80
Views
17
CrossRef citations to date
0
Altmetric
Review

Therapeutic lymphoma vaccines: importance of T-cell immunity

, , , , &
Pages 381-394 | Published online: 09 Jan 2014

References

  • A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin's lymphoma. The Non-Hodgkin's Lymphoma Classification Project. Blood89(11), 3909–3918 (1997).
  • Gandhi MK, Marcus RE. Follicular lymphoma: time for a re-think? Blood Rev.19(3), 165–178 (2005).
  • MacManus M, Hoppe R. Is radiotherapy curative for stage I and II low-grade follicular lymphoma? Results of a long-term follow-up study of patients treated at Stanford University. J. Clin. Oncol.14, 1282 (1996).
  • Chen M, Prosnitz L, Gonzalez-Serva A, Fisher D. Results of radiotherapy in control of stage I and II non-Hodgkin's lymphoma. Cancer43, 1245 (1979).
  • Hiddemann W, Kneba M, Dreyling M et al. Frontline therapy with rituximab added to the combination of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) significantly improves the outcome for patients with advanced-stage follicular lymphoma compared with therapy with CHOP alone: results of a prospective randomized study of the German Low-Grade Lymphoma Study Group. Blood106(12), 3725–3732 (2005).
  • Fisher RI, LeBlanc M, Press OW, Maloney DG, Unger JM, Miller TP. New treatment options have changed the survival of patients with follicular lymphoma. J. Clin. Oncol.23(33), 8447–8452 (2005).
  • Czuczman MS, Grillo-Lopez AJ, White CA et al. Treatment of patients with low-grade B-cell lymphoma with the combination of chimeric anti-CD20 monoclonal antobody and CHOP chemotherapy. J. Clin. Oncol.17, 268–276 (1999).
  • Czuczman MS, Weaver R, Alkuzweny B, Berlfein J, Grillo-Lopez AJ. Prolonged clinical and molecular remission in patients with low-grade or follicular non-Hodgkin's lymphoma treated with rituximab plus CHOP chemotherapy: 9-year follow-up. J. Clin. Oncol.22(23), 4711–4716 (2004). Erratum in: J. Clin. Oncol.23(1), 248 (2005).
  • Horning SJ, Rosenberg SA. The natural history of initially untreated low-grade non-Hodgkin's lymphomas. N. Engl. J. Med.311(23), 1471–1475 (1984).
  • Colombat P, Salles G, Brousse N et al. Rituximab (anti-CD20 monoclonal antibody) as single first-line therapy for patients with follicular lymphoma with a low tumor burden: clinical and molecular evaluation. Blood97(1), 101–106 (2001).
  • Witzig TE, Vukov AM, Habermann TM et al. Rituximab therapy for patients with newly diagnosed, advanced-stage, follicular grade I non-Hodgkin's lymphoma: a phase II trial in the North Central Cancer Treatment Group. J. Clin. Oncol.23(6), 1103–1108 (2005).
  • Dave SS, Wright G, Tan B et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N. Engl. J. Med.351(21), 2159–2169 (2004).
  • Sirisinha S, Eisen HN: Autoimmune-like antibodies to the ligand-binding sites of myeloma proteins. Proc. Natl Acad. Sci. USA68, 3130–3135 (1971).
  • Lynch RG, Graff RJ, Sirisinha S et al. Myeloma proteins as tumor-specific transplantation antigens. Proc. Natl Acad. Sci. USA69, 1540–1544 (1972).
  • Stevenson GT, Stevenson FK: Antibody to a molecularly-defined antigen confined to a tumour cell surface. Nature254, 714–716 (1975).
  • Freedman PM, Autry JR, Tokuda S et al. Tumor immunity induced by preimmunization with BALB/c mouse myeloma protein. J. Natl Cancer Inst.56, 735–740 (1976).
  • Stevenson GT, Elliott EV, Stevenson FK. Idiotypic determinants on the surface immunoglobulin of neoplastic lymphocytes: a therapeutic target. Fed. Proc.36, 2268–2271 (1977).
  • Kaminski MS, Kitamura K, Maloney DG et al. Idiotype vaccination against murine B cell lymphoma. Inhibition of tumor immunity by free idiotype protein. J. Immunol.138, 1289–96 (1987).
  • Kwak LW, Campbell MJ, Zelenetz AD et al. Combined syngeneic bone marrow transplantation and immunotherapy of a murine B-cell lymphoma: active immunization with tumor-derived idiotypic immunoglobulin. Blood76, 2411–2417 (1990).
  • Kwak LW, Young HA, Pennington RW et al. Vaccination with syngeneic, lymphoma-derived immunoglobulin idiotype combined with granulocyte/ macrophage colony-stimulating factor primes mice for a protective T-cell response. Proc. Natl Acad. Sci. USA93, 10972–10977 (1996).
