1,006
Views
20
CrossRef citations to date
0
Altmetric
Reviews

The HIV-1 gp120 V1V2 loop: structure, function and importance for vaccine development

, &

References

  • Javaherian K, Langlois AJ, LaRosa GJ, et al. Broadly neutralizing antibodies elicited by the hypervariable neutralizing determinant of HIV-1. Science 1990;250(4987):1590-3
  • Esparza J. A brief history of the global effort to develop a preventive HIV vaccine. Vaccine 2013;31(35):3502-18
  • Berman PW, Gregory TJ, Riddle L, et al. Protection of chimpanzees from infection by HIV-1 after vaccination with recombinant glycoprotein gp120 but not gp160. Nature 1990;345(6276):622-5
  • Mascola JR, Snyder SW, Weislow OS, et al. The National Institute of Allergy and Infectious Diseases AIDS Vaccine Evaluation Group. Immunization with envelope subunit vaccine products elicits neutralizing antibodies against laboratory-adapted but not primary isolates of human immunodeficiency virus type 1. J Infect Dis 1996;173(2):340-8
  • Flynn NM, Forthal DN, Harro CD, et al. Placebo-controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection. J Infect Dis 2005;191(5):654-65
  • Gilbert PB, Peterson ML, Follmann D, et al. Correlation between immunologic responses to a recombinant glycoprotein 120 vaccine and incidence of HIV-1 infection in a phase 3 HIV-1 preventive vaccine trial. J Infect Dis 2005;191(5):666-77
  • Forthal DN, Gilbert PB, Landucci G, Phan T. Recombinant gp120 vaccine-induced antibodies inhibit clinical strains of HIV-1 in the presence of Fc receptor-bearing effector cells and correlate inversely with HIV infection rate. J Immunol 2007;178(10):6596-603
  • Pitisuttithum P, Gilbert P, Gurwith M, et al. Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand. J Infect Dis 2006;194(12):1661-71
  • Burton DR, Desrosiers RC, Doms RW, et al. Public health. A sound rationale needed for phase III HIV-1 vaccine trials. Science 2004;303(5656):316
  • Leonard CK, Spellman MW, Riddle L, et al. Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. J Biol Chem 1990;265(18):10373-82
  • Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med 2009;361(23):2209-20
  • Gilbert PB, Berger JO, Stablein D, et al. Statistical interpretation of the RV144 HIV vaccine efficacy trial in Thailand: a case study for statistical issues in efficacy trials. J Infect Dis 2011;203(7):969-75
  • Haynes BF, Gilbert PB, McElrath MJ, et al. Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N Engl J Med 2012;366(14):1275-86
  • Plotkin SA, Gilbert PB. Nomenclature for immune correlates of protection after vaccination. Clin Infect Dis 2012;54(11):1615-17
  • Rao M, Peachman KK, Kim J, et al. HIV-1 variable loop 2 and its importance in HIV-1 infection and vaccine development. Curr HIV Res 2013;11(5):427-38
  • McLellan JS, Pancera M, Carrico C, et al. Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature 2011;480(7377):336-43
  • White TA, Bartesaghi A, Borgnia MJ, et al. Molecular architectures of trimeric SIV and HIV-1 envelope glycoproteins on intact viruses: strain-dependent variation in quaternary structure. PLoS Pathog 2010;6(12):e1001249
  • Wu SR, Loving R, Lindqvist B, et al. Single-particle cryoelectron microscopy analysis reveals the HIV-1 spike as a tripod structure. Proc Natl Acad Sci USA 2010;107(44):18844-9
  • Julien JP, Cupo A, Sok D, et al. Crystal structure of a soluble cleaved HIV-1 envelope trimer. Science 2013;342(6165):1477-83
  • Zolla-Pazner S, Cardozo T. Structure-function relationships of HIV-1 envelope sequence-variable regions refocus vaccine design. Nat Rev Immunol 2010;10(7):527-35
