952
Views
47
CrossRef citations to date
0
Altmetric
SPECIAL FOCUS: RNA Vaccines - Review

Electroporation-enhanced delivery of nucleic acid vaccines

&

References

  • Sardesai NY, Weiner DB. Electroporation delivery of DNA vaccines: prospects for success. Curr Opin Immunol 2011;23(3):421-9
  • Petrovsky N. Editorial: the coming of age of DNA vaccines. Curr Gene Ther 2014;14(3):147-8
  • Pertmer TM, Eisenbraun MD, McCabe D, et al. Gene gun-based nucleic acid immunization: elicitation of humoral and cytotoxic T lymphocyte responses following epidermal delivery of nanogram quantities of DNA. Vaccine 1995;13(15):1427-30
  • Fuller DH, Loudon P, Schmaljohn C. Preclinical and clinical progress of particle-mediated DNA vaccines for infectious diseases. Methods (San Diego, Calif.) 2006;40(1):86-97
  • Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1982;1(7):841-5
  • Sugar IP, Neumann E. Stochastic model for electric field-induced membrane pores. Electroporat Biophysical Chem 1984;19(3):211-25
  • Sugar IP, Förster W, Neumann E. Model of cell electrofusion. Membrane electroporation, pore coalescence and percolation. Biophysical Chem 1987;26(2-3):321-35
  • Widera G, Austin M, Rabussay D, et al. Increased DNA vaccine delivery and immunogenicity by electroporation in vivo. J Immunol (Baltimore, Md.: 1950) 2000;164(9):4635-40
  • Prud’homme GJ, Draghia-Akli R, Wang Q. Plasmid-based gene therapy of diabetes mellitus. Gene Ther 2007;14(7):553-64
  • Otten G, Schaefer M, Doe B, et al. Enhancement of DNA vaccine potency in rhesus macaques by electroporation. Vaccine 2004;22(19):2489-93
  • Otten GR, Schaefer M, Doe B, et al. Potent immunogenicity of an HIV-1 gag-pol fusion DNA vaccine delivered by in vivo electroporation. Vaccine 2006;24(21):4503-9
  • Mathiesen I. Electropermeabilization of skeletal muscle enhances gene transfer in vivo. Gene Ther 1999;6(4):508-14
  • Breton M, Delemotte L, Silve A, et al. Transport of siRNA through lipid membranes driven by nanosecond electric pulses: an experimental and computational study. J Am Chem Soc 2012;134(34):13938-41
  • Son RS, Smith KC, Gowrishankar TR, et al. Basic features of a cell electroporation model: illustrative behavior for two very different pulses. J Membr Biol 2014;247(12):1209-28
  • Silk M, Tahour D, Srimathveeravalli G, et al. The state of irreversible electroporation in interventional oncology. Semin Intervent Radiol 2014;31(2):111-17
  • Matthiessen LW, Johannesen HH, Hendel HW, et al. Electrochemotherapy for large cutaneous recurrence of breast cancer: a phase II clinical trial. Acta Oncol 2012;51(6):713-21
  • Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science (New York, N.Y.) 1990;247(4949 Pt 1):1465-8
  • Vitadello M, Schiaffino MV, Picard A, et al. Gene transfer in regenerating muscle. Human Gene Ther 1994;5(1):11-18
  • Isaka Y, Brees DK, Ikegaya K, et al. Gene therapy by skeletal muscle expression of decorin prevents fibrotic disease in rat kidney. Nature Med 1996;2(4):418-23
  • Rols MP, Delteil C, Golzio M, et al. In vivo electrically mediated protein and gene transfer in murine melanoma. Nature Biotechnol 1998;16(2):168-71
  • Nishi T, Yoshizato K, Yamashiro S, et al. High-efficiency in vivo gene transfer using intraarterial plasmid DNA injection following in vivo electroporation. Cancer Res 1996;56(5):1050-5
  • Heller R, Jaroszeski M, Atkin A, et al. In vivo gene electroinjection and expression in rat liver. FEBS Lett 1996;389(3):225-8
  • Aihara H, Miyazaki J. Gene transfer into muscle by electroporation in vivo. Nature Biotechnol 1998;16(9):867-70