  • Eager R, Nemunaitis J. GM-CSF gene-transduced tumor vaccines. Mol. Ther.12(1), 18–27 (2005)
  • Kwak LW, Campbell MJ, Czerwinski DK et al. Induction of immune responses in patients with B-cell lymphoma against the surface-immunoglobulin idiotype expressed by their tumors. N. Engl. J. Med.327, 1209–1215 (1992).
  • Hsu FJ, Caspar CB, Czerwinski D et al. Tumor-specific idiotype vaccines in the treatment of patients with B-cell lymphoma--long-term results of a clinical trial. Blood89, 3129–3135 (1997).
  • Bendandi M, Gocke CD, Kobrin CB et al. Complete molecular remissions induced by patient-specific vaccination plus granulocyte-monocyte colony-stimulating factor against lymphoma. Nat. Med.5(10), 1171–1177 (1999).
  • Baskar S, Kobrin CB, Kwak LW. Autologous lymphoma vaccines induce human T cell responses against multiple, unique epitopes. J. Clin. Invest.113(10), 1498–1510 (2004).
  • Santos C, Stern L, Katz L, Watson T, Barry G. BiovaxIDTM vaccine therapy of follicular lymphoma in first remission: long-term follow-up of a Phase II trial and status of a controlled, randomized Phase III trial. Blood106, 2441 (2005).
  • Longo DL, Duffey PL, Gribben JG et al. Combination chemotherapy followed by an immunotoxin (anti-B4-blocked ricin) in patients with indolent lymphoma: results of a Phase II study. Cancer J.6(3), 146–150 (2000).
  • Maloney DG, Liles TM, Czerwinski DK et al. Phase I clinical trial using escalating single-dose infusion of chimeric anti-CD20 monoclonal antibody (IDEC-C2B8) in patients with recurrent B-cell lymphoma. Blood84, 2457–2466 (1994).
  • McLaughlin P, Grillo-Lopez AJ, Link BK et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J. Clin. Oncol.16, 2825–2833 (1998).
  • Qin Z, Richter G, Schuler T, Ibe S, Cao X, Blankenstein T. B-cells inhibit induction of T-cell-dependent tumor immunity. Nat. Med.4, 627–630 (1998).
  • Steinman RM The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol.9, 271–296 (1991).
  • Gajewski TF, Pinnas M, Wong T, Fitch FW. Murine Th1 and Th2 clones proliferate optimally in response to distinct antigen-presenting cell populations. J. Immunol.146, 1750–1758 (1991).
  • Eynon EE, Parker DC. Small B-cells as antigen-presenting cells in the induction of tolerance to soluble protein antigens. J. Exp. Med.175, 131–8 (1992)
  • BennettSR, Carbone FR, Toy T, Miller JF, Heath WR. B-cells directly tolerize CD8(+) T-cells. J. Exp. Med.188, 1977–1983 (1998).
  • El-Amine M, Melo M, Kang Y, Nguyen H, Qian J, Scott DW. Mechanisms of tolerance induction by a gene-transferred peptide-IgG fusion protein expressed in B lineage cells. J. Immunol.165(10), 5631–5636 (2000).
  • Yang X, Brunham RC. Gene knockout B-cell-deficient mice demonstrate that B-cells play an important role in the initiation of T-cell responses to Chlamydia trachomatis (mouse pneumonitis) lung infection. J. Immunol.161, 1439–1446 (1998).
  • Rivera A, Chen CC, Ron N, Dougherty JP, Ron Y. Role of B-cells as antigen-presenting cells in vivo revisited: antigen-specific B-cells are essential for T-cell expansion in lymph nodes and for systemic T-cell responses to low antigen concentrations. Int. Immunol.13, 1583–1593 (2001)
  • van Essen D, Dullforce P, Brocker T, Gray D. Cellular interactions involved in Th cell memory. J. Immunol.165, 3640–3646 (2000).
  • Linton PJ, Harbertson J, Bradley LM. A critical role for B-cells in the development of memory CD4 cells. J. Immunol.165, 5558–5565 (2000).
  • Shen H, Whitmire JK, Fan X, Shedlock DJ, Kaech SM, Ahmed R. A specific role for B-cells in the generation of CD8 T-cell memory by recombinant Listeria monocytogenes. J. Immunol.170, 1443–1451 (2003).
  • Weisenburger DD, Armitage JO. Mantle cell lymphoma – an entity comes of age. Blood87(11), 4483–4494 (1996).
  • Lenz G, Dreyling M, Hiddemann W. Mantle cell lymphoma: established therapeutic options and future directions. Ann. Hematol.83(2), 71–77 (2004).
