579
Views
38
CrossRef citations to date
0
Altmetric
Reviews

Adenylate cyclase toxin-hemolysin relevance for pertussis vaccines

, &

References

  • Hewlett EL, Urban MA, Manclark CR, Wolff J. Extracytoplasmic adenylate cyclase of Bordetella pertussis. Proc Natl Acad Sci USA 1976;73(6):1926-30
  • Hewlett EL, Manclark CR, Wolff J. Adenyl cyclase in Bordetella pertussis vaccines. J Infect Dis 1977;136 Suppl:S216-19
  • Wolff J, Cook GH, Goldhammer AR, Berkowitz SA. Calmodulin activates prokaryotic adenylate cyclase. Proc Natl Acad Sci USA 1980;77(7):3841-4
  • Confer DL, Eaton JW. Phagocyte impotence caused by an invasive bacterial adenylate cyclase. Science 1982;217(4563):948-50
  • Weiss AA, Hewlett EL, Myers GA, Falkow S. Tn5-induced mutations affecting virulence factors of Bordetella pertussis. Infect Immun 1983;42(1):33-41
  • Weiss AA, Hewlett EL, Myers GA, Falkow S. Pertussis toxin and extracytoplasmic adenylate cyclase as virulence factors of Bordetella pertussis. J Infect Dis 1984;150(2):219-22
  • Goodwin MS, Weiss AA. Adenylate cyclase toxin is critical for colonization and pertussis toxin is critical for lethal infection by Bordetella pertussis in infant mice. Infect Immun 1990;58(10):3445-7
  • Gross MK, Au DC, Smith AL, Storm DR. Targeted mutations that ablate either the adenylate cyclase or hemolysin function of the bifunctional cyaA toxin of Bordetella pertussis abolish virulence. Proc Natl Acad Sci USA 1992;89(11):4898-902
  • Khelef N, Sakamoto H, Guiso N. Both adenylate cyclase and hemolytic activities are required by Bordetella pertussis to initiate infection. Microb Pathog 1992;12(3):227-35
  • Pittman M. The concept of pertussis as a toxin-mediated disease. Pediatr Infect Dis 1984;3(5):467-86
  • Brownlie RM, Coote JG, Parton R, et al. Cloning of the adenylate cyclase genetic determinant of Bordetella pertussis and its expression in Escherichia coli and B. pertussis. Microb Pathog 1988;4(5):335-44
  • Glaser P, Ladant D, Sezer O, et al. The calmodulin-sensitive adenylate cyclase of Bordetella pertussis: cloning and expression in Escherichia coli. Mol Microbiol 1988;2(1):19-30
  • Glaser P, Sakamoto H, Bellalou J, et al. Secretion of cyclolysin, the calmodulin-sensitive adenylate cyclase-haemolysin bifunctional protein of Bordetella pertussis. EMBO J 1988;7(12):3997-4004
  • Linhartova I, Bumba L, Masin J, et al. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol Rev 2010;34(6):1076-112
  • Rogel A, Schultz JE, Brownlie RM, et al. Bordetella pertussis adenylate cyclase: purification and characterization of the toxic form of the enzyme. EMBO J 1989;8(9):2755-60
  • Barry EM, Weiss AA, Ehrmann IE, et al. Bordetella pertussis adenylate cyclase toxin and hemolytic activities require a second gene, cyaC, for activation. J Bacteriol 1991;173(2):720-6
  • Sebo P, Glaser P, Sakamoto H, Ullmann A. High-level synthesis of active adenylate cyclase toxin of Bordetella pertussis in a reconstructed Escherichia coli system. Gene 1991;104(1):19-24
  • Guiso N, Rocancourt M, Szatanik M, Alonso JM. Bordetella adenylate cyclase is a virulence associated factor and an immunoprotective antigen. Microb Pathog 1989;7(5):373-80
  • Guiso N, Szatanik M, Rocancourt M. Protective activity of Bordetella adenylate cyclase-hemolysin against bacterial colonization. Microb Pathog 1991;11(6):423-31
  • Betsou F, Sebo P, Guiso N. CyaC-mediated activation is important not only for toxic but also for protective activities of Bordetella pertussis adenylate cyclase-hemolysin. Infect Immun 1993;61(9):3583-9
