324
Views
14
CrossRef citations to date
0
Altmetric
Perspectives

The potential of Physcomitrella patens as a platform for the production of plant-based vaccines

, , , &

References

  • Gleba Y, Klimyuk V, Marillonnet S. Viral vectors for the expression of proteins in plants. Curr Opin Biotechnol 2007;18:134-41
  • Maliga P, Bock R. Plastid biotechnology: food, fuel, and medicine for the 21st century. Plant Physiol 2011;155(4):1501-10
  • Huang TK, McDonald KA. Bioreactor systems for in vitro production of foreign proteins using plant cell cultures. Biotechnol Adv 2012;30(2):398-409
  • Namdev PK, Dunlop EH. Shear sensitivity of plant cells in suspensions present and future. Appl Biochem Biotech 1995;54(1–3):109-31
  • Larkin PJ, Scowcroft WR. Somaclonal variation – a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 1981;60:197-214
  • Reski R. Development, genetics and molecular biology of mosses. Bot Acta 1998;111:1-15
  • Cove DJ, Quatrano RS, Hartmann E. The alignment of the axis of asymmetry in regenerating protoplasts of the moss, Ceratodon purpureus, is determined independently of axis polarity. Development 1996;122:371-9
  • Cove DJ, Knight CD, Lamparter T. Mosses as model systems. Trends Plant Sci 1997;2(3):99-105
  • Hohe A, Rensing SA, Mildner M, et al. Day length and temperature strongly influence sexual reproduction and expression of a novel MADS-box gene in the moss Physcomitrella patens. Plant Biology 2002;4:595-602
  • Lang D, Zimmer AD, Rensing SA, et al. Exploring plant biodiversity: the Physcomitrella genome and beyond. Trends Plant Sci 2008;13:542-9
  • Vidali L, Bezanilla M. Physcomitrella patens: a model for tip cell growth and differentiation. Curr Opin Plant Biol 2012;15:625-31
  • Zimmer AD, Lang D, Buchta K, et al. Reannotation and extended community resources of the non-seed plant Physcomitrella patens provide insights into the evolution of plant gene structures and functions. BMC Genomics 2013;14:498
  • Decker EL, Reski R. Current achievements in the production of complex biopharmaceuticals with moss bioreactors. Bioprocess Biosyst Eng 2008;31(1):3-9
  • Wilkhu J, McNeil SE, Kirby DJ, et al. Formulation design considerations for oral vaccines. Ther Deliv 2011;2(9):1141-64
  • Hohe A, Reski R. From axenic spore germination to molecular farming: one century of bryophyte in vitro culture. Plant Cell Rep 2005;23:513-21
  • Reski R, Abel WO. Induction of budding on chloronemata and caulonemata of the moss, Physcomitrella patens, using isopentenyladenine. Planta 1985;165(3):354-8
  • Hohe A, Decker EL, Gorr G, et al. Tight control of growth and cell differentiation in photoautotrophically growing moss (Physcomitrella patens) bioreactor cultures. Plant Cell Rep 2002;20:1135-40
  • Cove DJ, Bezanilla M, Harries P, et al. Mosses as Model Systems for the Study of Metabolism and development. Annu Rev Plant Biol 2006;57:497-520
  • Hohe A, Reski R. Optimisation of a bioreactor culture of the moss Physcomitrella patens for mass production of protoplasts. Plant Science 2002;163(1):69-74
  • Lucumi A, Posten C, Pons MN. Image analysis supported moss cell disruption in photo-bioreactors. Plant Biol 2005;7(3):276-82
  • Lucumi A, Posten C. Establishment of long-term perfusion cultures of recombinant moss in a pilot tubular photobioreactor. Process Biochem 2006;41(10):2180-7
  • Cerff M, Posten C. Enhancing the growth of Physcomitrella patens by combination of monochromatic red and blue light - a kinetic study. Biotechnol J 2012;7:527-36
  • Decker EL, Reski R. Glycoprotein production in moss bioreactors. Plant Cell Rep 2012;31(3):453-60
  • Protein Production for the Pharmaceutical Industry. Available from: www.greenovation.com
  • Chen F, Johns MR. Heterotrophic growth of Chlamydomonas reinhardtii on acetate in chemostat culture. Process Biochem 1996;31(6):601-4
  • Schaefer DG, Zrÿd J, Knight CD, et al. Stable transformation of the moss Physcomitrella patens. Mol Gen Genet 1991;226(3):418-24
