299
Views
30
CrossRef citations to date
0
Altmetric
Reviews

Recent developments in tuberculosis vaccines

, , &
Pages 1431-1448 | Published online: 09 Jan 2014

References

  • Brosch R, Gordon SV, Marmiesse M et al. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc. Natl Acad. Sci. USA 99(6), 3684–3689 (2002).
  • Comas I, Gagneux S. A role for systems epidemiology in tuberculosis research. Trends Microbiol. 19(10), 492–500 (2011).
  • Gagneux S, DeRiemer K, Van T et al. Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 103(8), 2869–2873 (2006).
  • Gagneux S, Small PM. Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect. Dis. 7(5), 328–337 (2007).
  • Kaufmann SH. The contribution of immunology to the rational design of novel antibacterial vaccines. Nat. Rev. Microbiol. 5(7), 491–504 (2007).
  • Pitt JM, Blankley S, McShane H, O'Garra A. Vaccination against tuberculosis: how can we better BCG? Microb. Pathog. 58, 2–16 (2013).
  • Comas I, Chakravartti J, Small PM et al. Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat. Genet. 42(6), 498–503 (2010).
  • Portevin D, Gagneux S, Comas I, Young D. Human macrophage responses to clinical isolates from the Mycobacterium tuberculosis complex discriminate between ancient and modern lineages. PLoS Pathog. 7(3), e1001307 (2011).
  • Barreiro LB, Tailleux L, Pai AA, Gicquel B, Marioni JC, Gilad Y. Deciphering the genetic architecture of variation in the immune response to Mycobacterium tuberculosis infection. Proc. Natl Acad. Sci. USA 109(4), 1204–1209 (2012).
  • Marina Georghui ML, and Anne-Marie Balazuc. Tuberculosis and BCG. In: Vaccines: A Biography. Artenstein A (Ed.). Springer, New York, NY, USA, xxi; 401p (2010).
  • Comstock GW. Tuberculosis in twins: a re-analysis of the Prophit survey. Am. Rev. Respir. Dis. 117(4), 621–624 (1978).
  • Casanova JL, Abel L. Genetic dissection of immunity to mycobacteria: the human model. Annu. Rev. Immunol. 20, 581–620 (2002).
  • Casanova JL, Abel L. Primary immunodeficiencies: a field in its infancy. Science 317(5838), 617–619 (2007).
  • WHO. Module 5. Tuberculosis. The Immunological Basis for Immunization Series. WHO, Geneva, Switzerland (2011).
  • Behr MA, Wilson MA, Gill WP et al. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284(5419), 1520–1523 (1999).
  • Brosch R, Gordon SV, Garnier T et al. Genome plasticity of BCG and impact on vaccine efficacy. Proc. Natl Acad. Sci. USA 104(13), 5596–5601 (2007).
  • Cole ST. Comparative and functional genomics of the Mycobacterium tuberculosis complex. Microbiology 148(Pt. 10), 2919–2928 (2002).
  • Brewer TF, Colditz GA. Relationship between Bacille Calmette-Guérin (BCG) strains and the efficacy of BCG vaccine in the prevention of tuberculosis. Clin. Infect. Dis. 20(1), 126–135 (1995).
  • WHO. Information Sheet: observed rate of vaccine reactions Bacille Calmette-Guérin (BCG) vaccine. Global Vaccine Safety, Immunization and Biologicals. WHO, Geneva, Switzerland (2012).
  • Fifteen year follow up of trial of BCG vaccines in south India for tuberculosis prevention. Tuberculosis Research Centre (ICMR), Chennai. Indian J. Med. Res. 110, 56–69 (1999).
  • Fine PE. Variation in protection by BCG: implications of and for heterologous immunity. Lancet 346(8986), 1339–1345 (1995).
  • Fine PE, Floyd S, Stanford JL et al. Environmental mycobacteria in northern Malawi: implications for the epidemiology of tuberculosis and leprosy. Epidemiol. Infect. 126(3), 379–387 (2001).
  • Rowland R, McShane H. Tuberculosis vaccines in clinical trials. Expert Rev. Vaccines 10(5), 645–658 (2011).