  • Hackett M, Guo L, Shabanowitz J, et al. Internal lysine palmitoylation in adenylate cyclase toxin from Bordetella pertussis. Science 1994;266(5184):433-5
  • Betsou F, Sebo P, Guiso N. The C-terminal domain is essential for protective activity of the Bordetella pertussis adenylate cyclase-hemolysin. Infect Immun 1995;63(9):3309-15
  • Higgs R, Higgins SC, Ross PJ, Mills KH. Immunity to the respiratory pathogen Bordetella pertussis. Mucosal Immunol 2012;5(5):485-500
  • Kamanova J, Kofronova O, Masin J, et al. Adenylate cyclase toxin subverts phagocyte function by RhoA inhibition and unproductive ruffling. J Immunol 2008;181(8):5587-97
  • Vojtova J, Kamanova J, Sebo P. Bordetella adenylate cyclase toxin: a swift saboteur of host defense. Curr Opin Microbiol 2006;9(1):69-75
  • Clark TA. Changing pertussis epidemiology: everything old is new again. J Infect Dis 2014;209(7):978-81
  • Misegades LK, Winter K, Harriman K, et al. Association of childhood pertussis with receipt of 5 doses of pertussis vaccine by time since last vaccine dose. California, 2010. JAMA 2012;308(20):2126-32
  • Pawloski LC, Queenan AM, Cassiday PK, et al. Prevalence and molecular characterization of pertactin-deficient Bordetella pertussis in the United States. Clin Vaccine Immunol 2014;21(2):119-25
  • Tartof SY, Lewis M, Kenyon C, et al. Waning immunity to pertussis following 5 doses of DTaP. Pediatrics 2013;131(4):e1047-52
  • Witt MA, Katz PH, Witt DJ. Unexpectedly limited durability of immunity following acellular pertussis vaccination in preadolescents in a North American outbreak. Clin Infect Dis 2012;54(12):1730-5
  • Betsou F, Sismeiro O, Danchin A, Guiso N. Cloning and sequence of the Bordetella bronchiseptica adenylate cyclase-hemolysin-encoding gene: comparison with the Bordetella pertussis gene. Gene 1995;162(1):165-6
  • Guermonprez P, Khelef N, Blouin E, et al. The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the alpha(M)beta(2) integrin (CD11b/CD18). J Exp Med 2001;193(9):1035-44
  • Khelef N, Danve B, Quentin-Millet MJ, Guiso N. Bordetella pertussis and Bordetella parapertussis: two immunologically distinct species. Infect Immun 1993;61(2):486-90
  • Bart MJ, Harris SR, Advani A, et al. Global population structure and evolution of bordetella pertussis and their relationship with vaccination. MBio 2014;5(2):e01074
  • Hanski E, Farfel Z. Bordetella pertussis invasive adenylate cyclase. Partial resolution and properties of its cellular penetration. J Biol Chem 1985;260(9):5526-32
  • Bellalou J, Sakamoto H, Ladant D, et al. Deletions affecting hemolytic and toxin activities of Bordetella pertussis adenylate cyclase. Infect Immun 1990;58(10):3242-7
  • Benz R, Maier E, Ladant D, et al. Adenylate cyclase toxin (CyaA) of Bordetella pertussis. Evidence for the formation of small ion-permeable channels and comparison with HlyA of Escherichia coli. J Biol Chem 1994;269(44):27231-9
  • Hackett M, Walker CB, Guo L, et al. Hemolytic, but not cell-invasive activity, of adenylate cyclase toxin is selectively affected by differential fatty-acylation in Escherichia coli. J Biol Chem 1995;270(35):20250-3
  • Masin J, Basler M, Knapp O, et al. Acylation of lysine 860 allows tight binding and cytotoxicity of Bordetella adenylate cyclase on CD11b-expressing cells. Biochemistry 2005;44(38):12759-66
  • Hewlett EL, Gray L, Allietta M, et al. Adenylate cyclase toxin from Bordetella pertussis. Conformational change associated with toxin activity. J Biol Chem 1991;266(26):17503-8
  • Rhodes CR, Gray MC, Watson JM, et al. Structural consequences of divalent metal binding by the adenylyl cyclase toxin of Bordetella pertussis. Arch Biochem Biophys 2001;395(2):169-76