  • Hohe A, Egener T, Lucht JM, et al. An improved and highly standardized transformation procedure allows efficient production of single and multiple targeted gene-knockouts in a moss, Physcomitrella patens. Curr Genet 2004;44(6):339-47
  • Kamisugi Y, Schlink K, Rensing SA, et al. The mechanism of gene targeting in Physcomitrella patens: homologous recombination, concatenation and multiple integration. Nucleic Acids Res 2006;34:6205-14
  • Gitzinger M, Parsons J, Reski R, et al. Functional cross-kingdom conservation of mammalian and moss (Physcomitrella patens) transcription, translation and secretion machineries. Plant Biotechnol J 2009;7:73-86
  • Sawahel W, Onde S, Knight CD, et al. Transfer of foreign DNA into Physcomitrella protonemal tissue by using the gene gun. Plant Mol Biol Rep 1992;10(4):315-16
  • Cho SH, Chung YS, Cho SK, et al. Particle bombardment mediated transformation and GFP expression in the moss Physcomitrella patens. Mol Cells 1999;9(1):14-19
  • Irifune K, Ono K, Takahashi M, et al. Stable transformation of cultured cells of the liverwort Marchantia polymorpha by particle bombardment. Transgenic Res 1996;5:337-41
  • Whatley MH, Spiess LD. Role of bacterial lipopolysaccharide in attachment of Agrobacterium to moss. Plant Physiol 1977;60(5):765-6
  • Spiess LD, Lippincott BB, Lippincott JA. Role of the moss cell-wall in gametophore formation induced by Agrobacterium tumefaciens. Bot Gaz 1984;145(3):302-7
  • Li LH, Yang J, Qiu HL, et al. Genetic transformation of Physcomitrella patens mediated by Agrobacterium tumefaciens. Afr J Biotechnol 2010;9:3719-25
  • Ishizaki K, Johzuka-Hisatomi Y, Ishida S, et al. Homologous recombination-mediated gene targeting in the liverwort Marchantia polymorpha L. Sci Rep 2013;3:1532
  • Frank W, Decker EL, Reski R. Molecular tools to study Physcomitrella patens. Plant Biol 2005;7:220-7
  • Daniell H, Ruiz ON, Dhingra A. Chloroplast genetic engineering to improve agronomic traits. Methods Mol Biol 2005;286:111-38
  • Jost W, Link S, Horstmann V, et al. Isolation and characterization of three moss derived beta-tubulin promoters suitable for recombinant expression. Curr Genet 2005;47(2):111-20
  • Weise A, Rodriguez-Franco M, Timm B, et al. Isolation of four members of a plant actin gene family with remarkable gene structures and the use of their 5' regions for high transgene expression. Appl Microbiol Biotechnol 2006;70:337-45
  • Buettner-Mainik A, Parsons J, Jerome H, et al. Production of biologically active recombinant human factor H in Physcomitrella. Plant Biotech J 2011;9(3):373-83
  • Schaaf A, Reski R, Decker EL. A novel aspartic proteinase is targeted to the secretory pathway and to the vacuole in the moss, Physcomitrella patens. Eur J Cell Biol 2004;83:145-52
  • Rosales-Mendoza S, Rubio-Infante N, Govea-Alonso DO, et al. Current status and perspectives of plant-based candidate vaccines against the human immunodeficiency virus (HIV). Plant Cell Rep 2012;31(3):495-511
  • Jin C, Altmann F, Strasser R, et al. A plant-derived human monoclonal antibody induces an anti-carbohydrate immune response in rabbits. Glycobiol 2008;18(3):235-41
  • Mori K, Sugimoto C, Ohgimoto S, et al. Influence of glycosylation on the efficacy of an Env-based vaccine against simian immunodeficiency virus SIVmac239 in a macaque AIDS model. J Virol 2005;79(16):10386-96
  • Van Ree R, Cabanes-Macheteau M, Akkerdaas J, et al. Beta (1,2)-xylose and alpha (1,3)-fucose residues have a strong contribution in IgE binding to plant glycoallergens. J Biol Chem 2000;275:11451-8
  • Bosch D, Schots A. Plant glycans: friend or foe in vaccine development? Expert Rev Vaccines 2010;9(8):835-42
  • Koprivova A, Altmann F, Gorr G, et al. N-Glycosylation in the Moss Physcomitrella patens is Organized Similarly to that in Higher Plants. Plant Biol 2003;5:582-91
  • Lerouge P, Cabanes-Macheteau M, Rayon C, et al. N-Glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol Biol 1998;38(1–2):31-48
  • Vitale A, Chrispeels MJ. Transient N-acetylglucosamine in the biosynthesis of phytohemagglutinin: attachment in the Golgi apparatus and removal in protein bodies. J Cell Biol 1984;99:133-40