  • Cao J, Sullivan N, Desjardin E, et al. Replication and neutralization of human immunodeficiency virus type 1 lacking the V1 and V2 variable loops of the gp120 envelope glycoprotein. J Virol 1997;71(12):9808-12
  • Chen B, Vogan EM, Gong H, et al. Structure of an unliganded simian immunodeficiency virus gp120 core. Nature 2005;433(7028):834-41
  • Yuan T, Li J, Zhang MY. HIV-1 envelope glycoprotein variable loops are indispensable for envelope structural integrity and virus entry. PLoS One 2013;8(8):e69789
  • Kwong PD, Wyatt R, Robinson J, et al. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 1998;393(6686):648-59
  • Kolchinsky P, Kiprilov E, Bartley P, et al. Loss of a single N-linked glycan allows CD4-independent human immunodeficiency virus type 1 infection by altering the position of the gp120 V1/V2 variable loops. J Virol 2001;75(7):3435-43
  • Saunders CJ, McCaffrey RA, Zharkikh I, et al. The V1, V2, and V3 regions of the human immunodeficiency virus type 1 envelope differentially affect the viral phenotype in an isolate-dependent manner. J Virol 2005;79(14):9069-80
  • Cardaci S, Soster M, Bussolino F, Marchio S. The V1/V2 loop of HIV-1 gp120 is necessary for Tat binding and consequent modulation of virus entry. FEBS Lett 2013;587(18):2943-51
  • Derdeyn CA, Decker JM, Bibollet-Ruche F, et al. Envelope-constrained neutralization-sensitive HIV-1 after heterosexual transmission. Science 2004;303(5666):2019-22
  • Chohan B, Lang D, Sagar M, et al. Selection for human immunodeficiency virus type 1 envelope glycosylation variants with shorter V1-V2 loop sequences occurs during transmission of certain genetic subtypes and may impact viral RNA levels. J Virol 2005;79(10):6528-31
  • Gnanakaran S, Bhattacharya T, Daniels M, et al. Recurrent signature patterns in HIV-1 B clade envelope glycoproteins associated with either early or chronic infections. PLoS Pathog 2011;7(9):e1002209
  • Frost SD, Liu Y, Pond SL, et al. Characterization of human immunodeficiency virus type 1 (HIV-1) envelope variation and neutralizing antibody responses during transmission of HIV-1 subtype B. J Virol 2005;79(10):6523-7
  • Haaland RE, Hawkins PA, Salazar-Gonzalez J, et al. Inflammatory genital infections mitigate a severe genetic bottleneck in heterosexual transmission of subtype A and C HIV-1. PLoS Pathog 2009;5(1):e1000274
  • Rong R, Li B, Lynch RM, et al. Escape from autologous neutralizing antibodies in acute/early subtype C HIV-1 infection requires multiple pathways. PLoS Pathog 2009;5(9):e1000594
  • Gray ES, Moore PL, Choge IA, et al. Neutralizing antibody responses in acute human immunodeficiency virus type 1 subtype C infection. J Virol 2007;81(12):6187-96
  • Curlin ME, Zioni R, Hawes SE, et al. HIV-1 envelope subregion length variation during disease progression. PLoS Pathog 2010;6(12):e1001228
  • Gorny MK, Pan R, Williams C, et al. Functional and immunochemical cross-reactivity of V2-specific monoclonal antibodies from HIV-1-infected individuals. Virology 2012;427(2):198-207
  • Wibmer CK, Bhiman JN, Gray ES, et al. Viral escape from HIV-1 neutralizing antibodies drives increased plasma neutralization breadth through sequential recognition of multiple epitopes and immunotypes. PLoS Pathog 2013;9(10):e1003738
  • Moore PL, Gray ES, Sheward D, et al. Potent and broad neutralization of HIV-1 subtype C by plasma antibodies targeting a quaternary epitope including residues in the V2 loop. J Virol 2011;85(7):3128-41
  • Moore PL, Sheward D, Nonyane M, et al. Multiple pathways of escape from HIV broadly cross-neutralizing V2-dependent antibodies. J Virol 2013;87(9):4882-94
  • Wei X, Decker JM, Wang S, et al. Antibody neutralization and escape by HIV-1. Nature 2003;422(6929):307-12