  • Rose T, Sebo P, Bellalou J, Ladant D. Interaction of calcium with Bordetella pertussis adenylate cyclase toxin. Characterization of multiple calcium-binding sites and calcium-induced conformational changes. J Biol Chem 1995;270(44):26370-6
  • Morova J, Osicka R, Masin J, Sebo P. RTX cytotoxins recognize beta2 integrin receptors through N-linked oligosaccharides. Proc Natl Acad Sci USA 2008;105(14):5355-60
  • Bumba L, Masin J, Fiser R, Sebo P. Bordetella adenylate cyclase toxin mobilizes its beta2 integrin receptor into lipid rafts to accomplish translocation across target cell membrane in two steps. PLoS Pathog 2010;6(5):e1000901
  • Fiser R, Masin J, Basler M, et al. Third activity of Bordetella adenylate cyclase (AC) toxin-hemolysin. Membrane translocation of AC domain polypeptide promotes calcium influx into CD11b+ monocytes independently of the catalytic and hemolytic activities. J Biol Chem 2007;282(5):2808-20
  • Basler M, Knapp O, Masin J, et al. Segments crucial for membrane translocation and pore-forming activity of bordetella adenylate cyclase toxin. J Biol Chem 2007;282(17):12419-29
  • Fiser R, Masin J, Bumba L, et al. Calcium influx rescues adenylate cyclase-hemolysin from rapid cell membrane removal and enables phagocyte permeabilization by toxin pores. PLoS Pathog 2012;8(4):e1002580
  • Osickova A, Masin J, Fayolle C, et al. Adenylate cyclase toxin translocates across target cell membrane without forming a pore. Mol Microbiol 2010;75(6):1550-62
  • Osickova A, Osicka R, Maier E, et al. An amphipathic alpha-helix including glutamates 509 and 516 is crucial for membrane translocation of adenylate cyclase toxin and modulates formation and cation selectivity of its membrane channels. J Biol Chem 1999;274(53):37644-50
  • Pearson RD, Symes P, Conboy M, et al. Inhibition of monocyte oxidative responses by Bordetella pertussis adenylate cyclase toxin. J Immunol 1987;139(8):2749-54
  • Prior S, Corbel MJ, Xing DK. Development of an approach for the laboratory toxicological evaluation of Bordetella pertussis adenylate cyclase genetic toxoid constructs as multipurpose vaccines. Hum Vaccin 2005;1(4):151-9
  • Hanski E. Invasive adenylate cyclase toxin of Bordetella pertussis. Trends Biochem Sci 1989;14(11):459-63
  • Eby JC, Gray MC, Warfel JM, et al. Quantification of the adenylate cyclase toxin of Bordetella pertussis in vitro and during respiratory infection. Infect Immun 2013;81(5):1390-8
  • Donato GM, Goldsmith CS, Paddock CD, et al. Delivery of Bordetella pertussis adenylate cyclase toxin to target cells via outer membrane vesicles. FEBS Lett 2012;586(4):459-65
  • Eby JC, Ciesla WP, Hamman W, et al. Selective translocation of the Bordetella pertussis adenylate cyclase toxin across the basolateral membranes of polarized epithelial cells. J Biol Chem 2010;285(14):10662-70
  • Bassinet L, Fitting C, Housset B, et al. Bordetella pertussis adenylate cyclase-hemolysin induces interleukin-6 secretion by human tracheal epithelial cells. Infect Immun 2004;72(9):5530-3
  • Gueirard P, Druilhe A, Pretolani M, Guiso N. Role of adenylate cyclase-hemolysin in alveolar macrophage apoptosis during Bordetella pertussis infection in vivo. Infect Immun 1998;66(4):1718-25
  • Khelef N, Bachelet CM, Vargaftig BB, Guiso N. Characterization of murine lung inflammation after infection with parental Bordetella pertussis and mutants deficient in adhesins or toxins. Infect Immun 1994;62(7):2893-900