  • Arriaga AK, Orozco EH, Aguilar LD, Rook GA, Hernandez Pando R. Immunological and pathological comparative analysis between experimental latent tuberculous infection and progressive pulmonary tuberculosis. Clin. Exp. Immunol. 128(2), 229–237 (2002).
  • Hernandez-Pando R, Jeyanathan M, Mengistu G et al. Persistence of DNA from Mycobacterium tuberculosis in superficially normal lung tissue during latent infection. Lancet 356(9248), 2133–2138 (2000).
  • WHO. Addressing Poverty in TB Control: Options for National TB Control Programmes (WHO/HTM/TB/2005.352). World Health Organization, Geneva, Switzerland (2005).
  • WHO. Global Tuberculosis Report 2012. WHO Press, Geneva, Switzerland (2012).
  • Oxlade O, Murray M. tuberculosis and poverty: why are the poor at greater risk in India? PLoS ONE 7(11), e47533 (2012).
  • Mahomed H, Ehrlich R, Hawkridge T et al. TB incidence in an adolescent cohort in South Africa. PLoS ONE 8(3), e59652 (2013).
  • Li XX, Zhou XN. Co-infection of tuberculosis and parasitic diseases in humans: a systematic review. Parasit. Vectors 6, 79 (2013).
  • Schaible UE, Kaufmann SH.. Malnutrition and infection: complex mechanisms and global impacts. PLoS Med. 4(5), e115 (2007).
  • Borkow G, Leng Q, Weisman Z et al. Chronic immune activation associated with intestinal helminth infections results in impaired signal transduction and anergy. J. Clin. Investig. 106(8), 1053–1060 (2000).
  • Potian JA, Rafi W, Bhatt K, McBride A, Gause WC, Salgame P. Preexisting helminth infection induces inhibition of innate pulmonary anti-tuberculosis defense by engaging the IL-4 receptor pathway. J. Exp. Med. 208(9), 1863–1874 (2011).
  • Rafi W, Ribeiro-Rodrigues R, Ellner JJ, Salgame P. 'Coinfection-helminthes and tuberculosis'. Curr. Opin. HIV AIDS 7(3), 239–244 (2012).
  • Malhotra I, Mungai P, Wamachi A et al. Helminth- and Bacille Calmette-Guérin-induced immunity in children sensitized in utero to filariasis and schistosomiasis. J. Immunol. 162(11), 6843–6848 (1999).
  • Elias D, Akuffo H, Pawlowski A, Haile M, Schon T, Britton S. Schistosoma mansoni infection reduces the protective efficacy of BCG vaccination against virulent Mycobacterium tuberculosis. Vaccine 23(11), 1326–1334 (2005).
  • Ishikawa LL, da Rosa LC, Franca TG et al. Is the BCG vaccine safe for undernourished individuals? Clin. Dev. Immunol. 2012, 673186 (2012).
  • Chan J, Tian Y, Tanaka KE et al. Effects of protein calorie malnutrition on tuberculosis in mice. Proc. Natl Acad. Sci. USA 93(25), 14857–14861 (1996).
  • McMurray DN, Yetley EA. Cell-mediated immunity in malnourished guinea pigs after Mycobacterium bovis BCG vaccination. Infect. Immun. 35(3), 909–914 (1982).
  • Boelaert JR, Gordeuk VR. Protein energy malnutrition and risk of tuberculosis infection. Lancet 360(9339), 1102 (2002).
  • Mandalakas AM, Starke JR. Current concepts of childhood tuberculosis. Semin. Pediatr. Infect. Dis. 16(2), 93–104 (2005).
  • Pelly TF, Santillan CF, Gilman RH et al. Tuberculosis skin testing, anergy and protein malnutrition in Peru. Int. J Tuberc. Lung Dis. 9(9), 977–984 (2005).
  • Thomas TA, Mondal D, Noor Z et al. Malnutrition and helminth infection affect performance of an interferon gamma-release assay. Pediatrics 126(6), e1522–1529 (2010).
  • Adams JS, Hewison M. Unexpected actions of vitamin D: new perspectives on the regulation of innate and adaptive immunity. Nat. Clin. Pract. Endocrinol. Metab. 4(2), 80–90 (2008).