  • Pinter A, Honnen WJ, He Y, et al. The V1/V2 domain of gp120 is a global regulator of the sensitivity of primary human immunodeficiency virus type 1 isolates to neutralization by antibodies commonly induced upon infection. J Virol 2004;78(10):5205-15
  • van Gils MJ, Bunnik EM, Boeser-Nunnink BD, et al. Longer V1V2 region with increased number of potential N-linked glycosylation sites in the HIV-1 envelope glycoprotein protects against HIV-specific neutralizing antibodies. J Virol 2011;85(14):6986-95
  • Chaillon A, Braibant M, Moreau T, et al. The V1V2 domain and an N-linked glycosylation site in the V3 loop of the HIV-1 envelope glycoprotein modulate neutralization sensitivity to the human broadly neutralizing antibody 2G12. J Virol 2011;85(7):3642-8
  • Rusert P, Krarup A, Magnus C, et al. Interaction of the gp120 V1V2 loop with a neighboring gp120 unit shields the HIV envelope trimer against cross-neutralizing antibodies. J Exp Med 2011;208(7):1419-33
  • O’Rourke SM, Schweighardt B, Phung P, et al. Mutation at a single position in the V2 domain of the HIV-1 envelope protein confers neutralization sensitivity to a highly neutralization-resistant virus. J Virol 2010;84(21):11200-9
  • Salomon A, Krachmarov C, Lai Z, et al. Specific sequences commonly found in the V3 domain of HIV-1 subtype C isolates affect the overall conformation of native Env and induce a neutralization-resistant phenotype independent of V1/V2 masking. Virology 2014;448:363-74
  • Spurrier B, Sampson J, Gorny MK, et al. Functional implications of the binding mode of a human conformation-dependent V2 monoclonal antibody against HIV. J Virol 2014;88(8):4100-12
  • Rolland M, Edlefsen PT, Larsen BB, et al. Increased HIV-1 vaccine efficacy against viruses with genetic signatures in Env V2. Nature 2012;490(7420):417-20
  • Arthos J, Cicala C, Martinelli E, et al. HIV-1 envelope protein binds to and signals through integrin alpha4beta7, the gut mucosal homing receptor for peripheral T cells. Nat Immunol 2008;9(3):301-9
  • Darc M, Hait SH, Soares EA, et al. Polymorphisms in the alpha4 integrin of neotropical primates: insights for binding of natural ligands and HIV-1 gp120 to the human alpha4beta7. PLoS One 2011;6(9):e24461
  • Brenchley JM, Price DA, Schacker TW, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 2006;12(12):1365-71
  • Nawaz F, Cicala C, Van Ryk D, et al. The genotype of early-transmitting HIV gp120s promotes alpha (4) beta(7)-reactivity, revealing alpha (4) beta(7) +/CD4+ T cells as key targets in mucosal transmission. PLoS Pathog 2011;7(2):e1001301
  • Ansari AA, Reimann KA, Mayne AE, et al. Blocking of alpha4beta7 gut-homing integrin during acute infection leads to decreased plasma and gastrointestinal tissue viral loads in simian immunodeficiency virus-infected rhesus macaques. J Immunol 2011;186(2):1044-59
  • Nakamura GR, Fonseca DP, O’Rourke SM, et al. Monoclonal antibodies to the V2 domain of MN-rgp120: fine mapping of epitopes and inhibition of alpha4beta7 binding. PLoS One 2012;7(6):e39045
  • Liao HX, Bonsignori M, Alam SM, et al. Vaccine induction of antibodies against a structurally heterogeneous site of immune pressure within HIV-1 envelope protein variable regions 1 and 2. Immunity 2013;38(1):176-86
  • Parrish NF, Gao F, Li H, et al. Phenotypic properties of transmitted founder HIV-1. Proc Natl Acad Sci USA 2013;110(17):6626-33
  • Etemad B, Gonzalez OA, McDonough S, et al.1 envelope V1-V2 genotypes do not enhance binding or replication in cells expressing high levels of alpha4beta7 integrin. J Acquir Immune Defic Syndr 2013;64(3):249-53