  • Perkins DJ, Gray MC, Hewlett EL, Vogel SN. Bordetella pertussis adenylate cyclase toxin (ACT) induces cyclooxygenase-2 (COX-2) in murine macrophages and is facilitated by ACT interaction with CD11b/CD18 (Mac-1). Mol Microbiol 2007;66(4):1003-15
  • Dunne A, Ross PJ, Pospisilova E, et al. Inflammasome activation by adenylate cyclase toxin directs Th17 responses and protection against Bordetella pertussis. J Immunol 2010;185(3):1711-19
  • Harvill ET, Cotter PA, Yuk MH, Miller JF. Probing the function of Bordetella bronchiseptica adenylate cyclase toxin by manipulating host immunity. Infect Immun 1999;67(3):1493-500
  • Cherry JD. The present and future control of pertussis. Clin Infect Dis 2010;51(6):663-7
  • Cherry JD. Why do pertussis vaccines fail? Pediatrics 2012;129(5):968-70
  • Paddock CD, Sanden GN, Cherry JD, et al. Pathology and pathogenesis of fatal Bordetella pertussis infection in infants. Clin Infect Dis 2008;47(3):328-38
  • Bagley KC, Abdelwahab SF, Tuskan RG, et al. Pertussis toxin and the adenylate cyclase toxin from Bordetella pertussis activate human monocyte-derived dendritic cells and dominantly inhibit cytokine production through a cAMP-dependent pathway. J Leukoc Biol 2002;72(5):962-9
  • Boschwitz JS, Batanghari JW, Kedem H, Relman DA. Bordetella pertussis infection of human monocytes inhibits antigen-dependent CD4 T cell proliferation. J Infect Dis 1997;176(3):678-86
  • Fedele G, Spensieri F, Palazzo R, et al. Bordetella pertussis commits human dendritic cells to promote a Th1/Th17 response through the activity of adenylate cyclase toxin and MAPK-pathways. PLoS One 2010;5(1):e8734
  • Hickey FB, Brereton CF, Mills KH. Adenylate cycalse toxin of Bordetella pertussis inhibits TLR-induced IRF-1 and IRF-8 activation and IL-12 production and enhances IL-10 through MAPK activation in dendritic cells. J Leukoc Biol 2008;84(1):234-43
  • Njamkepo E, Pinot F, Francois D, et al. Adaptive responses of human monocytes infected by bordetella pertussis: the role of adenylate cyclase hemolysin. J Cell Physiol 2000;183(1):91-9
  • Ross PJ, Lavelle EC, Mills KH, Boyd AP. Adenylate cyclase toxin from Bordetella pertussis synergizes with lipopolysaccharide to promote innate interleukin-10 production and enhances the induction of Th2 and regulatory T cells. Infect Immun 2004;72(3):1568-79
  • Spensieri F, Fedele G, Fazio C, et al. Bordetella pertussis inhibition of interleukin-12 (IL-12) p70 in human monocyte-derived dendritic cells blocks IL-12 p35 through adenylate cyclase toxin-dependent cyclic AMP induction. Infect Immun 2006;74(5):2831-8
  • Adkins I, Kamanova J, Kocourkova A, et al. Bordetella adenylate cyclase toxin differentially modulates Toll-like receptor-stimulated activation, migration and T cell stimulatory capacity of dendritic cells. PLoS One 2014; in press, doi:10.1371/journal.pone.0104064
  • Arciniega JL, Hewlett EL, Johnson FD, et al. Human serologic response to envelope-associated proteins and adenylate cyclase toxin of Bordetella pertussis. J Infect Dis 1991;163(1):135-42
  • Arciniega JL, Hewlett EL, Edwards KM, Burns DL. Antibodies to Bordetella pertussis adenylate cyclase toxin in neonatal and maternal sera. FEMS Immunol Med Microbiol 1993;6(4):325-30
  • Guiso N, Grimprel E, Anjak I, Begue P. Western blot analysis of antibody responses of young infants to pertussis infection. Eur J Clin Microbiol Infect Dis 1993;12(8):596-600
  • Grimprel E, Begue P, Anjak I, et al. Long-term human serum antibody responses after immunization with whole-cell pertussis vaccine in France. Clin Diagn Lab Immunol 1996;3(1):93-7
  • Watanabe M, Connelly B, Weiss AA. Characterization of serological responses to pertussis. Clin Vaccine Immunol 2006;13(3):341-8