  • Liu PT, Stenger S, Tang DH, Modlin RL. Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J. Immunol. 179(4), 2060–2063 (2007).
  • Verway M, Bouttier M, Wang TT et al. Vitamin D induces Interleukin-1beta expression: paracrine macrophage epithelial signaling controls M. tuberculosis infection. PLoS Pathog. 9(6), e1003407 (2013).
  • Martineau AR, Nhamoyebonde S, Oni T et al. Reciprocal seasonal variation in vitamin D status and tuberculosis notifications in Cape Town, South Africa. Proc. Natl Acad. Sci. USA 108(47), 19013–19017 (2011).
  • Battersby AJ, Kampmann B, Burl S. Vitamin D in early childhood and the effect on immunity to Mycobacterium tuberculosis. Clin. Dev. Immunol. 2012, 430972 (2012).
  • Coussens AK, Wilkinson RJ, Hanifa Y et al. Vitamin D accelerates resolution of inflammatory responses during tuberculosis treatment. Proc. Natl Acad. Sci. USA 109(38), 15449–15454 (2012).
  • Martineau AR, Wilkinson RJ, Wilkinson KA et al. A single dose of vitamin D enhances immunity to mycobacteria. Am. J. Respir. Crit. Care Med. 176(2), 208–213 (2007).
  • Vilcheze C, Hartman T, Weinrick B, Jacobs WR Jr. Mycobacterium tuberculosis is extraordinarily sensitive to killing by a vitamin C-induced Fenton reaction. Nat. Commun. 4, 1881 (2013).
  • Esterhuyse MM, Linhart HG, Kaufmann SH. Can the battle against tuberculosis gain from epigenetic research? Trends Microbiol. 20(5), 220–226 (2012).
  • Bayarsaihan D. Epigenetic mechanisms in inflammation. J. Dent. Res. 90(1), 9–17 (2011).
  • Hossein-nezhad A, Holick MF. Optimize dietary intake of vitamin D: an epigenetic perspective. Curr. Opin. Clin. Nutr. Metab. Care 15(6), 567–579 (2012).
  • Ganu RS, Harris RA, Collins K, Aagaard KM. Early origins of adult disease: approaches for investigating the programmable epigenome in humans, nonhuman primates, and rodents. ILAR J. 53(3–4), 306–321 (2012).
  • Flint HJ, Scott KP, Louis P, Duncan SH. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 9(10), 577–589 (2012).
  • Matamoros S, Gras-Leguen C, Le Vacon F, Potel G, de La Cochetiere MF. Development of intestinal microbiota in infants and its impact on health. Trends Microbiol. 21(4), 167–173 (2013).
  • Schwartz S, Friedberg I, Ivanov IV et al. A metagenomic study of diet-dependent interaction between gut microbiota and host in infants reveals differences in immune response. Genome Biol. 13(4), r32 (2012).
  • Barker L, Hessel L, Walker B. Rational approach to selection and clinical development of TB vaccine candidates. Tuberculosis (Edinb) 92(Suppl. 1), S25–29 (2012).
  • Brennan MJ, Thole J. Tuberculosis vaccines: a strategic blueprint for the next decade. Tuberculosis (Edinb) 92(Suppl. 1), S6–13 (2012).
  • Raviglione M, Marais B, Floyd K et al. Scaling up interventions to achieve global tuberculosis control: progress and new developments. Lancet 379(9829), 1902–1913 (2012).
  • Grode L, Seiler P, Baumann S et al. Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis Bacille Calmette-Guérin mutants that secrete listeriolysin. J. Clin. Investig. 115(9), 2472–2479 (2005).
  • Grode L, Ganoza CA, Brohm C, Weiner J 3rd, Eisele B, Kaufmann SH. Safety and immunogenicity of the recombinant BCG vaccine VPM1002 in a phase 1 open-label randomized clinical trial. Vaccine 31(9), 1340–1348 (2013).
  • Kaufmann SH. Tuberculosis vaccine development: strength lies in tenacity. Trends Immunol. 33(7), 373–379 (2012).
  • Sun R, Skeiky YA, Izzo A et al. Novel recombinant BCG expressing perfringolysin O and the over-expression of key immunodominant antigens; pre-clinical characterization, safety and protection against challenge with Mycobacterium tuberculosis. Vaccine 27(33), 4412–4423 (2009).