  • Koprivova A, Stemmer C, Altmann F, et al. Targeted knockouts of Physcomitrella lacking plant-specific immunogenic N-glycans. Plant Biotech J 2004;2:517-23
  • Parsons J, Altmann F, Arrenberg CK, et al. Moss-based production of asialo-erythropoietin devoid of Lewis A and other plant-typical carbohydrate determinants. Plant Biotech J 2012;10:851-61
  • Schähs M, Strasser R, Stadlmann J, et al. Production of a monoclonal antibody in plants with a humanized N-glycosylation pattern. Plant Biotech J 2007;5(5):657-63
  • Strasser R, Stadlmann J, Schahs M, et al. Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure. Plant Biotech J 2008;6(4):392-402
  • Sourrouille C, Marquet-Blouin E, D'Aoust MA, et al. Down-regulated expression of plant-specific glycoepitopes in alfalfa. Plant Biotech J 2008;6(7):702-21
  • Cox KM, Sterling JD, Regan JT, et al. Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat Biotechnol 2006;24(12):1591-7
  • Palacpac NQ, Yoshida S, Sakai H, et al. Stable expression of human b1,4- galactosyltransferase in plant cells modifies N-linked glycosylation patterns. Proc Natl Acad Sci USA 1999;96(8):4692-7
  • Bakker H, Bardor M, Molthoff JW, et al. Galactose-extended glycans of antibodies produced by transgenic plants. Proc Natl Acad Sci USA 2001;98(5):2899-904
  • Huether CM, Lienhart O, Baur A, et al. Glyco-engineering of moss lacking plant-specific sugar residues. Plant Biol 2005;7(3):292-9
  • Altmann F. The role of protein glycosylation in allergy. Int Arch Allergy Immunol 2007;142(2):99-115
  • Geijtenbeek TBH, van Vliet SJ, Engering A, et al. Self- and nonself-recognition by C-type lectins on dendritic cells. Annu Rev Immunol 2004;22:33-54
  • Stoger E, Sack M, Fischer R, et al. Plantibodies: applications, advantages and bottlenecks. Curr Opin Biotechnol 2002;13(2):161-6
  • Stoger E, Schillberg S, Twyman RM, et al. Antibody production in transgenic plants. Methods Mol Biol 2004;248:301-18
  • Schuster M, Jost W, Mudde G, et al. In vivo glyco-engineered antibody with improved lytic potential produced by an innovative non-mammalian expression system. Biotechnol J 2007;2(6):700-8
  • Prigge MJ, Bezanilla M. Evolutionary crossroads in developmental biology: Physcomitrella patens. Development 2010;137(21):3535-43
  • Schaefer DG. Gene targeting in Physcomitrella patens. Curr Opin Plant Biol 2001;4(2):143-50
  • Decker EL, Reski R. Moss bioreactors producing improved biopharmaceuticals. Curr Opin Plant Biol 2007;18(5):393-8
  • Weise A, Altmann F, Rodriguez-Franco M, et al. High-level expression of secreted complex glycosylated recombinant human erythropoietin in the Physcomitrella Delta-fuc-t Delta-xyl-t mutant. Plant Biotechnol J 2007;5(3):389-401
  • Kumar R, Tuen M, Li H, et al. Improving immunogenicity of HIV-1 envelope gp120 by glycan removal and immune complex formation. Vaccine 2011;29(48):9064-74
  • Raska M, Takahashi K, Czernekova L, et al. Glycosylation patterns of HIV-1 gp120 depend on the type of expressing cells and affect antibody recognition. J Biol Chem 285(27):20860-9
  • Burton DR, Desrosiers RC, Doms RW, et al. HIV vaccine design and the neutralizing antibody problem. Nat Immunol 2004;5(3):233-6
  • Reitter JN, Means RE, Desrosiers RC. A role for carbohydrates in immune evasion in AIDS. Nat Med 1998;4(6):679-84
  • Li Y, Cleveland B, Klots I, et al. Removal of a single N-linked glycan in human immunodeficiency virus type 1 gp120 results in an enhanced ability to induce neutralizing antibody responses. J Virol 2008;82(2):638-51
  • Li H, Xu C, Blais S, et al. Proximal glycans outside of the epitopes regulate the presentation of HIV-1 envelope gp120 helper epitopes. J Immunol 2009;182(10):6369-78
  • Bolmstedt A, Sjölander S, Hansen JE, et al. Influence of N-linked glycans in V4-V5 region of human immunodeficiency virus type 1 glycoprotein gp160 on induction of a virus-neutralizing humoral response. J Acquir Immune Defic Syndr Hum Retrovirol 1996;12(3):213-20