  • Cherry JD, Xing DX, Newland P, et al. Determination of serum antibody to Bordetella pertussis adenylate cyclase toxin in vaccinated and unvaccinated children and in children and adults with pertussis. Clin Infect Dis 2004;38(4):502-7
  • Hormozi K, Parton R, Coote J. Adjuvant and protective properties of native and recombinant Bordetella pertussis adenylate cyclase toxin preparations in mice. FEMS Immunol Med Microbiol 1999;23(4):273-82
  • Macdonald-Fyall J, Xing D, Corbel M, et al. Adjuvanticity of native and detoxified adenylate cyclase toxin of Bordetella pertussis towards co-administered antigens. Vaccine 2004;22(31-32):4270-81
  • Orr B, Douce G, Baillie S, et al. Adjuvant effects of adenylate cyclase toxin of Bordetella pertussis after intranasal immunisation of mice. Vaccine 2007;25(1):64-71
  • Villarino Romero R, Bibova I, Cerny O, et al. The Bordetella pertussis type III secretion system tip complex protein Bsp22 is not a protective antigen and fails to elicit serum antibody responses during infection of humans and mice. Infect Immun 2013;81(8):2761-7
  • Bejerano M, Nisan I, Ludwig A, et al. Characterization of the C-terminal domain essential for toxic activity of adenylate cyclase toxin. Mol Microbiol 1999;31(1):381-92
  • Iwaki M, Ullmann A, Sebo P. Identification by in vitro complementation of regions required for cell-invasive activity of Bordetella pertussis adenylate cyclase toxin. Mol Microbiol 1995;17(6):1015-24
  • Gray MC, Lee SJ, Gray LS, et al. Translocation-specific conformation of adenylate cyclase toxin from Bordetella pertussis inhibits toxin-mediated hemolysis. J Bacteriol 2001;183(20):5904-10
  • Lee SJ, Gray MC, Guo L, et al. Epitope mapping of monoclonal antibodies against Bordetella pertussis adenylate cyclase toxin. Infect Immun 1999;67(5):2090-5
  • Carbonetti NH, Artamonova GV, Andreasen C, et al. Suppression of serum antibody responses by pertussis toxin after respiratory tract colonization by Bordetella pertussis and identification of an immunodominant lipoprotein. Infect Immun 2004;72(6):3350-8
  • Cheung GY, Xing D, Prior S, et al. Effect of different forms of adenylate cyclase toxin of Bordetella pertussis on protection afforded by an acellular pertussis vaccine in a murine model. Infect Immun 2006;74(12):6797-805
  • Dadaglio G, Morel S, Bauche C, et al. Recombinant adenylate cyclase toxin of Bordetella pertussis induces cytotoxic T lymphocyte responses against HLA*0201-restricted melanoma epitopes. Int Immunol 2003;15(12):1423-30
  • Dadaglio G, Moukrim Z, Lo-Man R, et al. Induction of a polarized Th1 response by insertion of multiple copies of a viral T-cell epitope into adenylate cyclase of Bordetella pertussis. Infect Immun 2000;68(7):3867-72
  • Fayolle C, Ladant D, Karimova G, et al. Therapy of murine tumors with recombinant Bordetella pertussis adenylate cyclase carrying a cytotoxic T cell epitope. J Immunol 1999;162(7):4157-62
  • Fayolle C, Osickova A, Osicka R, et al. Delivery of multiple epitopes by recombinant detoxified adenylate cyclase of Bordetella pertussis induces protective antiviral immunity. J Virol 2001;75(16):7330-8
  • Fayolle C, Sebo P, Ladant D, et al. In vivo induction of CTL responses by recombinant adenylate cyclase of Bordetella pertussis carrying viral CD8+ T cell epitopes. J Immunol 1996;156(12):4697-706
  • Majlessi L, Simsova M, Jarvis Z, et al. An increase in antimycobacterial Th1-cell responses by prime-boost protocols of immunization does not enhance protection against tuberculosis. Infect Immun 2006;74(4):2128-37