  • Arbues A, Aguilo JI, Gonzalo-Asensio J et al. Construction, characterization and preclinical evaluation of MTBVAC, the first live-attenuated M. tuberculosis-based vaccine to enter clinical trials. Vaccine 31(42), 4867–4873 (2013).
  • Gonzalo-Asensio J, Mostowy S, Harders-Westerveen J et al. PhoP: a missing piece in the intricate puzzle of Mycobacterium tuberculosis virulence. PLoS ONE 3(10), e3496 (2008).
  • Frigui W, Bottai D, Majlessi L et al. Control of M. tuberculosis ESAT-6 secretion and specific T cell recognition by PhoP. PLoS Pathog. 4(2), e33 (2008).
  • Dintwe OB, Day CL, Smit E et al. Heterologous vaccination against human tuberculosis modulates antigen-specific CD4 T-cell function. Eur. J. Immunol. 43(9), 2409–2420 (2013).
  • Dalmia N, Ramsay AJ. Prime-boost approaches to tuberculosis vaccine development. Expert Rev. Vaccines 11(10), 1221–1233 (2012).
  • Day CL, Tameris M, Mansoor N et al. Induction and Regulation of T Cell Immunity by the Novel TB Vaccine M72/AS01 in South African Adults. Am. J. Respir. Crit. Care Med. 188(4), 492–502 (2013).
  • Aagaard C, Hoang T, Dietrich J et al. A multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nat. Med. 17(2), 189–194 (2011).
  • Lin PL, Dietrich J, Tan E et al. The multistage vaccine H56 boosts the effects of BCG to protect cynomolgus macaques against active tuberculosis and reactivation of latent Mycobacterium tuberculosis infection. J. Clin. Investig. 122(1), 303–314 (2012).
  • Bertholet S, Ireton GC, Ordway DJ et al. A defined tuberculosis vaccine candidate boosts BCG and protects against multidrug-resistant Mycobacterium tuberculosis. Sci. Transl. Med. 2(53), 53ra74 (2010).
  • Dicks MD, Spencer AJ, Edwards NJ et al. A novel chimpanzee adenovirus vector with low human seroprevalence: improved systems for vector derivation and comparative immunogenicity. PLoS ONE 7(7), e40385 (2012).
  • Rowland R, Pathan AA, Satti I et al. Safety and immunogenicity of an FP9-vectored candidate tuberculosis vaccine (FP85A), alone and with candidate vaccine MVA85A in BCG-vaccinated healthy adults: a phase I clinical trial. Hum. Vaccin. Immunother. 9(1), 50–62 (2013).
  • Jeyanathan M, Damjanovic D, Shaler CR et al. Differentially imprinted innate immunity by mucosal boost vaccination determines antituberculosis immune protective outcomes, independent of T-cell immunity. Mucosal Immunol. 6(3), 612–625 (2013).
  • Sun Y, Santra S, Buzby AP, Mascola JR, Nabel GJ, Letvin NL. Recombinant vector-induced HIV/SIV-specific CD4+ T lymphocyte responses in rhesus monkeys. Virology 406(1), 48–55 (2010).
  • Odutola AA, Owolabi OA, Owiafe PK, McShane H, Ota MO. A new TB vaccine, MVA85A, induces durable antigen-specific responses 14 months after vaccination in African infants. Vaccine 30(38), 5591–5594 (2012).
  • Scriba TJ, Tameris M, Smit E et al. A phase IIa trial of the new tuberculosis vaccine, MVA85A, in HIV- and/or Mycobacterium tuberculosis-infected adults. Am. J. Respir. Crit. Care Med. 185(7), 769–778 (2012).
  • Schellack C, Prinz K, Egyed A et al. IC31, a novel adjuvant signaling via TLR9, induces potent cellular and humoral immune responses. Vaccine 24(26), 5461–5472 (2006).
  • Brookes RH, Hill PC, Owiafe PK et al. Safety and immunogenicity of the candidate tuberculosis vaccine MVA85A in West Africa. PLoS ONE 3(8), e2921 (2008).
