533
Views
12
CrossRef citations to date
0
Altmetric
Review

Prospects for antibody-based universal influenza vaccines in the context of widespread pre-existing immunity

&

References

  • Tong S , Zhu X , Li Y , et al. New world bats harbor diverse influenza A viruses. PLoS Pathog 2013;9:e1003657
  • Taubenberger JK , Kash JC . Influenza virus evolution, host adaptation, and pandemic formation. Cell Host Microbe 2010;7:440-51
  • Bodewes R , Morick D , de Mutsert G , et al. Recurring influenza B virus infections in seals. Emerg Infect Dis 2013;19:511-12
  • Novel Swine-Origin Influenza A , Dawood FS , Jain S , et al. Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med 2009;360:2605-15
  • Garten RJ , Davis CT , Russell CA , et al. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 2009;325:197-201
  • Kelly H , Peck HA , Laurie KL , et al. The age-specific cumulative incidence of infection with pandemic influenza H1N1. 2009 was similar in various countries prior to vaccination. PloS one 2011;6:e21828
  • Dawood FS , Iuliano AD , Reed C , et al. Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: a modelling study. Lancet Infect Dis 2012;12:687-95
  • Simonsen L , Spreeuwenberg P , Lustig R , et al. Global mortality estimates for the 2009 Influenza Pandemic from the GLaMOR project: a modeling study. PLoS medicine 2013;10:e1001558
  • Jhung MA , Epperson S , Biggerstaff M , et al. Outbreak of variant influenza A(H3N2) virus in the United States. Clin Infect Dis 2013;57:1703-12
  • To KK , Tsang AK , Chan JF , et al. Emergence in China of human disease due to avian influenza A(H10N8)–cause for concern? J Infect 2014;68:205-15
  • Lam TT , Wang J , Shen Y , et al. The genesis and source of the H7N9 influenza viruses causing human infections in China. Nature 2013;502:241-4
  • Guan Y , Smith GJ . The emergence and diversification of panzootic H5N1 influenza viruses. Virus Res 2013;178:35-43
  • Epstein SL , Price GE . Cross-protective immunity to influenza A viruses. Expert Rev Vaccines 2010;9:1325-41
  • Quinones-Parra S , Loh L , Brown LE , et al. Universal immunity to influenza must outwit immune evasion. Front Microbiol 2014;5:285
  • Valkenburg SA , Rutigliano JA , Ellebedy AH , et al. Immunity to seasonal and pandemic influenza A viruses. Microbes Infect 2011;13:489-501
  • Whittle JR , Zhang R , Khurana S , et al. Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin. Proc Nat Acad Sci USA 2011;108:14216-21
  • Ekiert DC , Kashyap AK , Steel J , et al. Cross-neutralization of influenza A viruses mediated by a single antibody loop. Nature 2012;489:526-32
  • Corti D , Suguitan AL , Pinna D , et al. Heterosubtypic neutralizing antibodies are produced by individuals immunized with a seasonal influenza vaccine. J Clin Invest 2010;120:1663-73
  • Benjamin E , Wang W , McAuliffe JM , et al. A broadly neutralizing human monoclonal antibody directed against a novel conserved epitope on the influenza virus H3 hemagglutinin globular head. J Virol 2014;88:6743-50
  • Okuno Y , Isegawa Y , Sasao F , et al. A common neutralizing epitope conserved between the hemagglutinins of influenza A virus H1 and H2 strains. J Virol 1993;67:2552-8
  • Smirnov YA , Lipatov AS , Gitelman AK , et al. An epitope shared by the hemagglutinins of H1, H2, H5, and H6 subtypes of influenza A virus. Acta Virol 1999;43:237-44
  • Sui J , Hwang WC , Perez S , et al. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat Struct Mol Biology 2009;16:265-73
  • Throsby M , van den Brink E , Jongeneelen M , et al. Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM* memory B cells. PLoS One 2008;3(12):e3942
  • Whittle JRR , Wheatley AK , Wu L , et al. Flow cytometry reveals that H5N1 vaccination elicits cross-reactive stem-directed antibodies from multiple Ig heavy-chain lineages. J Virol 2014;88:4047-57