  • Mascarell L, Bauche C, Fayolle C, et al. Delivery of the HIV-1 Tat protein to dendritic cells by the CyaA vector induces specific Th1 responses and high affinity neutralizing antibodies in non human primates. Vaccine 2006;24(17):3490-9
  • Mascarell L, Fayolle C, Bauche C, et al. Induction of neutralizing antibodies and Th1-polarized and CD4-independent CD8+ T-cell responses following delivery of human immunodeficiency virus type 1 Tat protein by recombinant adenylate cyclase of Bordetella pertussis. J Virol 2005;79(15):9872-84
  • Preville X, Ladant D, Timmerman B, Leclerc C. Eradication of established tumors by vaccination with recombinant Bordetella pertussis adenylate cyclase carrying the human papillomavirus 16 E7 oncoprotein. Cancer Res 2005;65(2):641-9
  • Saron MF, Fayolle C, Sebo P, et al. Anti-viral protection conferred by recombinant adenylate cyclase toxins from Bordetella pertussis carrying a CD8+ T cell epitope from lymphocytic choriomeningitis virus. Proc Natl Acad Sci USA 1997;94(7):3314-19
  • Sebo P, Fayolle C, d’Andria O, et al. Cell-invasive activity of epitope-tagged adenylate cyclase of Bordetella pertussis allows in vitro presentation of a foreign epitope to CD8+ cytotoxic T cells. Infect Immun 1995;63(10):3851-7
  • Schlecht G, Loucka J, Najar H, et al. Antigen targeting to CD11b allows efficient presentation of CD4+ and CD8+ T cell epitopes and in vivo Th1-polarized T cell priming. J Immunol 2004;173(10):6089-97
  • Simsova M, Sebo P, Leclerc C. The adenylate cyclase toxin from Bordetella pertussis – a novel promising vehicle for antigen delivery to dendritic cells. Int J Med Microbiol 2004;293(7-8):571-6
  • Stanekova Z, Adkins I, Kosova M, et al. Heterosubtypic protection against influenza A induced by adenylate cyclase toxoids delivering conserved HA2 subunit of hemagglutinin. Antiviral Res 2012;97(1):24-35
  • Dadaglio G, Fayolle C, Zhang X, et al. Antigen Targeting to CD11b Dendritic Cells in Association with TLR4/Toll/IL-1R Domain-Containing Adapter-Inducing IFN-β Signaling Promotes Strong CD8 T Cell Responses. J Immunol. Published online before print July 14, 2014, doi: 10.4049/jimmunol.1302974
  • Haiech J, Predeleanu R, Watterson DM, et al. Affinity-based chromatography utilizing genetically engineered proteins. Interaction of Bordetella pertussis adenylate cyclase with calmodulin. J Biol Chem 1988;263(9):4259-62
  • Karimova G, Fayolle C, Gmira S, et al. Charge-dependent translocation of Bordetella pertussis adenylate cyclase toxin into eukaryotic cells: implication for the in vivo delivery of CD8(+) T cell epitopes into antigen-presenting cells. Proc Natl Acad Sci USA 1998;95(21):12532-7
  • Osicka R, Osickova A, Basar T, et al. Delivery of CD8(+) T-cell epitopes into major histocompatibility complex class I antigen presentation pathway by Bordetella pertussis adenylate cyclase: delineation of cell invasive structures and permissive insertion sites. Infect Immun 2000;68(1):247-56
  • Basar T, Havlicek V, Bezouskova S, et al. The conserved lysine 860 in the additional fatty-acylation site of Bordetella pertussis adenylate cyclase is crucial for toxin function independently of its acylation status. J Biol Chem 1999;274(16):10777-83
  • Havlicek V, Higgins L, Chen W, et al. Mass spectrometric analysis of recombinant adenylate cyclase toxin from Bordetella pertussis strain. 18323/pHSP9. J Mass Spectrom 2001;36(4):384-91
  • Vojtova-Vodolanova J, Basler M, Osicka R, et al. Oligomerization is involved in pore formation by Bordetella adenylate cyclase toxin. FASEB J 2009;23(9):2831-43