  • Cai Y, Rodriguez S, Rameswaran R, et al. Production of pharmaceutical-grade plasmids at high concentration and high supercoiled percentage. Vaccine 2010;28(8):2046-52
  • Stevenson FK, Ottensmeier CH, Rice J. DNA vaccines against cancer come of age. Curr Opin Immunol 2010;22(2):264-70
  • Ferraro B, Morrow MP, Hutnick NA, et al. Clinical applications of DNA vaccines: current progress. Clin Infect Dis 2011;53(3):296-302
  • Shen X, Söderholm J, Lin F, et al. Influenza A vaccines using linear expression cassettes delivered via electroporation afford full protection against challenge in a mouse model. Vaccine 2012;30(48):6946-54
  • Walters AA, Kinnear E, Shattock RJ, et al. Comparative analysis of enzymatically produced novel linear DNA constructs with plasmids for use as DNA vaccines. Gene Ther 2014;21(7):645-52
  • Stenler S, Blomberg P, Smith CE. Safety and efficacy of DNA vaccines: Plasmids vs. minicircles. Human Vaccines Immunother 2014;10:5
  • Mayrhofer P, Schleef M, Jechlinger W. Use of minicircle plasmids for gene therapy. Methods Mol Biol (Clifton, N.J.) 2009;542:87-104
  • FDA. Available from: www.fda.gov
  • Davis BS, Chang GJ, Cropp B, et al. West Nile virus recombinant DNA vaccine protects mouse and horse from virus challenge and expresses in vitro a noninfectious recombinant antigen that can be used in enzyme-linked immunosorbent assays. J Virol 2001;75(9):4040-7
  • Anderson ED, Mourich DV, Fahrenkrug SC, et al. Genetic immunization of rainbow trout (Oncorhynchus mykiss) against infectious hematopoietic necrosis virus. Mol Marine Biol Biotechnol 1996;5(2):114-22
  • Bergman PJ, McKnight J, Novosad A, et al. Long-term survival of dogs with advanced malignant melanoma after DNA vaccination with xenogeneic human tyrosinase: a phase I trial. Clin Cancer Res 2003;9(4):1284-90
  • Gene designer. Available from: www.dna20.com/resources/genedesigner
  • Rice J, Ottensmeier CH, Stevenson FK. DNA vaccines: precision tools for activating effective immunity against cancer. Nature Rev Cancer 2008;8(2):108-20
  • Fioretti D, Iurescia S, Fazio VM, Rinaldi M. DNA vaccines: developing new strategies against cancer. J Biomed Biotechnol 2010;2010:174378
  • Hallermalm K, Johansson S, Bråve A, et al. Pre-clinical evaluation of a CEA DNA prime/protein boost vaccination strategy against colorectal cancer. Scand J Immunol 2007;66(1):43-51
  • Nguyen-Hoai T, Kobelt D, Hohn O, et al. HER2/neu DNA vaccination by intradermal gene delivery in a mouse tumor model: gene gun is superior to jet injector in inducing CTL responses and protective immunity. Oncoimmunol 2012;1(9):1537-45
  • Best SR, Peng S, Juang C-MM, et al. Administration of HPV DNA vaccine via electroporation elicits the strongest CD8+ T cell immune responses compared to intramuscular injection and intradermal gene gun delivery. Vaccine 2009;27(40):5450-9
  • Suh H, Shin J, Kim Y-CC. Microneedle patches for vaccine delivery. Clin Exp Vaccine Res 2014;3(1):42-9
  • Kim Y-CC, Park J-HH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev 2012;64(14):1547-68
  • Doukas J, Rolland A. Mechanisms of action underlying the immunotherapeutic activity of Allovectin in advanced melanoma. Cancer Gene Ther 2012;19(12):811-17
  • Khan AS, Broderick KE, Sardesai NY. Clinical development of intramuscular electroporation: providing a boost for DNA vaccines. Methods Mol Biol (Clifton, N.J.) 2014;1121:279-89
  • El-Kamary SS, Billington M, Deitz S, et al. Safety and tolerability of the Easy VaxTM clinical epidermal electroporation system in healthy adults. Mol Ther 2012;20(1):214-20