  • de Cassan SC, Pathan AA, Sander CR et al. Investigating the induction of vaccine-induced Th17 and regulatory T cells in healthy, Mycobacterium bovis BCG-immunized adults vaccinated with a new tuberculosis vaccine, MVA85A. Clin. Vaccine Immunol. 17(7), 1066–1073 (2010).
  • Hawkridge T, Scriba TJ, Gelderbloem S et al. Safety and immunogenicity of a new tuberculosis vaccine, MVA85A, in healthy adults in South Africa. J. Infect. Dis. 198(4), 544–552 (2008).
  • Meyer J, Harris SA, Satti I et al. Comparing the safety and immunogenicity of a candidate TB vaccine MVA85A administered by intramuscular and intradermal delivery. Vaccine 31(7), 1026–1033 (2013).
  • Minassian AM, Rowland R, Beveridge NE et al. A Phase I study evaluating the safety and immunogenicity of MVA85A, a candidate TB vaccine, in HIV-infected adults. BMJ Open 1(2), e000223 (2011).
  • Ota MO, Odutola AA, Owiafe PK et al. Immunogenicity of the tuberculosis vaccine MVA85A is reduced by coadministration with EPI vaccines in a randomized controlled trial in Gambian infants. Sci. Transl. Med. 3(88), 88ra56 (2011).
  • Pathan AA, Minassian AM, Sander CR et al. Effect of vaccine dose on the safety and immunogenicity of a candidate TB vaccine, MVA85A, in BCG vaccinated UK adults. Vaccine 30(38), 5616–5624 (2012).
  • Sander CR, Pathan AA, Beveridge NE et al. Safety and immunogenicity of a new tuberculosis vaccine, MVA85A, in Mycobacterium tuberculosis-infected individuals. Am. J. Respir. Crit. Care Med. 179(8), 724–733 (2009).
  • Scriba TJ, Tameris M, Mansoor N et al. Dose-finding study of the novel tuberculosis vaccine, MVA85A, in healthy BCG-vaccinated infants. J. Infect. Dis. 203(12), 1832–1843 (2011).
  • Whelan KT, Pathan AA, Sander CR et al. Safety and immunogenicity of boosting BCG vaccinated subjects with BCG: comparison with boosting with a new TB vaccine, MVA85A. PLoS ONE 4(6), e5934 (2009).
  • Tameris MD, Hatherill M, Landry BS et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet 381(9871), 1021–1028 (2013).
  • Baleta A. Profile: SATVI – a leading light in tuberculosis vaccine research. Lancet 381(9871), 984 (2013).
  • Betts G, Poyntz H, Stylianou E et al. Optimising immunogenicity with viral vectors: mixing MVA and HAdV-5 expressing the mycobacterial antigen Ag85A in a single injection. PLoS ONE 7(12), e50447 (2012).
  • Xing Z, McFarland CT, Sallenave JM, Izzo A, Wang J, McMurray DN. Intranasal mucosal boosting with an adenovirus-vectored vaccine markedly enhances the protection of BCG-primed guinea pigs against pulmonary tuberculosis. PLoS ONE 4(6), e5856 (2009).
  • Barouch DH, Pau MG, Custers JH et al. Immunogenicity of recombinant adenovirus serotype 35 vaccine in the presence of pre-existing anti-Ad5 immunity. J. Immunol. 172(10), 6290–6297 (2004).
  • Radosevic K, Wieland CW, Rodriguez A et al. Protective immune responses to a recombinant adenovirus type 35 tuberculosis vaccine in two mouse strains: CD4 and CD8 T-cell epitope mapping and role of gamma interferon. Infect. Immun. 75(8), 4105–4115 (2007).
  • Hoft DF, Blazevic A, Stanley J et al. A recombinant adenovirus expressing immunodominant TB antigens can significantly enhance BCG-induced human immunity. Vaccine 30(12), 2098–2108 (2012).
  • Leroux-Roels I, Forgus S, De Boever F et al. Improved CD4(+) T cell responses to Mycobacterium tuberculosis in PPD-negative adults by M72/AS01 as compared to the M72/AS02 and Mtb72F/AS02 tuberculosis candidate vaccine formulations: a randomized trial. Vaccine 31(17), 2196–2206 (2013).