  • Israel ZR, Gorny MK, Palmer C, et al. Prevalence of a V2 epitope in clade B primary isolates and its recognition by sera from HIV-1-infected individuals. AIDS 1997;11(1):128-30
  • Karasavvas N, Billings E, Rao M, et al. The Thai Phase III HIV Type 1 Vaccine trial (RV144) regimen induces antibodies that target conserved regions within the V2 loop of gp120. AIDS Res Hum Retroviruses 2012;28(11):1444-57
  • McKeating JA, Shotton C, Cordell J, et al. Characterization of neutralizing monoclonal antibodies to linear and conformation-dependent epitopes within the first and second variable domains of human immunodeficiency virus type 1 gp120. J Virol 1993;67(8):4932-44
  • Kayman SC, Wu Z, Revesz K, et al. Presentation of native epitopes in the V1/V2 and V3 regions of human immunodeficiency virus type 1 gp120 by fusion glycoproteins containing isolated gp120 domains. J Virol 1994;68(1):400-10
  • Gorny MK, Stamatatos L, Volsky B, et al. Identification of a new quaternary neutralizing epitope on human immunodeficiency virus type 1 virus particles. J Virol 2005;79(8):5232-7
  • Walker LM, Phogat SK, Chan-Hui PY, et al. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 2009;326(5950):285-9
  • Bonsignori M, Hwang KK, Chen X, et al. Analysis of a clonal lineage of HIV-1 envelope V2/V3 conformational epitope-specific broadly neutralizing antibodies and their inferred unmutated common ancestors. J Virol 2011;85(19):9998-10009
  • Corti D, Langedijk JP, Hinz A, et al. Analysis of memory B cell responses and isolation of novel monoclonal antibodies with neutralizing breadth from HIV-1-infected individuals. PLoS One 2010;5(1):e8805
  • Bonsignori M, Montefiori DC, Wu X, et al. Two distinct broadly neutralizing antibody specificities of different clonal lineages in a single HIV-1-infected donor: implications for vaccine design. J Virol 2012;86(8):4688-92
  • Doria-Rose NA, Schramm CA, Gorman J, et al. Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature 2014;509(7498):55-62
  • Barouch DH, Liu J, Li H, et al. Vaccine protection against acquisition of neutralization-resistant SIV challenges in rhesus monkeys. Nature 2012;482(7383):89-93
  • Roederer M, Keele BF, Schmidt SD, et al. Immunological and virological mechanisms of vaccine-mediated protection against SIV and HIV. Nature 2014;505(7484):502-8
  • Barouch DH, Stephenson KE, Borducchi EN, et al. Protective efficacy of a global HIV-1 mosaic vaccine against heterologous SHIV challenges in rhesus monkeys. Cell 2013;155(3):531-9
  • Pegu P, Vaccari M, Gordon S, et al. Antibodies with high avidity to the gp120 envelope protein in protection from simian immunodeficiency virus SIV(mac251) acquisition in an immunization regimen that mimics the RV-144 Thai trial. J Virol 2013;87(3):1708-19
  • Kijak GH, Tovanabutra S, Rerks-Ngarm S, et al. Molecular evolution of the HIV-1 Thai epidemic between the time of RV144 immunogen selection to the execution of the vaccine efficacy trial. J Virol 2013;87(13):7265-81
  • Pitisuttithum P, Rerks-Ngarm S, O’Connell RJ, et al. An HIV vaccine for South-East Asia—opportunities and challenges. Vaccines 2013;1:348-66
  • Zolla-Pazner S, Decamp A, Gilbert PB, et al. Vaccine-induced IgG antibodies to V1V2 regions of multiple HIV-1 subtypes correlate with decreased risk of HIV-1 infection. PLoS One 2014;9(2):e87572
  • Gottardo R, Bailer RT, Korber BT, et al. Plasma IgG to linear epitopes in the V2 and V3 regions of HIV-1 gp120 correlate with a reduced risk of infection in the RV144 vaccine efficacy trial. PLoS One 2013;8(9):e75665
  • Liu P, Yates NL, Shen X, et al. Infectious virion capture by HIV-1 gp120-specific IgG from RV144 vaccinees. J Virol 2013;87(14):7828-36