  • Heller L, Pottinger C, Jaroszeski MJ, et al. In vivo electroporation of plasmids encoding GM-CSF or interleukin-2 into existing B16 melanomas combined with electrochemotherapy induces long-term antitumour immunity. Melanoma Res 2000;10(6):577-83
  • Dunki-Jacobs EM, Philips P, Martin Ii RC. Evaluation of thermal injury to liver, pancreas and kidney during irreversible electroporation in an in vivo experimental model. Br J Surg 2014;101(9):1113-21
  • Ding X-FF, Ma D-LL, Zhang Q, et al. Progress of in vivo electroporation in the rodent brain. Curr Gene Ther 2014;14(3):211-17
  • Linnert M, Gehl J. Bleomycin treatment of brain tumors: an evaluation. Anti Cancer Drugs 2009;20(3):157-64
  • Kichaev G, Mendoza JM, Amante D, et al. Electroporation mediated DNA vaccination directly to a mucosal surface results in improved immune responses. Human Vaccines Immunother 2013;9(10):2041-8
  • Diehl MC, Lee JC, Daniels SE, et al. Tolerability of intramuscular and intradermal delivery by CELLECTRA(®) adaptive constant current electroporation device in healthy volunteers. Human Vaccines Immunother 2013;9(10):2246-52
  • Clinical trials. Available from: www.clinicaltrials.gov
  • Pol J, Bloy N, Obrist F, et al. Trial Watch: DNA vaccines for cancer therapy. Oncoimmunol 2014;3(1):e28185
  • A study of VGX-3100 DNA vaccine with electroporation in patients with cervical intraepithelial neoplasia grade 2/3 or 3 (HPV-003). Available from: http://clinicaltrials.gov/show/NCT01304524
  • Safety study of DNA vaccine delivered by intradermal electroporation to treat colorectal cancer (El-porCEA). Available from: http://clinicaltrials.gov/show/NCT01064375
  • Study of a DNA immunotherapy to treat melanoma. Available from: http://clinicaltrials.gov/show/NCT01138410
  • Dose finding study of a DNA vaccine delivered with intradermal electroporation in patients with prostate cancer. Available from: http://clinicaltrials.gov/show/NCT00859729
  • Eriksson F, Tötterman T, Maltais A-KK, et al. DNA vaccine coding for the rhesus prostate specific antigen delivered by intradermal electroporation in patients with relapsed prostate cancer. Vaccine 2013;31(37):3843-8
  • Chudley L, McCann K, Mander A, et al. DNA fusion-gene vaccination in patients with prostate cancer induces high-frequency CD8(+) T-cell responses and increases PSA doubling time. Cancer Immunol Immunother 2012;61(11):2161-70
  • Diaz CM, Chiappori A, Aurisicchio L, et al. Phase 1 studies of the safety and immunogenicity of electroporated HER2/CEA DNA vaccine followed by adenoviral boost immunization in patients with solid tumors. J Transl Med 2013;11:62
  • Bagarazzi ML, Yan J, Morrow MP, et al. Immunotherapy against HPV16/18 generates potent TH1 and cytotoxic cellular immune responses. Sci Transl Med 2012;4(155):155ra138
  • Spanggaard I, Snoj M, Cavalcanti A, et al. Gene electrotransfer of plasmid antiangiogenic metargidin peptide (AMEP) in disseminated melanoma: safety and efficacy results of a phase I first-in-man study. Hum Gene Ther Clin Dev 2013;24(3):99-107
  • Aurisicchio L, Mancini R, Ciliberto G. Cancer vaccination by electro-gene-transfer. Expert Rev Vaccines 2013;12(10):1127-37
  • Fioretti D, Iurescia S, Fazio VM, Rinaldi M. In vivo DNA electrotransfer for immunotherapy of cancer and neurodegenerative diseases. Curr Drug Metabol 2013;14(3):279-90
  • Yan J, Corbitt N, Pankhong P, et al. Immunogenicity of a novel engineered HIV-1 clade C synthetic consensus-based envelope DNA vaccine. Vaccine 2011;29(41):7173-81
