).
  • He Y, Xiang Z, Mobley HLT. Vaxign: The first web-based vaccine design program for reverse vaccinology and applications for vaccine development. J. Biomed. Biotechnol. 2010, 297505 (2010).
  • Liebenberg J, Pretorius A, Faber FE, Collins NE, Allsopp BA, van Kleef M. Identification of Ehrlichia ruminantium proteins that activate cellular immune responses using a reverse vaccinology strategy. Vet. Immunol. Immunopathol. 145, 340–349 (2012).
  • Lekcharoensuk P, Wiriyarat W, Petcharat N, Lekcharoensuk C, Auewarakul P, Richt JA. Cloned cDNA of A/swine/Iowa/15/1930 internal genes as a candidate backbone for reverse genetics vaccine against influenza A viruses. Vaccine 30, 1453–1459 (2012).
  • Palmer GH, Brown WC, Noh SM, Brayton KA. Genome-wide screening and identification of antigens for rickettsial vaccine development. FEMS Immunol. Med. Microbiol. 64, 115–119 (2012).
  • Montigiani S, Falugi F, Scarselli M et al. Genomic approach for analysis of surface proteins in Chlamydia pneumoniae. Infect. Immun. 70, 368–379 (2002).
  • Rappuoli R. Reverse vaccinology, a genome-based approach to vaccine development. Vaccine 19, 2688–2691 (2001).
  • Scarselli M, Aricò B, Brunelli B et al. Rational design of a meningococcal antigen inducing broad protective immunity. Sci. Transl. Med. 3, 91ra62 (2011).
  • Dormitzer PR, Ulmer JB, Rappuoli R. Structure-based antigen design: a strategy for next generation vaccines. Trends Biotechnol. 26, 659–667 (2008).
  • Barh D, Misra AN, Kumar A, Vasco A. A novel strategy of epitope design in Neisseria gonorrhoeae. Bioinformation 5, 77–85 (2010).
  • Croft NP, Purcell AW. Peptidomimetics: modifying peptides in the pursuit of better vaccines. Expert. Rev. Vaccines 10, 211–226 (2011).
  • Thomas S, Thirumalapura NR, Crocquet-Valdes PA, Luxon BA, Walker DH. Structure-based vaccines provide protection in a mouse model of ehrlichiosis. PLoS ONE 6, e27981 (2011).
  • Dormitzer PR, Grandi G, Rappuoli R. Structural vaccinology starts to deliver. Nat. Rev. Microbiol. 10, 807–813 (2012).
  • Johnson S, Tan L, van der Veen S et al. Design and evaluation of meningococcal vaccines through structure-based modification of host and pathogen molecules. PLoS Pathog. 8, e1002981 (2012).
  • Kwong PD, Shapiro L. Vaccine design reaches the atomic level. Sci. Transl. Med. 3, 91ps29 (2011).
  • Lauer P, Rinaudo CD, Soriani M et al. Genome analysis reveals pili in group B Streptococcus. Science 309, 105 (2005).
  • Nuccitelli A, Cozzi R, Gourlay LJ et al. Structure-based approach to rationally design a chimeric protein for an effective vaccine against Group B Streptococcus infections. Proc. Natl Acad. Sci. USA 108, 10278–10283 (2011).
  • Harfouche C, Filippini S, Gianfaldoni C et al. RrgB321, a fusion protein of the three variants of the pneumococcal pilus backbone RrgB, is protective in vivo and elicits opsonic antibodies. Infect. Immun. 80, 451–460 (2012).
  • McBride JW, Walker DH. Progress and obstacles in vaccine development for the ehrlichioses. Expert Rev. Vaccines 9, 1071–1082 (2010).
  • Thomas S, Thirumalapura N, Crossley EC, Ismail N, Walker DH. Antigenic protein modifications in Ehrlichia. Parasite Immunol. 31, 296–303 (2009).
  • Thomas S, Popov VL, Walker DH. Exit mechanisms of the intracellular bacterium Ehrlichia. PLoS ONE 5, e15775 (2010).
  • Shen AK, Mead PS, Beard CB. The Lyme disease vaccine--a public health perspective. Clin. Infect. Dis. 52( Suppl. 3), s247–s252 (2011).
  • Koide S, Yang X, Huang X, Dunn JJ, Luft BJ. Structure-based design of a second-generation Lyme disease vaccine based on a C-terminal fragment of Borrelia burgdorferi OspA. J. Mol. Biol. 350, 290–299 (2005).