  • Wrammert J , Koutsonanos D , Li GM , et al. Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. J Exp Med 2011;208:181-93
  • Dreyfus C , Ekiert DC , Wilson IA . Structure of a classical broadly neutralizing stem antibody in complex with a pandemic H2 influenza virus hemagglutinin. J Virol 2013;87:7149-54
  • Ekiert DC , Bhabha G , Elsliger MA , et al. Antibody recognition of a highly conserved influenza virus epitope. Science 2009;324:246-51
  • Ekiert DC , Friesen RH , Bhabha G , et al. A highly conserved neutralizing epitope on group 2 influenza A viruses. Science 2011;333:843-50
  • Friesen RH , Lee PS , Stoop EJ , et al. A common solution to group 2 influenza virus neutralization. Proc Natl Acad Sci USA 2014;111:445-50
  • Tan GS , Lee PS , Hoffman RM , et al. Characterization of a broadly neutralizing monoclonal antibody that targets the fusion domain of group 2 influenza A virus hemagglutinin. J Virol 2014;88:13580-92
  • Corti D , Voss J , Gamblin SJ , et al. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 2011;333:850-6
  • Dreyfus C , Laursen NS , Kwaks T , et al. Highly conserved protective epitopes on influenza B viruses. Science 2012;337:1343-8
  • Nakamura G , Chai N , Park S , et al. An in vivo human-plasmablast enrichment technique allows rapid identification of therapeutic influenza A antibodies. Cell Host Microbe 2013;14:93-103
  • Brandenburg B . Koudstaal W, Goudsmit J, et al. Mechanisms of Hemagglutinin Targeted Influenza Virus Neutralization. PLoS One 2013;8(12):e80034
  • DiLillo DJ , Tan GS , Palese P , et al. Broadly neutralizing hemagglutinin stalk-specific antibodies require FcγR interactions for protection against influenza virus in vivo. Nat Med 2014;20:143-51
  • Air G. M . Influenza virus antigenicity and broadly neutralizing epitopes. Current opinion in virology 2015;11:113-21
  • Tan G , Krammer F , Eggink D , et al. A pan-H1 anti-hemagglutinin monoclonal antibody with potent broad-spectrum efficacy in vivo. J Virol 2012;86:6179-88
  • Sui J , Sheehan J , Hwang WC , et al. Wide prevalence of heterosubtypic broadly neutralizing human anti-influenza A antibodies. Clin Infect Dis 2011;52:1003-9
  • Margine I , Hai R , Albrecht RA , et al. H3N2 influenza virus infection induces broadly reactive hemagglutinin stalk antibodies in humans and mice. J Virol 2013;87:4728-37
  • Moody MA , Zhang R , Walter EB , et al. H3N2 influenza infection elicits more cross-reactive and less clonally expanded anti-hemagglutinin antibodies than influenza vaccination. PLoS One 2011;6(10):e25797
  • Thomson CA , Wang Y , Jackson LM , et al. Pandemic H1N1 Influenza Infection and Vaccination in Humans Induces Cross-Protective Antibodies that Target the Hemagglutinin Stem. Front Immunol 2012;3:87
  • He XSS , Sasaki S , Baer J , et al. Heterovariant cross-reactive B-cell responses induced by the 2009 pandemic influenza virus A subtype H1N1 vaccine. J Infect Dis 2013;207:288-96
  • Jegaskanda S , Amarasena TH , Laurie KL , et al. Standard trivalent influenza virus protein vaccination does not prime antibody-dependent cellular cytotoxicity in macaques. J Virol 2013;87:13706-18
  • Giudice G , Hilbert A , Bugarini R , et al. An MF59-adjuvanted inactivated influenza vaccine containing A/Panama/1999 (H3N2) induced broader serological protection against heterovariant influenza virus strain A/Fujian/2002 than a subunit and a split influenza vaccine. Vaccine 2006;24(16):3063-5
  • Orsi A , Ansaldi F , de Florentiis D , et al. Cross-protection against drifted influenza viruses: options offered by adjuvanted and intradermal vaccines. Human vaccines & immunotherapeutics 2013;9:582-90