  • Agger EM, Rosenkrands I, Hansen J et al. Cationic liposomes formulated with synthetic mycobacterial cordfactor (CAF01): a versatile adjuvant for vaccines with different immunological requirements. PLoS ONE 3(9), e3116 (2008).
  • Govender L, Abel B, Hughes EJ et al. Higher human CD4 T cell response to novel Mycobacterium tuberculosis latency associated antigens Rv2660 and Rv2659 in latent infection compared with tuberculosis disease. Vaccine 29(1), 51–57 (2010).
  • Dietrich J, Aagaard C, Leah R et al. Exchanging ESAT6 with TB10.4 in an Ag85B fusion molecule-based tuberculosis subunit vaccine: efficient protection and ESAT6-based sensitive monitoring of vaccine efficacy. J. Immunol. 174(10), 6332–6339 (2005).
  • McMurray DN. Therapeutic vaccination: hope for untreatable tuberculosis? J. Infect. Dis. 207(8), 1193–1194 (2013).
  • Vilaplana C, Montane E, Pinto S et al. Double-blind, randomized, placebo-controlled Phase I Clinical Trial of the therapeutical antituberculous vaccine RUTI. Vaccine 28(4), 1106–1116 (2010).
  • von Reyn CF, Mtei L, Arbeit RD et al. Prevention of tuberculosis in Bacille Calmette-Guérin-primed, HIV-infected adults boosted with an inactivated whole-cell mycobacterial vaccine. AIDS 24(5), 675–685 (2010).
  • Johnson JL, Kamya RM, Okwera A et al. Randomized controlled trial of Mycobacterium vaccae immunotherapy in non-human immunodeficiency virus-infected ugandan adults with newly diagnosed pulmonary tuberculosis. The Uganda-Case Western Reserve University Research Collaboration. J. Infect. Dis. 181(4), 1304–1312 (2000).
  • Johnson JL, Nunn AJ, Fourie PB et al. Effect of Mycobacterium vaccae (SRL172) immunotherapy on radiographic healing in tuberculosis. Int. J. Tuberc. Lung Dis. 8(11), 1348–1354 (2004).
  • Mayo RE, Stanford JL. Double-blind placebo-controlled trial of Mycobacterium vaccae immunotherapy for tuberculosis in KwaZulu, South Africa, 1991–97. Trans. R. Soc. Trop. Med. Hyg. 94(5), 563–568 (2000).
  • Mwinga A, Nunn A, Ngwira B et al. Mycobacterium vaccae (SRL172) immunotherapy as an adjunct to standard antituberculosis treatment in HIV-infected adults with pulmonary tuberculosis: a randomised placebo-controlled trial. Lancet 360(9339), 1050–1055 (2002).
  • Saini V, Raghuvanshi S, Talwar GP et al. Polyphasic taxonomic analysis establishes Mycobacterium indicus pranii as a distinct species. PLoS ONE 4(7), e6263 (2009).
  • De Sarkar A, Kaur I, Radotra BD, Kumar B. Impact of combined Mycobacterium w vaccine and 1 year of MDT on multibacillary leprosy patients. Int. J. Lepr. Other Mycobact. Dis. 69(3), 187–194 (2001).
  • Katoch K, Katoch VM, Natrajan M et al. 10–12 years follow-up of highly bacillated BL/LL leprosy patients on combined chemotherapy and immunotherapy. Vaccine 22(27–28), 3649–3657 (2004).
  • Patel N, Deshpande MM, Shah M. Effect of an immunomodulator containing Mycobacterium w on sputum conversion in pulmonary tuberculosis. J. Indian Med. Assoc. 100(3), 191–193 (2002).
  • Patel N, Trapathi SB. Improved cure rates in pulmonary tuberculosis category II (retreatment) with Mycobacterium w. J. Indian Med. Assoc. 101(11), 680, 682 (2003).
  • Sharma P, Mukherjee R, Talwar GP et al. Immunoprophylactic effects of the anti-leprosy Mw vaccine in household contacts of leprosy patients: clinical field trials with a follow up of 8–10 years. Lepr. Rev. 76(2), 127–143 (2005).