  • Genticel. Available from: www.genticel.com/
  • Mackova J, Stasikova J, Kutinova L, et al. Prime/boost immunotherapy of HPV16-induced tumors with E7 protein delivered by Bordetella adenylate cyclase and modified vaccinia virus Ankara. Cancer Immunol Immunother 2006;55(1):39-46
  • AMF. Available from: www.centerwatch.com/clinical-trials/listings/external-studydetails-ctrc.aspx?StudyID=NCT01331915&CatID=791&mp=amf
  • Ladant D, Glaser P, Ullmann A. Insertional mutagenesis of Bordetella pertussis adenylate cyclase. J Biol Chem 1992;267(4):2244-50
  • Sebo P, Moukrim Z, Kalhous M, et al. In vivo induction of CTL responses by recombinant adenylate cyclase of Bordetella pertussis carrying multiple copies of a viral CD8(+) T-cell epitope. FEMS Immunol Med Microbiol 1999;26(2):167-73
  • Gmira S, Karimova G, Ladant D. Characterization of recombinant Bordetella pertussis adenylate cyclase toxins carrying passenger proteins. Res Microbiol 2001;152(10):889-900
  • Vordermeier HM, Simsova M, Wilkinson KA, et al. Recognition of mycobacterial antigens delivered by genetically detoxified Bordetella pertussis adenylate cyclase by T cells from cattle with bovine tuberculosis. Infect Immun 2004;72(11):6255-61
  • Hervas-Stubbs S, Majlessi L, Simsova M, et al. High frequency of CD4+ T cells specific for the TB10.4 protein correlates with protection against Mycobacterium tuberculosis infection. Infect Immun 2006;74(6):3396-407
  • Holubova J, Kamanova J, Jelinek J, et al. Delivery of large heterologous polypeptides across the cytoplasmic membrane of antigen-presenting cells by the Bordetella RTX hemolysin moiety lacking the adenylyl cyclase domain. Infect Immun 2012;80(3):1181-92
  • Guermonprez P, Ladant D, Karimova G, et al. Direct delivery of the Bordetella pertussis adenylate cyclase toxin to the MHC class I antigen presentation pathway. J Immunol 1999;162(4):1910-16
  • Guermonprez P, Fayolle C, Rojas MJ, et al. In vivo receptor-mediated delivery of a recombinant invasive bacterial toxoid to CD11c + CD8 alpha -CD11bhigh dendritic cells. Eur J Immunol 2002;32(11):3071-81
  • Tartz S, Kamanova J, Simsova M, et al. Immunization with a circumsporozoite epitope fused to Bordetella pertussis adenylate cyclase in conjunction with cytotoxic T-lymphocyte-associated antigen 4 blockade confers protection against Plasmodium berghei liver-stage malaria. Infect Immun 2006;74(4):2277-85
  • Tartz S, Deschermeier C, Retzlaff S, et al. Plasmodium berghei sporozoite challenge of vaccinated BALB/c mice leads to the induction of humoral immunity and improved function of CD8(+) memory T cells. Eur J Immunol 2013;43(3):693-704
  • Jelinek J, Adkins I, Mikulkova Z, et al. In vitro activation of CMV-specific human CD8(+) T cells by adenylate cyclase toxoids delivering pp65 epitopes. Bone Marrow Transplant 2012;47(2):243-50
  • Lam C, Octavia S, Ricafort L, et al. Rapid increase in pertactin-deficient Bordetella pertussis isolates, Australia. Emerg Infect Dis 2014;20(4):626-33
  • Warfel JM, Beren J, Kelly VK, et al. Nonhuman primate model of pertussis. Infect Immun 2012;80(4):1530-6
  • Warfel JM, Beren J, Merkel TJ. Airborne transmission of Bordetella pertussis. J Infect Dis 2012;206(6):902-6
  • Warfel JM, Zimmerman LI, Merkel TJ. Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model. Proc Natl Acad Sci USA 2014;111(2):787-92
  • Mielcarek N, Debrie AS, Raze D, et al. Live attenuated B. pertussis as a single-dose nasal vaccine against whooping cough. PLoS Pathog 2006;2(7):e65
  • ILiAD Biotechnologies. Available from: www.iliadbio.com

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.