  • Ansaldi F , Zancolli M , Durando P , et al. Antibody response against heterogeneous circulating influenza virus strains elicited by MF59- and non-adjuvanted vaccines during seasons with good or partial matching between vaccine strain and clinical isolates. Vaccine 2010;28:4123-9
  • Ansaldi F , Bacilieri S , Durando P , et al. Cross-protection by MF59-adjuvanted influenza vaccine: neutralizing and haemagglutination-inhibiting antibody activity against A(H3N2) drifted influenza viruses. Vaccine 2008;26(12):1525-9
  • Banzhoff A , Gasparini R , Laghi-Pasini F , et al. MF59-adjuvanted H5N1 vaccine induces immunologic memory and heterotypic antibody responses in non-elderly and elderly adults. PLoS One 2009;4(2):e4384
  • Alberini I , E , Del Tordello et al. Pseudoparticle neutralization is a reliable assay to measure immunity and cross-reactivity to H5N1 influenza viruses. Vaccine 2009;27:5998-6003
  • Even-Or O , Samira S , Ellis R , et al. Adjuvanted influenza vaccines. Expert Rev Vaccines 2013;12:1095-108
  • Wei CJJ , Boyington JC , McTamney PM , et al. Induction of broadly neutralizing H1N1 influenza antibodies by vaccination. Science 2010;329:1060-4
  • Kanekiyo M , Wei JJ , Yassine HM , et al. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature 2013;499:102-6
  • Chen MWW , Cheng RJ , Huang Y , et al. A consensus-hemagglutinin-based DNA vaccine that protects mice against divergent H5N1 influenza viruses. Proc Natl Acad Sci USA 2008;105:13538-43
  • Weaver EA , Rubrum AM , Webby RJ , Barry MA . Protection against divergent influenza H1N1 virus by a centralized influenza hemagglutinin. PLoS One 2011;6(3):e18314
  • Yan J , Villarreal DO , Racine T , et al. Protective immunity to H7N9 influenza viruses elicited by synthetic DNA vaccine. Vaccine 2014;32:2833-42
  • Giles BM , Ross TM . A computationally optimized broadly reactive antigen (COBRA) based H5N1 VLP vaccine elicits broadly reactive antibodies in mice and ferrets. Vaccine 2011;29:3043-54
  • Giles BM , Bissel SJ , Dealmeida DR , et al. Ross. Antibody breadth and protective efficacy are increased by vaccination with computationally optimized hemagglutinin but not with polyvalent hemagglutinin-based H5N1 virus-like particle vaccines. Clin Vaccine Immunol 2012;19:128-39
  • Giles BM , Crevar CJ , Carter DM , et al. A computationally optimized hemagglutinin virus-like particle vaccine elicits broadly reactive antibodies that protect nonhuman primates from H5N1 infection. J Infect Dis 2012;205:1562-70
  • Graves PN , Schulman JL , Young JF , Palese P . Preparation of influenza virus subviral particles lacking the HA1 subunit of hemagglutinin: unmasking of cross-reactive HA2 determinants. Virology 1983;126:106-16
  • Sagawa H , Ohshima A , Kato I , et al. The immunological activity of a deletion mutant of influenza virus haemagglutinin lacking the globular region. J Gen Virol 1996;77(7):1483-7
  • Steel J , Lowen AC , Wang TT , et al. Influenza virus vaccine based on the conserved hemagglutinin stalk domain. mBio 2010;1(1):e00018-0
  • Bommakanti G , Lu X , Citron MP , et al. Design of Escherichia coli-expressed stalk domain immunogens of H1n1 hemagglutinin that protect mice from lethal challenge. J Virol 2012;86(24):13434-44
  • Bommakanti G , Citron MP , Hepler RW , et al. Design of an HA2-based Escherichia coli expressed influenza immunogen that protects mice from pathogenic challenge. Proc Natl Acad Sci USA 2010;107(31):13701-6
  • Mallajosyula VVA , Citron MP , Ferrara F , et al. Influenza hemagglutinin stem-fragment immunogen elicits broadly neutralizing antibodies and confers heterologous protection. Proc Natl Acad Sci USA 2014;111(25):E2514-23
  • Lu Y , Welsh JP , Swartz JR . Production and stabilization of the trimeric influenza hemagglutinin stem domain for potentially broadly protective influenza vaccines. Proc Natl Acad Sci USA 2014;11(1):125-30