  • Bråve A, Gudmundsdotter L, Sandström E, et al. Biodistribution, persistence and lack of integration of a multigene HIV vaccine delivered by needle-free intradermal injection and electroporation. Vaccine 2010;28(51):8203-9
  • Chakrabarti BK, Feng Y, Sharma SK, et al. Robust neutralizing antibodies elicited by HIV-1 JRFL envelope glycoprotein trimers in nonhuman primates. J Virol 2013;87(24):13239-51
  • Kulkarni V, Jalah R, Ganneru B, et al. Comparison of immune responses generated by optimized DNA vaccination against SIV antigens in mice and macaques. Vaccine 2011;29(39):6742-54
  • Jalah R, Kulkarni V, Patel V, et al. DNA and protein co-immunization improves the magnitude and longevity of humoral immune responses in macaques. PLoS One 2014;9(3):e91550
  • Ferraro B, Talbott KT, Balakrishnan A, et al. Inducing humoral and cellular responses to multiple sporozoite and liver-stage malaria antigens using exogenous plasmid DNA. Infect Immunity 2013;81(10):3709-20
  • Latimer B, Toporovski R, Yan J, et al. Strong HCV NS3/4a, NS4b, NS5a, NS5b-specific cellular immune responses induced in Rhesus macaques by a novel HCV genotype 1a/1b consensus DNA vaccine. Human Vaccines Immunother 2014;10:8
  • Lang K, Weiner DB. Immunotherapy for HCV infection: next steps. Expert Rev Vaccines 2008;7(7):915-23
  • Capone S, Meola A, Ercole BB, et al. A novel adenovirus type 6 (Ad6)-based hepatitis C virus vector that overcomes preexisting anti-ad5 immunity and induces potent and broad cellular immune responses in rhesus macaques. J Virol 2006;80(4):1688-99
  • Zhao Y-GG, Peng B, Deng H, et al. Anti-HBV immune responses in rhesus macaques elicited by electroporation mediated DNA vaccination. Vaccine 2006;24(7):897-903
  • Zhao Y-GG, Xu Y. Electroporation-mediated HBV DNA vaccination in primate models. Methods Mol Biol (Clifton, N.J.) 2008;423:487-95
  • Baliban SM, Michael A, Shammassian B, et al. An optimized, synthetic DNA vaccine encoding the toxin A and toxin B receptor binding domains of clostridium difficile induces protective antibody responses in vivo. Infect Immunity 2014;82(10):4080-91
  • Laddy DJ, Yan J, Khan AS, et al. Electroporation of synthetic DNA antigens offers protection in nonhuman primates challenged with highly pathogenic avian influenza virus. J Virol 2009;83(9):4624-30
  • Grant-Klein RJ, Deusen NM, Badger CV, et al. A multiagent filovirus DNA vaccine delivered by intramuscular electroporation completely protects mice from ebola and Marburg virus challenge. Human Vaccines Immunother 2012;8(11):1703-6
  • Dupuy LC, Schmaljohn CS. DNA vaccines for biodefense. Expert Rev Vaccines 2009;8(12):1739-54
  • Vasan S, Hurley A, Schlesinger SJ, et al. In vivo electroporation enhances the immunogenicity of an HIV-1 DNA vaccine candidate in healthy volunteers. PLoS One 2011;6(5):e19252
  • Study of a potential preventive vaccine against HIV in healthy volunteers (ADVAX-EP). Available from: http://clinicaltrials.gov/show/NCT00545987
  • Kalams SA, Parker S, Jin X, et al. Safety and immunogenicity of an HIV-1 gag DNA vaccine with or without IL-12 and/or IL-15 plasmid cytokine adjuvant in healthy, HIV-1 uninfected adults. PLoS One 2012;7(1):e29231
  • Ramirez LA, Arango T, Boyer J. Therapeutic and prophylactic DNA vaccines for HIV-1. Expert Opin Biol Ther 2013;13(4):563-73
  • Boudreau EF, Josleyn M, Ullman D, et al. A Phase 1 clinical trial of Hantaan virus and Puumala virus M-segment DNA vaccines for hemorrhagic fever with renal syndrome. Vaccine 2012;30(11):1951-8
  • Hooper JW, Moon JE, Paolino KM, et al. A Phase 1 clinical trial of Hantaan virus and Puumala virus M-segment DNA vaccines for haemorrhagic fever with renal syndrome delivered by intramuscular electroporation. Clin Microbiol Infect 2014;20(Suppl 5):110-17