  • Huang X, Jin W, Hu K, et al. Highly conserved HIV-1 gp120 glycans proximal to CD4-binding region affect viral infectivity and neutralizing antibody induction. Virology 2012;423(1):97-106
  • Franconi R, Demurtas O, Massa S. Plant-derived vaccines and other therapeutics produced in contained systems. Expert Rev Vaccines 2010;9(8):877-92
  • Streatfield S, Howard J. Plant-based vaccines. Int J Parasitol 2003;33(5–6):479-93
  • Yusibov V, Streatfield S, Kushnir N. Clinical development of plant-produced recombinant pharmaceuticals: vaccines, antibodies and beyond. Hum Vaccin 2011;7(3):313-21
  • Kong Q, Richter L, Yang YF, et al. Oral immunization with hepatitis B surface antigen expressed in transgenic plants. Proc Natl Acad Sci USA 2001;98(20):11539-44
  • Zhang Y, Chen S, Li J, et al. Oral immunogenicity of potato-derived antigens to Mycobacterium tuberculosis in mice. Acta Biochim Biophys Sin (Shanghai) 2012;44(10):823-30
  • Rosales-Mendoza S, Soria-Guerra RE, Moreno-Fierros L, et al. Immunogenicity of nuclear-encoded LTB:ST fusion protein from Escherichia coli expressed in tobacco plants. Plant Cell Rep 2011;30(6):1145-52
  • Licciardi PV, Underwood JR. Plant-derived medicines: a novel class of immunological adjuvants. Int Immunopharmacol 2011;11(3):390-8
  • Glime JM. Household and personal uses. In: Bryophyte Ecology (Volume 5). Ebook sponsored by Michigan Technological University and the International Association of Bryologists; 2007. Available from: www.bryoecol.mtu.edu
  • Jacob SS, Cherian S, Sumithra TG, et al. Edible vaccines against veterinary parasitic diseases–current status and future prospects. Vaccine 2013;31(15):1879-85
  • Kuroiwaa A, Lioua S, Yana H, et al. Effect of a traditional Japanese herbal medicine, Hochu-ekki-to(Bu-Zhong-Yi-Qi Tang), on immunity in elderly persons. Int Immunopharmacol 2004;4(2):317-24
  • Yang T, Jia M, Meng J, et al. Immunomodulatory activity of polysaccharide isolated from Angelica sinensis. Int J Biol Macromol 2006;39(4-5):179-84
  • Otsuki N, Dang NH, Kumagai E, et al. Aqueous extract of Carica papaya leaves exhibits anti-tumor activity and immunomodulatory effects. J Ethnopharmacol 2010;127(3):760-7
  • Gong XM, Wu YM. Research actuality and tendency of immune adjuvant. Chin J Vet 1996;1:41-3
  • Gautam M, Gairola S, Jadhav S, et al. Ethnopharmacology in vaccine adjuvant discovery. Vaccine 2008;26(41):5239-40
  • Quan FS, Compans RW, Cho YK, et al. Ginseng and Salviae herbs play a role as immune activators and modulate immune responses during influenza virus infection. Vaccine 2007;25(2):272-82
  • Sun JL, Hu YL, Wang DY, et al. Immunologic enhancement of compound Chinese herbal medicinal ingredients and their efficacy comparison with compound Chinese herbal medicines. Vaccine 2006;24(13):2343-8
  • Wang D, Li X, Xu L, et al. Immunologic synergism with IL-2 and effects of cCHMIs on mRNA expression of IL-2 and IFN-gamma in chicken peripheral T lymphocyte. Vaccine 2006;24(49-50):7109-14
  • Mitra SK, Gupta M, Sarma DN. Immunomodulatory effect of IM-133. Phytother Res 1999;13(4):341-3
  • Erxleben A, Gessler A, Vervliet-Scheebaum M, et al. Metabolite profiling of the moss Physcomitrella patens reveals evolutionary conservation of osmoprotective substances. Plant Cell Rep 2012;31(2):427-36
  • Iwami D, Nonomura K, Shirasugi N, et al. Immunomodulatory effects of eicosapentaenoic acid through induction of regulatory T cells. Int Immunopharmacol 2011;11(3):384-9
  • Miles EA, Zoubouli P, Calder PC. Effects of polyphenols on human Th1 and Th2 cytokine production. Clin Nutr 2005;24(5):780-4
  • Richter H, Lieberei R, Strnad M, et al. Polyphenol oxidases in Physcomitrella: functional PPO1 knockout modulates cytokinin-dependent development in the moss Physcomitrella patens. J Exp Bot 2012;63(14):5121-35
  • Baur A, Reski R, Gorr G. Enhanced recovery of a secreted recombinant human growth factor using stabilizing additives and by co-expression of human serum albumin in the moss Physcomitrella patens. Plant Biotech J 2005;3:331-40

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.