  • Pica N , Hai R , Krammer F , et al. Hemagglutinin stalk antibodies elicited by the 2009 pandemic influenza virus as a mechanism for the extinction of seasonal H1N1 viruses. Proc Natl Acad Sci USA 2012;109:2573-8
  • Ellebedy AH , Krammer F , Li GM , et al. Induction of broadly cross-reactive antibody responses to the influenza HA stem region following H5N1 vaccination in humans. Proc Natl Acad Sci USA 2014;111:13133-8
  • Nachbagauer R , Wohlbold TJ , Hirsh A , et al. Induction of broadly reactive anti-hemagglutinin stalk antibodies by an H5N1 vaccine in humans. J Virol 2014;88:13260-8
  • Ledgerwood JE , Zephir K , Hu Z , et al. Prime-boost interval matters: a randomized phase 1 study to identify the minimum interval necessary to observe the H5 DNA influenza vaccine priming effect. J Infect Dis 2013;208:418-22
  • Wheatley AK , Whittle JR , Lingwood D , et al. H5N1 Vaccine-Elicited Memory B Cells Are Genetically Constrained by the IGHV Locus in the Recognition of a Neutralizing Epitope in the Hemagglutinin Stem. J Immunol 2015;195(2):602-10
  • Miller MS , Tsibane T , Krammer F , et al. 1976 and 2009 H1N1 influenza virus vaccines boost anti-hemagglutinin stalk antibodies in humans. J Infect Dis 2013;207:98-105
  • Li GM , Chiu C , Wrammert J , et al. Pandemic H1N1 influenza vaccine induces a recall response in humans that favors broadly cross-reactive memory B cells. Proc Natl Acad Sci USA 2012;109:9047-52
  • Krammer F , Palese P . Universal influenza virus vaccines: need for clinical trials. Nature immunology 2014;15:3-5
  • Krammer F , Palese P . Advances in the development of influenza virus vaccines. Nat Rev Drug Discov 2015;14:167-82
  • Hai R , Krammer F , Tan GS , et al. Influenza viruses expressing chimeric hemagglutinins: globular head and stalk domains derived from different subtypes. J Virol 2012;86:5774-81
  • Krammer F , Hai R , Yondola M , et al. Assessment of influenza virus hemagglutinin stalk-based immunity in ferrets. J Virol 2014;88:3432-42
  • Krammer F , Pica N , Hai R , et al. Chimeric hemagglutinin influenza virus vaccine constructs elicit broadly protective stalk-specific antibodies. J Virol 2013;87:6542-50
  • Krammer F , Margine I , Hai R , et al. H3 stalk-based chimeric hemagglutinin influenza virus constructs protect mice from H7N9 challenge. J Virol 2014;88:2340-3
  • Margine I , Krammer F , Hai R , et al. Hemagglutinin stalk-based universal vaccine constructs protect against group 2 influenza A viruses. J Virol 2013;87:10435-46
  • Lin SCC , Liu C , Jan T , Wu SCC . Glycan masking of hemagglutinin for adenovirus vector and recombinant protein immunizations elicits broadly neutralizing antibodies against H5N1 avian influenza viruses. PLoS One 2014;9(3):e92822
  • Lin S-C , Lin YF , Chong P , Wu SC . Broader neutralizing antibodies against H5N1 viruses using prime-boost immunization of hyperglycosylated hemagglutinin DNA and virus-like particles. PLoS One 2012;7(6):e39075
  • Wang TT , Tan GS , Hai R , et al. Broadly protective monoclonal antibodies against H3 influenza viruses following sequential immunization with different hemagglutinins. PLoS Pathog 2010;6(2):e1000796
  • Deng L , Cho KJ , Fiers W , Saelens X . M2e-based universal influenza A vaccines. Vaccines 2015;3:105-36
  • Zhang N , Zheng J , Lu L , et al. Advancements in the development of subunit influenza vaccines. Microbes Infect 2015;17:123-34
  • Zheng M , Luo J , Chen Z . Development of universal influenza vaccines based on influenza virus M and NP genes. Infection 2014;42:251-62
  • Schotsaert M , De Filette M , Fiers W , Saelens X . Universal M2 ectodomain-based influenza A vaccines: preclinical and clinical developments. Expert Rev Vaccines 2009;8:499-508