  • Schmaljohn CS, Spik KW, Hooper JW. DNA vaccines for HFRS: laboratory and clinical studies. Virus Res 2014;187:91-6
  • Weiland O, Ahlén G, Diepolder H, et al. Therapeutic DNA vaccination using in vivo electroporation followed by standard of care therapy in patients with genotype 1 chronic hepatitis C. Mol Ther J Am Soc Gene Ther 2013;21(9):1796-805
  • Weide B, Carralot J-PP, Reese A, et al. Results of the first phase I/II clinical vaccination trial with direct injection of mRNA. J Immunother (Hagerstown, Md. 1997) 2008;31(2):180-8
  • Weide B, Pascolo S, Scheel B, et al. Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients. J Immunother (Hagerstown, Md. 1997) 2009;32(5):498-507
  • Rittig SM, Haentschel M, Weimer KJ, et al. Intradermal vaccinations with RNA coding for TAA generate CD8+ and CD4+ immune responses and induce clinical benefit in vaccinated patients. Mol Ther J Am Soc Gene Ther 2011;19(5):990-9
  • Geall AJ, Verma A, Otten GR, et al. Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci USA 2012;109(36):14604-9
  • Geall AJ, Mandl CW, Ulmer JB. RNA: the new revolution in nucleic acid vaccines. Semin Immunol 2013;25(2):152-9
  • Brito LA, Chan M, Shaw CA, et al. A Cationic Nanoemulsion for the Delivery of Next-generation RNA Vaccines. Mol Ther J Am Soc Gene Ther 2014. [Epub ahead of print]
  • Rodríguez-Gascón A, Pozo-Rodríguez A, Solinís MÁ. Development of nucleic acid vaccines: use of self-amplifying RNA in lipid nanoparticles. Int J Nanomed 2014;9:1833-43
  • Deering RP, Kommareddy S, Ulmer JB, et al. Nucleic acid vaccines: prospects for non-viral delivery of mRNA vaccines. Expert Opin Drug Deliv 2014;11(6):885-99
  • Flemming A. Vaccines: self-amplifying RNA in lipid nanoparticles: a next-generation vaccine? Nature Rev Drug Discov 2012;11(10):748-9
  • Broderick KE, Chan A, Lin F, et al. Optimized in vivo transfer of small interfering RNA targeting dermal tissue using in vivo surface electroporation. Mol Ther Nucleic Acids 2012;1:e11
  • Higuchi Y, Kawakami S, Hashida M. Strategies for in vivo delivery of siRNAs: recent progress. Bio Drugs Clin Immunother Biopharmaceut Gene Ther 2010;24(3):195-205
  • Golzio M, Mazzolini L, Ledoux A, et al. In vivo gene silencing in solid tumors by targeted electrically mediated siRNA delivery. Gene Ther 2007;14(9):752-9
  • Golzio M, Teissié J. Optical in vivo imaging of electrically mediated delivery of siRNA into muscle for gene function analysis. Methods Mol Biol (Clifton, N.J.) 2008;423:279-87
  • Golzio M, Escoffre J-MM, Teissié J. shRNA-mediated gene knockdown in skeletal muscle. Methods Mol Biol (Clifton, N.J.) 2012;798:491-501
  • Chabot S, Rosazza C, Golzio M, et al. Nucleic acids electro-transfer: from bench to bedside. Curr Drug Metab 2013;14(3):300-8
  • Chabot S, Teissié J, Golzio M. Targeted electro-delivery of oligonucleotides for RNA interference: siRNA and antimiR. Advanced Drug Deliv Rev 2014; Epub ahead of print
  • Knudsen ML, Ljungberg K, Liljeström P, Johansson DX. Intradermal electroporation of RNA. Methods Mol Biol (Clifton, N.J.) 2014;1121:147-54
  • Cu Y, Broderick K, Banerjee K, et al. Enhanced Delivery and Potency of Self-Amplifying mRNA Vaccines by Electroporation in Situ. Vaccines 2013;1(3):367383
  • Kim TJ, Jin HT, Hur SY, et al. Clearance of persistent HPV infection and cervical lesion by therapeutic DNA vaccine in CIN3 patients. Nat Commun 2014;5:5317

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.