  • Kamath AT, Fruth U, Brennan MJ et al. New live mycobacterial vaccines: the Geneva consensus on essential steps towards clinical development. Vaccine 23(29), 3753–3761 (2005).
  • Walker KB, Brennan MJ, Ho MM et al. The second Geneva Consensus: Recommendations for novel live TB vaccines. Vaccine 28(11), 2259–2270 (2010).
  • Dharmadhikari AS, Nardell EA. What animal models teach humans about tuberculosis. Am. J. Respir. Cell Mol. Biol. 39(5), 503–508 (2008).
  • Thoma-Uszynski S, Stenger S, Takeuchi O et al. Induction of direct antimicrobial activity through mammalian toll-like receptors. Science 291(5508), 1544–1547 (2001).
  • Liu PT, Stenger S, Li H et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311(5768), 1770–1773 (2006).
  • Williams A, Hall Y, Orme IM. Evaluation of new vaccines for tuberculosis in the guinea pig model. Tuberculosis (Edinb) 89(6), 389–397 (2009).
  • Williams A, Hatch GJ, Clark SO et al. Evaluation of vaccines in the EU TB Vaccine Cluster using a guinea pig aerosol infection model of tuberculosis. Tuberculosis (Edinb) 85(1–2), 29–38 (2005).
  • Lin PL, Rodgers M, Smith L et al. Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model. Infect. Immun. 77(10), 4631–4642 (2009).
  • Evans TG, Brennan MJ, Barker L, Thole J. Preventive vaccines for tuberculosis. Vaccine 31(Suppl. 2), B223–226 (2013).
  • Hokey DA, Ginsberg A. The current state of tuberculosis vaccines. Hum. Vaccin. Immunother. 9(10) (2013).
  • Marquina-Castillo B, Garcia-Garcia L, Ponce-de-Leon A et al. Virulence, immunopathology and transmissibility of selected strains of Mycobacterium tuberculosis in a murine model. Immunology 128(1), 123–133 (2009).
  • Capuano SV 3rd, Croix DA, Pawar S et al. Experimental Mycobacterium tuberculosis infection of cynomolgus macaques closely resembles the various manifestations of human M. tuberculosis infection. Infect. Immun. 71(10), 5831–5844 (2003).
  • Kagina BM, Abel B, Scriba TJ et al. Specific T cell frequency and cytokine expression profile do not correlate with protection against tuberculosis after Bacille Calmette-Guérin vaccination of newborns. Am. J. Respir. Crit. Care Med. 182(8), 1073–1079 (2010).
  • Kagina BM, Abel B, Bowmaker M et al. Delaying BCG vaccination from birth to 10 weeks of age may result in an enhanced memory CD4 T cell response. Vaccine 27(40), 5488–5495 (2009).
  • Cheon SH, Kampmann B, Hise AG et al. Bactericidal activity in whole blood as a potential surrogate marker of immunity after vaccination against tuberculosis. Clin. Diagn. Lab. Immunol. 9(4), 901–907 (2002).
  • Minassian AM, Satti I, Poulton ID, Meyer J, Hill AV, McShane H. A human challenge model for Mycobacterium tuberculosis using Mycobacterium bovis Bacille Calmette-Guérin. J. Infect. Dis. 205(7), 1035–1042 (2012).
  • Berry MP, Graham CM, McNab FW et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466(7309), 973–977 (2010).
  • Rustomjee R, McClain B, Brennan MJ et al. Designing an adaptive phase II/III trial to evaluate efficacy, safety and immune correlates of new TB vaccines in young adults and adolescents. Tuberculosis (Edinb) 93(2), 136–142 (2013).
  • Sterne JA, Rodrigues LC, Guedes IN. Does the efficacy of BCG decline with time since vaccination? Int. J. Tuberc. Lung Dis. 2(3), 200–207 (1998).
  • Tameris M, Gelderbloem SJ, Rustomjee R. An urgent call for a stronger, louder voice for TB vaccine advocacy. Tuberculosis (Edinb) 93(3), 277–278 (2013).
  • Donald PR, Marais BJ, Barry CE 3rd. Age and the epidemiology and pathogenesis of tuberculosis. Lancet 375(9729), 1852–1854 (2010).