  • Liu X , Guo J , Han S , et al. Enhanced immune response induced by a potential influenza A vaccine based on branched M2e polypeptides linked to tuftsin. Vaccine 2012;30:6527-33
  • Huleatt JW , Nakaar V , Desai P , et al. Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin. Vaccine 2008;26:201-14
  • Neirynck S , Deroo T , Saelens X , et al. A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat Med 1999;5:1157-63
  • Muto NA , Yoshida R , Suzuki T , et al. Inhibitory effects of an M2-specific monoclonal antibody on different strains of influenza A virus. Jpn J Vet Res 2012;60:71-83
  • Kim MCC , Lee JS , Kwon M , et al. Multiple heterologous M2 extracellular domains presented on virus-like particles confer broader and stronger M2 immunity than live influenza A virus infection. Antiviral Res 2013;99:328-35
  • El Bakkouri K , Descamps F , De Filette M , et al. Universal vaccine based on ectodomain of matrix protein 2 of influenza A: Fc receptors and alveolar macrophages mediate protection. J Immunol 2011;186:1022-31
  • Grandea AG III , Olsen OA , Cox TC , et al. Human antibodies reveal a protective epitope that is highly conserved among human and nonhuman influenza A viruses. Proc Natl Acad Sci USA 2010;107:12658-63
  • Treanor JJ , Tierney EL , Zebedee SL , et al. Passively transferred monoclonal antibody to the M2 protein inhibits influenza A virus replication in mice. J Virol 1990;64:1375-7
  • Song A , Myojo K , Laudenslager J , et al. Evaluation of a fully human monoclonal antibody against multiple influenza A viral strains in mice and a pandemic H1N1 strain in nonhuman primates. Antiviral Res 2014;111:60-8
  • Wang R , Song A , Levin J , et al. Therapeutic potential of a fully human monoclonal antibody against influenza A virus M2 protein. Antiviral Res 2008;80:168-77
  • Stepanova LA , Kotlyarov RY , Kovaleva AA , et al. Protection against Multiple Influenza A Virus Strains Induced by Candidate Recombinant Vaccine Based on Heterologous M2e Peptides Linked to Flagellin. PLoS One 2015;10:e0119520
  • Ramos EL , Mitcham JL , Koller TD , et al. Efficacy and safety of treatment with an anti-m2e monoclonal antibody in experimental human influenza. J Infect Dis 2015;211:1038-44
  • Turley CB , Rupp RE , Johnson C , et al. Safety and immunogenicity of a recombinant M2e-flagellin influenza vaccine (STF2.4xM2e) in healthy adults. Vaccine 2011;29:5145-52
  • Talbot HK , Michael TR , Casey J , et al. Immunopotentiation of trivalent influenza vaccine when given with VAX102, a recombinant influenza M2e vaccine fused to the TLR5 ligand flagellin. PLoS One 2010;5(12):e14442
  • Antrobus RD , Lillie PJ , Berthoud TK , et al. A T cell-inducing influenza vaccine for the elderly: safety and immunogenicity of MVA-NP*M1 in adults aged over 50 years. PLoS One 2012;7:e48322
  • Sandbulte MR , Jimenez GS , Boon AC , et al. Cross-reactive neuraminidase antibodies afford partial protection against H5N1 in mice and are present in unexposed humans. PLoS Med 2007;4(2):e59
  • Wan H , Yang H , Shore DA , et al. Structural characterization of a protective epitope spanning A(H1N1)pdm09 influenza virus neuraminidase monomers. Nature communications 2015;6:6114
  • Gravel C , Li C , Wang J , et al. Quantitative analyses of all influenza type A viral hemagglutinins and neuraminidases using universal antibodies in simple slot blot assays. J Vis Exp 2011;50:2784
  • Gui X , Ge P , Wang X , et al. Identification of a highly conserved and surface exposed B-cell epitope on the nucleoprotein of influenza A virus. J Med Virol 2014;86:995-1002
  • Wan H , Gao J , Xu K , et al. Molecular basis for broad neuraminidase immunity: conserved epitopes in seasonal and pandemic H1N1 as well as H5N1 influenza viruses. J Virol 2013;87:9290-300