  • Soriani M, Petit P, Grifantini R et al. Exploiting antigenic diversity for vaccine design: the Chlamydia ArtJ paradigm. J. Biol. Chem. 285, 30126–30138 (2010).
  • Adhikari RP, Karauzum H, Sarwar J et al. Novel structurally designed vaccine for S. aureus α-hemolysin: Protection against bacteremia and pneumonia. PLoS ONE 7, e38567 (2012).
  • Koff WC, Russell ND, Walport M et al. Accelerating the development of a safe and effective HIV vaccine: HIV vaccine case study for the decade of vaccines. Vaccine 31( Suppl. 2), B204–B208 (2013).
  • Burton DR, Desrosiers RC, Doms RW et al. HIV vaccine design and the neutralizing antibody problem. Nat. Immunol. 5, 233–236 (2004).
  • Burton DR, Stanfield RL, Wilson IA. Antibody vs HIV in a clash of evolutionary titans. Proc. Natl Acad. Sci. USA 102, 14943–14948 (2005).
  • Douek DC, Kwong PD, Nabel GJ. The rational design of an AIDS vaccine. Cell 124, 677–681 (2006).
  • Dey B, Svehla K, Xu L et al. Structure-based stabilization of HIV-1 gp120 enhances humoral immune responses to the induced co-receptor binding site. PLoS Pathog. 5, e1000445 (2009).
  • Pejchal R, Wilson IA. Structure-based vaccine design in HIV: blind men and the elephant? Curr. Pharm. Des. 16, 3744–3753 (2010).
  • Kwong PD, Mascola JR, Nabel GJ. Rational design of vaccines to elicit broadly neutralizing antibodies to HIV-1. Cold Spring Harb. Perspect. Med. 1, a007278 (2011).
  • Falkowska E, Ramos A, Feng Y et al. PGV04, an HIV-1 gp120 CD4 binding site antibody, is broad and potent in neutralization but does not induce conformational changes characteristic of CD4. J. Virol. 86, 4394–403 (2012).
  • Ghiara JB, Ferguson DC, Satterthwait AC, Dyson HJ, Wilson IA. Structure-based design of a constrained peptide mimic of the HIV-1 V3 loop neutralization site. J. Mol. Biol. 266, 31–39 (1997).
  • Stanfield RL, Gorny MK, Williams C, Zolla-Pazner S, Wilson IA. Structural rationale for the broad neutralization of HIV-1 by human monoclonal antibody 447-52D. Structure 12, 193–204 (2004).
  • Zolla-Pazner S. Identifying epitopes of HIV-1 that induce protective antibodies. Nat. Rev. Immunol. 4, 199–210 (2004).
  • Burton DR, Pyati J, Koduri R et al. Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science 266, 1024–1027 (1994).
  • Zhou T, Xu L, Dey B et al. Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature 445, 732–737 (2007).
  • Wu X, Yang ZY, Li Y et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 329, 856–861 (2010).
  • Zhou T, Georgiev I, Wu X et al. Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01. Science 329, 811–817 (2010).
  • Diskin R, Scheid JF, Marcovecchio PM et al. Increasing the potency and breadth of an HIV antibody by using structure-based rational design. Science 334, 1289–1293 (2011).
  • Zwick MB, Jensen R, Church S et al. Anti-human immunodeficiency virus type 1 (HIV-1) antibodies 2F5 and 4E10 require surprisingly few crucial residues in the membrane-proximal external region of glycoprotein gp41 to neutralize HIV-1. J. Virol. 79, 1252–1261 (2005).
  • Correia BE, Ban YE, Holmes MA et al. Computational design of epitope-scaffolds allows induction of antibodies specific for a poorly immunogenic HIV vaccine epitope. Structure 18, 1116–1126 (2010).
  • Nabel GJ, Kwong PD, Mascola JR. Progress in the rational design of an AIDS vaccine. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366, 2759–2765 (2011).
  • Azoitei ML, Correia BE, Ban YE et al. Computation-guided backbone grafting of a discontinuous motif onto a protein scaffold. Science 334, 373–376 (2011).
  • Riedel T, Ghasparian A, Moehle K, Rusert P, Trkola A, Robinson JA. Synthetic virus like particles and conformationally constrained peptidomimetics in vaccine design. Chembiochem 12, 2829–2836 (2011).