  • Pollara J, Bonsignori M, Moody MA, et al. HIV-1 vaccine-induced C1 and V2 Env-specific antibodies synergize for increased antiviral activities. J Virol 2014;88(14):7715-26
  • Bonsignori M, Pollara J, Moody MA, et al. Antibody-dependent cellular cytotoxicity-mediating antibodies from an HIV-1 vaccine efficacy trial target multiple epitopes and preferentially use the VH1 gene family. J Virol 2012;86(21):11521-32
  • Ferrari G, Pollara J, Kozink D, et al. An HIV-1 gp120 envelope human monoclonal antibody that recognizes a C1 conformational epitope mediates potent antibody-dependent cellular cytotoxicity (ADCC) activity and defines a common ADCC epitope in human HIV-1 serum. J Virol 2011;85(14):7029-36
  • Moody MA, Yates NL, Amos JD, et al. HIV-1 gp120 vaccine induces affinity maturation in both new and persistent antibody clonal lineages. J Virol 2012;86(14):7496-507
  • Pollara J, Bonsignori M, Moody MA, et al. Epitope specificity of human immunodeficiency virus-1 antibody dependent cellular cytotoxicity [ADCC] responses. Curr HIV Res 2013;11(5):378-87
  • Tomaras GD, Ferrari G, Shen X, et al. Vaccine-induced plasma IgA specific for the C1 region of the HIV-1 envelope blocks binding and effector function of IgG. Proc Natl Acad Sci USA 2013;110(22):9019-24
  • Doria-Rose NA, Georgiev I, O’Dell S, et al. A short segment of the HIV-1 gp120 V1/V2 region is a major determinant of resistance to V1/V2 neutralizing antibodies. J Virol 2012;86(15):8319-23
  • Zolla-Pazner S, deCamp AC, Cardozo T, et al. Analysis of V2 antibody responses induced in vaccinees in the ALVAC/AIDSVAX HIV-1 vaccine efficacy trial. PLoS One 2013;8(1):e53629
  • Pitisuttithum P, Berman PW, Phonrat B, et al. Phase I/II study of a candidate vaccine designed against the B and E subtypes of HIV-1. J Acquir Immune Defic Syndr 2004;37(1):1160-5
  • de Souza MS, Ratto-Kim S, Chuenarom W, et al. The Thai phase III trial (RV144) vaccine regimen induces T cell responses that preferentially target epitopes within the V2 region of HIV-1 envelope. J Immunol 2012;188(10):5166-76
  • Harari A, Bart PA, Stohr W, et al. An HIV-1 clade C DNA prime, NYVAC boost vaccine regimen induces reliable, polyfunctional, and long-lasting T cell responses. J Exp Med 2008;205(1):63-77
  • Gartland AJ, Li S, McNevin J, et al. Analysis of HLAA*02 association with vaccine efficacy in the RV144 HIV-1 vaccine trial. J Virol 2014;88(15):8242-55
  • Bar KJ, Li H, Chamberland A, et al. Wide variation in the multiplicity of HIV-1 infection among injection drug users. J Virol 2010;84(12):6241-7
  • Yates NL, Liao HX, Fong Y, et al. Vaccine-induced Env V1-V2 IgG3 correlates with lower HIV-1 infection risk and declines soon after vaccination. Sci Transl Med 2014;6(228):228ra239
  • Roussilhon C, Oeuvray C, Muller-Graf C, et al. Long-term clinical protection from falciparum malaria is strongly associated with IgG3 antibodies to merozoite surface protein 3. PLoS Med 2007;4(11):e320
  • Kam YW, Simarmata D, Chow A, et al. Early appearance of neutralizing immunoglobulin G3 antibodies is associated with chikungunya virus clearance and long-term clinical protection. J Infect Dis 2012;205(7):1147-54
  • Chung AW, Ghebremichael M, Robinson H, et al. Polyfunctional Fc-Effector Profiles Mediated by IgG Subclass Selection Distinguish RV144 and VAX003 Vaccines. Sci Transl Med 2014;6(228):228ra238
  • Teigler JE, Phogat S, Franchini G, et al. The canarypox virus vector ALVAC induces distinct cytokine responses compared to the vaccinia virus-based vectors MVA and NYVAC in rhesus monkeys. J Virol 2014;88(3):1809-14