  • Wood R, Lawn SD, Caldwell J, Kaplan R, Middelkoop K, Bekker LG. Burden of new and recurrent tuberculosis in a major South African city stratified by age and HIV-status. PLoS ONE 6(10), e25098 (2011).
  • Cooper AM. Cell-mediated immune responses in tuberculosis. Annu. Rev. Immunol. 27, 393–422 (2009).
  • Kallenius G, Pawlowski A, Brandtzaeg P, Svenson S. Should a new tuberculosis vaccine be administered intranasally? Tuberculosis (Edinb) 87(4), 257–266 (2007).
  • Garcia-Contreras L, Wong YL, Muttil P et al. Immunization by a bacterial aerosol. Proc. Natl Acad. Sci. USA 105(12), 4656–4660 (2008).
  • Wang J, Thorson L, Stokes RW et al. Single mucosal, but not parenteral, immunization with recombinant adenoviral-based vaccine provides potent protection from pulmonary tuberculosis. J. Immunol. 173(10), 6357–6365 (2004).
  • Santosuosso M, McCormick S, Zhang X, Zganiacz A, Xing Z. Intranasal boosting with an adenovirus-vectored vaccine markedly enhances protection by parenteral Mycobacterium bovis BCG immunization against pulmonary tuberculosis. Infect. Immun. 74(8), 4634–4643 (2006).
  • Goonetilleke NP, McShane H, Hannan CM, Anderson RJ, Brookes RH, Hill AV. Enhanced immunogenicity and protective efficacy against Mycobacterium tuberculosis of Bacille Calmette-Guérin vaccine using mucosal administration and boosting with a recombinant modified vaccinia virus Ankara. J. Immunol. 171(3), 1602–1609 (2003).
  • White AD, Sibley L, Dennis MJ et al. Evaluation of the safety and immunogenicity of a candidate tuberculosis vaccine, MVA85A, delivered by aerosol to the lungs of macaques. Clin. Vaccine Immunol. 20(5), 663–672 (2013).
  • Verreck FA, Vervenne RA, Kondova I et al. MVA.85A boosting of BCG and an attenuated, phoP deficient M. tuberculosis vaccine both show protective efficacy against tuberculosis in rhesus macaques. PLoS ONE 4(4), e5264 (2009).
  • Vordermeier HM, Villarreal-Ramos B, Cockle PJ et al. Viral booster vaccines improve Mycobacterium bovis BCG-induced protection against bovine tuberculosis. Infect. Immun. 77(8), 3364–3373 (2009).
  • Tameris M, McShane H, McClain JB et al. Lessons learnt from the first efficacy trial of a new infant tuberculosis vaccine since BCG. Tuberculosis (Edinb) 93(2), 143–149 (2013).
  • Bishai W, Sullivan Z, Bloom BR, Andersen P. Bettering BCG: a tough task for a TB vaccine? Nat. Med. 19(4), 410–411 (2013).
  • Lalvani A, Sridhar S, Fordham von Reyn C. Tuberculosis vaccines: time to reset the paradigm? Thorax (2013) (Epub ahead of print).
  • Li W, Deng G, Li M, Liu X, Wang Y. Roles of mucosal immunity against Mycobacterium tuberculosis infection. Tuberc. Res. Treat. 2012, 791728 (2012).
  • Kleinnijenhuis J, Quintin J, Preijers F et al. Bacille Calmette-Guérin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc. Natl Acad. Sci. USA 109(43), 17537–17542 (2012).
  • Ota MO, Vekemans J, Schlegel-Haueter SE et al. Influence of Mycobacterium bovis Bacille Calmette-Guérin on antibody and cytokine responses to human neonatal vaccination. J. Immunol. 168(2), 919–925 (2002).
  • Mahmoud A. The future of vaccine discovery and development. In: Vaccines: A Biography. Artenstein AW. Springer, New York, NY, USA, xxi; 401p (2010).
  • Koff WC, Burton DR, Johnson PR et al. Accelerating next-generation vaccine development for global disease prevention. Science 340(6136), 1232910 (2013).
  • Geldenhuys H, Veldsman A, Tameris M et al. Analysis of time to regulatory and ethical approval of SATVI TB vaccine trials in South Africa. S. Afr. Med. J. 103(2), 85–89 (2013).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.