  • Couch RB , Atmar RL , Keitel WA , et al. Randomized comparative study of the serum antihemagglutinin and antineuraminidase antibody responses to six licensed trivalent influenza vaccines. Vaccine 2012;31:190-5
  • Kilbourne ED , Couch RB , Kasel JA , et al. Purified influenza A virus N2 neuraminidase vaccine is immunogenic and non-toxic in humans. Vaccine 1995;13:1799-803
  • Jegaskanda S , Reading PC , Kent SJ . Influenza-specific antibody-dependent cellular cytotoxicity: toward a universal influenza vaccine. J Immunol 2014;193:469-75
  • Sridhar S , Begom S , Bermingham A , et al. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat Med 2013;19:1305-12
  • Hayward AC , Wang L , Goonetilleke N , et al. Natural T Cell-mediated Protection against Seasonal and Pandemic Influenza. Results of the Flu Watch Cohort Study. Am J Respire Crit Care Med 2015;191:1422-31
  • Price GE , Soboleski MR , Lo Y , et al. Vaccination focusing immunity on conserved antigens protects mice and ferrets against virulent H1N1 and H5N1 influenza A viruses. Vaccine 2009;27:6512-21
  • Rao SS , Kong P , Wei J , et al. Comparative efficacy of hemagglutinin, nucleoprotein, and matrix 2 protein gene-based vaccination against H5N1 influenza in mouse and ferret. PLoS One 2010;5(3):e9812
  • Francis T . On the doctrine of original antigenic sin. Proc Am Philos Soc 1960;104:572-8
  • Fazekas de St G , Webster RG . Disquisitions on Original Antigenic Sin. II. Proof in lower creatures. J Exp Med 1966;124:347-61
  • Fazekas de St G , Webster RG . Disquisitions of Original Antigenic Sin. I. Evidence in man. J Exp Med 1966;124:331-45
  • Lessler J , Riley S , Read JM , et al. Evidence for antigenic seniority in influenza A (H3N2) antibody responses in southern China. PLoS Pathog 2012;8(7):e1002802
  • Miller MS , Gardner TJ , Krammer F , et al. Neutralizing antibodies against previously encountered influenza virus strains increase over time: a longitudinal analysis. Sci Transl Med 2013;5(198):198ra107
  • Davenport FM , Hennessy AV , Francis T . Epidemiologic and immunologic significance of age distribution of antibody to antigenic variants of influenza virus. J Exp Med 1953;98:641-56
  • Andrews SF , Kaur K , Pauli NT , et al. High preexisting serological antibody levels correlate with diversification of the influenza vaccine response. J Virol 2015;89:3308-17
  • Sasaki S , He SXS , Holmes TH , et al. Influence of prior influenza vaccination on antibody and B-cell responses. PLoS One 2008;3(8):e2975
  • Bodewes R , de Mutsert G , van der Klis FR , et al. Prevalence of antibodies against seasonal influenza A and B viruses in children in Netherlands. Clin Vaccine Immunol 2011;18:469-76
  • Kucharski AJ , Lessler J , Read JM , et al. Estimating the life course of influenza A(H3N2) antibody responses from cross-sectional data. PLoS Biol 2015;13(3):e1002082
  • Steel J , Staeheli P , Mubareka S , et al. Transmission of pandemic H1N1 influenza virus and impact of prior exposure to seasonal strains or interferon treatment. J Virol 2010;84:21-6
  • Min JY , Chen GL , Santos C , et al. Classical swine H1N1 influenza viruses confer cross protection from swine-origin 2009 pandemic H1N1 influenza virus infection in mice and ferrets. Virology 2010;408:128-33
  • O’Donnell CD , Wright A , Vogel LN , et al. Effect of priming with H1N1 influenza viruses of variable antigenic distances on challenge with 2009 pandemic H1N1 virus. J Virol 2012;86:8625-33
  • Carter DM , Bloom CE , Nascimento EJ , et al. Sequential seasonal H1N1 influenza virus infections protect ferrets against novel 2009 H1N1 influenza virus. J Virol 2013;87:1400-10
  • Wei CJJ , Yassine HM , McTamney PM , et al. Elicitation of broadly neutralizing influenza antibodies in animals with previous influenza exposure. Sci Transl Med 2012;4(147):147ra114