  • Howard OM, Gribben JG, Neuberg DS et al. Rituximab and CHOP induction therapy for newly diagnosed mantle-cell lymphoma: molecular complete responses are not predictive of progression-free survival. J. Clin. Oncol.20(5), 1288–1294 (2002).
  • Romaguera JE, Fayad L, Rodriguez MA et al. High rate of durable remissions after treatment of newly diagnosed aggressive mantle-cell lymphoma with rituximab plus hyper-CVAD alternating with rituximab plus high-dose methotrexate and cytarabine. J. Clin. Oncol.23(28), 7013–7023 (2005). Epub (2005).
  • Neelapu SS, Kwak LW, Kobrin CB et al. Vaccine induced tumor-specific immunity despite severe B-cell depletion in mantle cell lymphoma. Nat. Med.11(9), 986–991 (2005).
  • WengWK, Czerwinski D, Timmerman J, Hsu FJ, Levy R. Clinical outcome of lymphoma patients after idiotype vaccination is correlated with humoral immune response and immunoglobulin G Fc receptor genotype. J. Clin. Oncol.22(23). 4717–24 (2004). (Epub). Erratum in: J. Clin. Oncol.23(1), 248(2005).
  • Koc O, Redfern C, Wiernik P et al. Extended follow-up and analysis with central radiological review of patients receiving FavId® (Id/KLH) vaccine following rituximab. Blood106, 772 (2005).
  • Neelapu SS, Gause BL, Nikcevich DA et al. Phase III randomized trial of patient-specific vaccination for previously untreated follicular lymphoma patients in first complete remission: Protocol summary and interim report. Clin. Lymphoma6(1), 61–4 (2005).
  • Vose JM. Personalized immunotherapy for the treatment of non-Hodgkin's lymphoma: a promising approach. Hematol. Oncol.(2006) (Epub).
  • Hurvitz SA, Timmerman JM. Recombinant, tumour-derived idiotype vaccination for indolent B cell non-Hodgkin's lymphomas: a focus on FavId. Expert Opin. Biol. Ther.5(6), 841–852 (2005).
  • Timmerman JM, Caspar CB, Lambert SL, Syrengelas AD, Levy R. Idiotype-encoding recombinant adenoviruses provide protective immunity against murine B-cell lymphomas. Blood97(5), 1370–1377 (2001).
  • Timmerman JM, Levy R. Linkage of foreign carrier protein to a self-tumor antigen enhances the immunogenicity of a pulsed dendritic cell vaccine. J. Immunol.164(9), 4797–4803 (2000).
  • Levitsky HI, Montgomery J, Ahmadzadeh M et al. Immunization with granulocyte-macrophage colony-stimulating factor-transduced, but not B7–1-transduced, lymphoma cells primes idiotype-specific T cells and generates potent systemic antitumor immunity. J. Immunol.156(10), 3858–3865 (1996).
  • KwakLW, Pennington R, Boni L, Ochoa AC, Robb RJ, Popescu MC. Liposomal formulation of a self lymphoma antigen induces potent protective antitumor immunity. J. Immunol.160(8), 3637–3684 (1998).
  • Keilholz U, Weber J, Finke J et al. Immunologic monitoring of cancer vaccine therapy: results of a workshop sponsored by the Society for Biological Therapy. J. Immunother.25, 97–138 (2002).
  • Malyguine A, Strobl SL, Shafer-Weaver KA et al. A modified human ELISPOT assay to detect specific responses to primary tumor cell targets. J. Transl. Med.2(1), 9 (2004).
  • Hsu FJ, Benike C, Fagnoni F et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat. Med.2, 52–58 (1996).
  • Timmerman JM, Czerwinski DK, Davis TA et al. Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood99, 1517–1526, (2002).
  • Neelapu SS, Baskar S, Gause BL et al. Human autologous tumor-specific T-cell responses induced by liposomal delivery of a lymphoma antigen. Clin. Cancer Res.10(24), 8309–8317 (2004).
  • Nelson EL, Li X, Hsu FJ et al. Tumor-specific, cytotoxic T-lymphocyte response after idiotype vaccination for B-cell, non-Hodgkin's lymphoma. Blood88(2), 580–589 (1996).
  • Neelapu SS, Kwak LW. Vaccine Approaches to non-hodgkin’s lymphoma therapy. In: Malignant Lymphomas, American Cancer Society Atlas of Clinical Oncology Series. Grossbard ML (Ed.), BC Decker, Inc., Hamilton, ON, Canada 316–329 (2002).
  • Hawkins RE, Winter G, Hamblin TJ, Stevenson FK, Russell SJ. A genetic approach to idiotypic vaccination. J. Immunother.14(4), 273–278 (1993).
  • Hawkins RE, Zhu D, Ovecka M et al. Idiotypic vaccination against human B-cell lymphoma. Rescue of variable region gene sequences from biopsy material for assembly as single-chain Fv personal vaccines. Blood83(11), 3279–3288 (1994).