  • Astronomo RD, Kaltgrad E, Udit AK et al. Defining criteria for oligomannose immunogens for HIV using icosahedral virus capsid scaffolds. Chem. Biol. 17, 357–370 (2010).
  • van Regenmortel MH. Limitations to the structure-based design of HIV-1 vaccine immunogens. J. Mol. Recognit. 24, 741–753 (2011).
  • van Regenmortel MH. Requirements for empirical immunogenicity trials, rather than structure-based design, for developing an effective HIV vaccine. Arch. Virol. 157, 1–20 (2012).
  • Liao HX, Lynch R, Zhou T et al. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature 496, 469–476 (2013).
  • Walker LM, Sok D, Nishimura Y et al. Rapid development of glycan-specific, broad, and potent anti-HIV-1 gp120 neutralizing antibodies in an R5 SIV/HIV chimeric virus infected macaque. Proc. Natl Acad. Sci. USA 108, 20125–20129 (2011).
  • McLellan JS, Pancera M, Carrico C et al. Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature 480, 336–343 (2011).
  • Pejchal R, Doores KJ, Walker LM et al. A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Science 334, 1097–103 (2011).
  • Xuan C, Shi Y, Qi J, Zhang W, Xiao H, Gao GF. Structural vaccinology: structure-based design of influenza A virus hemagglutinin subtype-specific subunit vaccines. Protein Cell 2, 997–1005 (2011).
  • Wilson IA, Skehel JJ, Wiley DC. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature 289, 366–73 (1981).
  • Akarsu H, Iwatsuki-Horimoto K, Noda T et al. Structure-based design of NS2 mutants for attenuated influenza A virus vaccines. Virus Res. 155, 240–248 (2011).
  • Kashyap AK, Steel J, Oner AF et al. Combinatorial antibody libraries from survivors of the Turkish H5N1 avian influenza outbreak reveal virus neutralization strategies. Proc. Natl Acad. Sci. USA 105, 5986–5991 (2008).
  • Throsby M, van den Brink E, Jongeneelen M et al. Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PLoS ONE 3, e3942 (2008).
  • Ekiert DC, Bhabha G, Elsliger MA et al. Antibody recognition of a highly conserved influenza virus epitope. Science 324, 246–251 (2009).
  • Sui J, Hwang WC, Perez S et al. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat. Struct. Mol. Biol. 16, 265–273 (2009).
  • Ekiert DC, Friesen RH, Bhabha G et al. A highly conserved neutralizing epitope on group 2 influenza A viruses. Science 333, 843–850 (2011).
  • Corti D, Voss J, Gamblin SJ et al. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333, 850–856 (2011).
  • Ekiert DC, Wilson IA. Broadly neutralizing antibodies against influenza virus and prospects for universal therapies. Curr. Opin. Virol. 2, 134–141 (2012).
  • Steel J, Lowen AC, Wang TT et al. Influenza virus vaccine based on the conserved hemagglutinin stalk domain. MBio 1, e00018–10 (2010).
  • Wang TT, Tan GS, Hai R et al. Vaccination with a synthetic peptide from the influenza virus hemagglutinin provides protection against distinct viral subtypes. Proc. Natl Acad. Sci. USA 107, 18979–18984 (2010).
  • Kanekiyo M, Wei CJ, Yassine HM et al. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature 499, 102–106 (2013).
  • Stockman LJ, Curns AT, Anderson LJ, Fischer-Langley G. Respiratory syncytial virus-associated hospitalizations among infants and young children in the United States, 1997–2006. Pediatr. Infect. Dis. J. 31, 5–9 (2012).
  • McLellan JS, Yang Y, Graham BS, Kwong PD. Structure of respiratory syncytial virus fusion glycoprotein in the postfusion conformation reveals preservation of neutralizing epitopes. J. Virol. 85, 7788–7796 (2011).
  • Swanson KA, Settembre EC, Shaw CA et al. Structural basis for immunization with postfusion respiratory syncytial virus fusion F glycoprotein (RSV F) to elicit high neutralizing antibody titers. Proc. Natl Acad. Sci. USA 108, 9619–9624 (2011).
  • Back JW, Langedijk JP. Structure-based design for high-hanging vaccine fruits. Adv. Immunol. 114, 33–50 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.