  • Del Giudice G , Stittelaar KJ , van Amerongen G , et al. Seasonal influenza vaccine provides priming for A/H1N1 immunization. Sci Transl Med 2009;1(12):12re1
  • Kuiken T , Rimmelzwaan GF , Van Amerongen G , Osterhaus AD . Pathology of human influenza A (H5N1) virus infection in cynomolgus macaques (Macaca fascicularis). Vet Pathol 2003;40:304-10
  • O’Donnell CD , Subbarao K . The contribution of animal models to the understanding of the host range and virulence of influenza A viruses. Microbes Infect 2011;13:502-15
  • Sundling C , Phad G , Douagi I , et al. Isolation of antibody V(D)J sequences from single cell sorted rhesus macaque B cells. J Immunol Methods 2012;386:85-93
  • Hogarth PM , Anania JC , Wines BD . The FcγR of humans and non-human primates and their interaction with IgG: implications for induction of inflammation, resistance to infection and the use of therapeutic monoclonal antibodies. Curr Top Micrbiol Immunol 2014;382:321-52
  • Weinfurter JT , Brunner K , Capuano SV III , et al. Cross-reactive T cells are involved in rapid clearance of 2009 pandemic H1N1 influenza virus in nonhuman primates. PLoS pathogens 2011;7:e1002381
  • Jegaskanda S , Weinfurter JT , Friedrich TC , Kent SJ . Antibody-dependent cellular cytotoxicity is associated with control of pandemic H1N1 influenza virus infection of macaques. J Virol 2013;87:5512-22
  • Yu X , Tsibane T , McGraw PA , et al. Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors. Nature 2008;455:532-6
  • Dormitzer PR , Galli G , Castellino F , et al. Influenza vaccine immunology. Immunol Rev 2011;239:167-77
  • Jiang N , He J , Weinstein JA , et al. Lineage structure of the human antibody repertoire in response to influenza vaccination. Sci Transl Med 2013;5:171ra119
  • Victora GD , Nussenzweig MC . Germinal centers. Annu Rev Immunol 2012;30:429-57
  • Nayak JL , Fitzgerald TF , Richards KA , et al. CD4* T-cell expansion predicts neutralizing antibody responses to monovalent, inactivated 2009 pandemic influenza A(H1N1) virus subtype H1N1 vaccine. J Infect Dis 2013;207:297-305
  • Bentebibel SE , Lopez S , Obermoser G , et al. Induction of ICOS*CXCR3*CXCR5* TH cells correlates with antibody responses to influenza vaccination. Sci Transl Med 2013;5:176ra132
  • Richards KA , Nayak J , Chaves FA , et al. Seasonal Influenza Can Poise Hosts for CD4 T-Cell Immunity to H7N9 Avian Influenza. J Infect Dis 2014;212(1):86-94
  • Ge X , Tan V , Bollyky PL , et al. Assessment of seasonal influenza A virus-specific CD4 T-cell responses to 2009 pandemic H1N1 swine-origin influenza A virus. J Virol 2010;84:3312-19
  • Richards KA , Topham D , Chaves FA , Sant AJ . Cutting edge: CD4 T cells generated from encounter with seasonal influenza viruses and vaccines have broad protein specificity and can directly recognize naturally generated epitopes derived from the live pandemic H1N1 virus. J Immunol 2010;185:4998-5002
  • Evaluation of the Protective Efficacy and Safety of CR8020 in an Influenza Challenge. Available from: https://clinicaltrials.gov/ct2/show/NCT01938352
  • Study in Healthy Volunteers to Evaluate the Efficacy and Safety of CR6261 in an H1N1 Influenza Healthy Human Challenge Model. Available from: https://clinicaltrials.gov/ct2/show/NCT02371668
  • A Study of MHAA4549A in Healthy Volunteers in an Influenza Challenge Model. Available from: https://clinicaltrials.gov/ct2/show/NCT01980966 [Last accessed 3 March 2015]
  • Khurana S , Loving CL , Manischewitz J , et al. Vaccine-induced anti-HA2 antibodies promote virus fusion and enhance influenza virus respiratory disease. Sci Transl Med 2013;5(200):200ra114
  • Gamblin SJ , Haire LF , Russell RJ , et al. The structure and receptor binding properties of the 1918 influenza hemagglutinin. Science 2004;303(5665):1838-42

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.