  • Spellerberg MB, Zhu D, Thompsett A, King CA, Hamblin TJ, Stevenson FK. DNA vaccines against lymphoma: promotion of anti-idiotypic antibody responses induced by single chain Fv genes by fusion to tetanus toxin fragment C. J. Immunol.159(4), 1885–1892, (1997).
  • King CA, Spellerberg MB, Zhu D et al. DNA vaccines with single-chain Fv fused to fragment C of tetanus toxin induce protective immunity against lymphoma and myeloma. Nat. Med.4(11), 1281–1286 (1998).
  • Biragyn T, Tani K, Grimm MC, Weeks S, Kwak LW. Genetic fusion of chemokines to a self tumor antigen induces protective, t-cell dependent anti-tumor immunity. Nat. Biotech.17, 253–258 (1999).
  • Biragyn A, Surenhu M, Yang D et al. Mediators of innate immunity that target immature, but not mature, dendritic cells induce antitumor immunity when genetically fused with nonimmunogenic tumor antigens. J. Immunol.167(11), 6644–6653 (2001).
  • Biragyn A, Ruffini PA, Coscia M et al. Chemokine receptor-mediated delivery directs self-tumor antigen efficiently into the class II processing pathway in vitro and induces protective immunity in vivo. Blood104(7), 1961–1969, (2004).
  • Neelapu SS, Gause BL, Harvey L et al. Human autologous tumor-specific T-cell responses induced by liposome encapsulated lymphoma membrane proteins.(ASH Annual Meeting Abstracts) Blood104, 749 (2004).
  • Pashine A, Valiante NM, Ulmer JB. Targeting the innate immune response with improved vaccine adjuvants. Nat. Med.11(4 Suppl), S63–S68. Review (2005).
  • Shackleton M, Davis ID, Hopkins W et al. The impact of imiquimod, a toll-like receptor-7 ligand (TLR7L), on the immunogenicity of melanoma peptide vaccination with adjuvant Flt3 ligand. Cancer Immun.4, 9 (2004).
  • Speiser DE, Lienard D, Rufer N et al. Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J. Clin. Invest.115(3), 739–746 (2005).
  • Walker LS, Abbas AK. The enemy within: keeping self-reactive T cells at bay in the periphery. Nat. Rev. Immunol.2(1), 11–19 (2002).
  • Chen L. Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat. Rev. Immunol.4(5), 336–347 (2004).
  • Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat. Rev. Cancer5(4), 263–274. Review (2005).
  • Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol.6(4), 345–352 (2005).
  • Carter LL, Carreno BM. Cytotoxic T-lymphocyte antigen-4 and programmed death-1 function as negative regulators of lymphocyte activation. Immunol. Res.28(1), 49–59 (2003).
  • Sutmuller RP, van Duivenvoorde LM, van Elsas A et al. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J. Exp. Med.194(6), 823–832 (2001).
  • Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl Acad. Sci. USA99(19), 12293–12297 (2002).
  • Iwai Y, Terawaki S, Honjo T. PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells. Int. Immunol.17(2), 133–144 (2005).
  • Curiel TJ, Wei S, Dong H et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat. Med.9(5), 562–567 (2003).
  • Dannull J, Su Z, Rizzieri D et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J. Clin. Invest.115(12), 3623–3633 (2005).
  • Barnett B, Kryczek I, Cheng P, Zou W, Curiel TJ. Regulatory T cells in ovarian cancer: biology and therapeutic potential. Am. J. Reprod. Immunol.54(6), 369–377 (2005).
  • Phan GQ, Yang JC, Sherry RM et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl Acad. Sci. USA100(14), 8372–8377 (2003).
  • Hodi FS, Mihm MC, Soiffer RJ et al. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc. Natl Acad. Sci. USA100(8), 4712–4717 (2003).
  • Timmerman JM, Singh G, Hermanson G et al. Immunogenicity of a plasmid DNA vaccine encoding chimeric idiotype in patients with B-cell lymphoma. Cancer Res.62(20), 5845–5852 (2002).
  • Barrios Y, Cabrera R, Yanez R et al. Anti-idiotypic vaccination in the treatment of low-grade B-cell lymphoma. Haematologica87(4), 400–407 (2002).

Website

  • American Cancer Association – Estimated New Cancer Cases and Deaths by Sex for All Sites, US, 2006 www.cancer.org/downloads/stt/CAFF06EsCsMc.pdf

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.