  • Gorse GJ, Patel GB, Mandava M, National Institute of Allergy and Infectious Disease Aids Vaccine Evaluation Group. MN and IIIB recombinant glycoprotein 120 vaccine-induced binding antibodies to native envelope glycoprotein of human immunodeficiency virus type 1 primary isolates. AIDS Res Hum Retroviruses 1999;15(10):921-30
  • Banerjee K, Klasse PJ, Sanders RW, et al. IgG subclass profiles in infected HIV type 1 controllers and chronic progressors and in uninfected recipients of Env vaccines. AIDS Res Hum Retroviruses 2010;26(4):445-58
  • Ljunggren K, Broliden PA, Morfeldt-Manson L, et al. IgG subclass response to HIV in relation to antibody-dependent cellular cytotoxicity at different clinical stages. Clin Exp Immunol 1988;73(3):343-7
  • Thongcharoen P, Suriyanon V, Paris RM, et al. A phase 1/2 comparative vaccine trial of the safety and immunogenicity of a CRF01_AE (subtype E) candidate vaccine: ALVAC-HIV (vCP1521) prime with oligomeric gp160 (92TH023/LAI-DID) or bivalent gp120 (CM235/SF2) boost. J Acquir Immune Defic Syndr 2007;46(1):48-55
  • Nitayaphan S, Pitisuttithum P, Karnasuta C, et al. Safety and immunogenicity of an HIV subtype B and E prime-boost vaccine combination in HIV-negative Thai adults. J Infect Dis 2004;190(4):702-6
  • Hammer SM, Sobieszczyk ME, Janes H, et al. Efficacy trial of a DNA/rAd5 HIV-1 preventive vaccine. N Engl J Med 2013;369(22):2083-92
  • Tomaras G SX, Seaton K, Janes H, et al. Vaccine induced antibody responses in HVTN 505, a Phase IIb HIV-1 efficacy trial. Paper presented at AIDS Vaccine 2013; 7–10 October 2013; Barcelona, Spain
  • Rolland M EP, Gottardo R, et al. Genetic and immunological evidence for a role of Env-V3 antibodies in the RV144 trial. abstract P03.73 LB AIDS Vaccine 2013; Barcelona, Spain; 2013
  • Mayr LM, Cohen S, Spurrier B, et al. Epitope mapping of conformational V2-specific anti-HIV human monoclonal antibodies reveals an immunodominant site in V2. PLoS One 2013;8(7):e70859
  • Carbonetti S, Oliver BG, Glenn J, et al. Soluble HIV-1 envelope immunogens derived from an elite neutralizer elicit cross-reactive V1V2 antibodies and low potency neutralizing antibodies. PLoS One 2014;9(1):e86905
  • Alam SM, Liao HX, Tomaras GD, et al. Antigenicity and immunogenicity of RV144 vaccine AIDSVAX clade E envelope immunogen is enhanced by a gp120 N-terminal deletion. J Virol 2013;87(3):1554-68
  • Buglione-Corbett R, Pouliot K, Marty-Roix R, et al. Serum cytokine profiles associated with specific adjuvants used in a DNA prime-protein boost vaccination strategy. PLoS One 2013;8(9):e74820
  • McElrath MJ. Selection of potent immunological adjuvants for vaccine construction. Semin Cancer Biol 1995;6(6):375-85
  • Rao M OS, Peachman K, et al. Potent V2-specific antibodies induced in humans using liposome-encapsulated HIV-1 gp120 recognize a well-exposed v2 epitope on envelope trimer. abstract 2049 Keystone. HIV Vaccines: Adaptive Immunity and Beyond; Banff, Alberta, Canada; 2014
  • Danner R, Chaudhari SN, Rosenberger J, et al. Expression of HLA class II molecules in humanized NOD.Rag1KO.IL2RgcKO mice is critical for development and function of human T and B cells. PLoS One 2011;6(5):e19826
  • Brehm MA, Shultz LD, Luban J, Greiner DL. Overcoming current limitations in humanized mouse research. J Infect Dis 2013;208(Suppl 2):S125-30
  • Allam AF. Characterization of B- and T cells in the gut mucosa of humanized DRAG mice during HIV infection. In: Keystone Symposia: HIV vaccines-adaptive immunity and beyond, Banff, Alberta, Canada; 2014
  • Buchbinder SP, Mehrotra DV, Duerr A, et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 2008;372(9653):1881-93

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.