80
Views
25
CrossRef citations to date
0
Altmetric
Review

Antigen-specific T-cell-mediated immunity after HIV-1 infection: implications for vaccine control of HIV development

, , &
Pages 505-516 | Published online: 09 Jan 2014

References

  • Brander C, Walker BD. Modulation of host immune responses by clinically relevant human DNA and RNA viruses. Curr. Opin. Microbiol.3(4), 379–386 (2000).
  • Barouch DH, Letvin NL. CD8+ cytotoxic T lymphocyte responses to lentiviruses and herpesviruses. Curr. Opin. Immunol.13(4), 479–482 (2001).
  • Walker CM, Moody DJ, Stites DP, Levy JA. CD8+ lymphocytes can control HIV infection in vitro suppressing virus replication. Science234, 1563–1566 (1986).
  • Walker BD, Chakrabarti S, Moss B et al. HIV-specific cytotoxic T lymphocytes in seropositive individuals. Nature328, 345–348 (1987).
  • Nixon D, Townsend A, Elvin J, Rizza C, Gallwey J, McMichael A. HIV-1 gag-specific cytotoxic T lymphocytes defined with recombinant vaccinia virus and synthetic peptides. Nature336, 484–487 (1988).
  • Borrow P, Lewicki H, Hahn BH, Shaw GM, Oldstone MB. A virus-specific CD8+ cytotoxic T lymphocyte activity associated with control viremia in primary human immunodeficiency virus type 1 infection. J. Virol..68, 6103–6110 (1994).
  • Koup RA, Safrit JF, Cao Y et al. Temporal association of cellular immune response with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J. Virol.68(7), 4650–4655 (1994).
  • Safrit JT, Andrews CA, Zhu T, Ho DD, Koup RA. Characterization of human immunodeficiency virus type 1-specific cytotoxic T lymphocyte clones isolated during acute seroconversion: recognition of autologous virus sequences within a conserved immunodominant epitope. J. Exp. Med.179(2), 463–472 (1994).
  • Rinaldo C, Huang X-L, Fan Z et al. High levels of anti-human immunodeficiency virus type 1 (HIV-1) memory cytotoxic T-lymphocyte activity and low viral load are associated with lack of disease in HIV-1-infected long-term nonprogressors. J. Virol.69(9), 5838–5842 (1995).
  • Riviere Y, McChesney MB, Porrot F et al. Gag-specific cytotoxic responses to HIV type 1 are associated with a decreased risk of progression to AIDS-related complex or AIDS. AIDS Res. Hum. Retroviruses11(8), 903–907 (1995).
  • Greenough TC, Brettler DB, Somasundaran M, Panicali DL, Sullivan JL. Human immunodeficiency virus type-1-specific cytotoxic T lymphocytes (CTL), virus load, and CD4 T cell loss: evidence supporting a protective role for CTL in vivo.J. Inf. Dis.176, 118–125 (1997).
  • Harrer T, Harrer E, Kalamas SA et al. Strong cytotoxic T cell and weak neutralizing antibody responses in a subset of persons with stable nonprogressing HIV type 1 infection. AIDS Res. Hum. Retroviruses12(7), 585–592 (1996).
  • Cheynier R, Langlade-Demoyen P, Marescot M-R et al. Cytotoxic T lymphocyte responses in the peripheral Blood of children born to HIV-1 infected mother. Eur. J. Immunol.22, 2211–2217 (1992).
  • Rowland-Jones SL, Nixon DF, Aldhous MC et al. HIV-specific cytotoxic T-cell activity in an HIV-exposed but uninfected infant. Lancet341(8849), 860–861 (1993).
  • Rowland-Jones S, Sutton J, Ariyoshi K et al. HIV-specific citotoxic T-cells in HIV-exposed but uninfected Gambian women. Nature Med.1(1), 59–64 (1995).
  • Henkart PA. Lymphocyte-mediated cytotoxicity: two pathways and multiple effector molecules. Immunity1(5), 343–346 (1994).
  • Henkart PA. Mechanism of lymphocyte-mediated cytotoxicity. Ann. Rev. Immunol.3, 31–58 (1985).
  • Bossi G, Griffiths GM. Degranulation plays an essential part in regulating cell surface expression of Fas ligand in T cells and natural killer cells. Nat. Med.5(1), 90–96 (1999).
  • Wagner L, Yang OO, Garcia-Zepeda EA et al. β-chemokines are released from HIV-1-specific cytolytic T-cell granules complexed to proteoglycans. Nature391(6670), 908–911 (1998).
  • Catalfamo M, Karpova T, McNally J et al. Human CD8+ T cells store RANTES in a unique secretory compartment and release it rapidly after TcR stimulation. Immunity20(2), 219–230 (2004).
  • Appay V, Zaunders JJ, Papagno L et al. Characterization of CD4(+) CTLs ex vivo.J. Immunol.168(11), 5954–5958 (2002).
  • Papagno L, Appay V, Sutton J et al. Comparison between HIV- and CMV-specific T cell responses in long-term HIV infected donors. Clin. Exp. Immunol.130(3), 509–517 (2002).
  • Norris PJ, Moffett HF, Yang OO et al. Beyond help: direct effector functions of human immunodeficiency virus type 1-specific CD4+ T cells. J. Virol.78(16), 8844–8851 (2004).
  • Picker LJ, Singh MK, Zdraveski Z et al. Direct demonstration of cytokine synthesis heterogeneity among human memory/effector T cells by flow cytometry. Blood86(4), 1408–1419 (1995).
  • Bevan MJ. Helping the CD8(+) T-cell response. Nat. Rev. Immunol.4(8), 595–602 (2004).
  • Shedlock DJ, Shen H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science300(5617), 337–339 (2003).
  • Sun JC, Bevan MJ. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science300(5617), 339–342 (2003).
  • Becker TC, Wherry EJ, Boone D et al. Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T cells. J. Exp. Med.195(12), 1541–1548 (2002).
  • Tan JT, Ernst B, Kieper WC, LeRoy E, Sprent J, Surh CD. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J. Exp. Med.195(12), 1523–1532 (2002).
  • Janssen EM, Lemmens EE, Wolfe T, Christen U, von Herrath MG, Schoenberger SP. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature421(6925), 852–856 (2003).
  • Haseltine WA. Molecular biology of the human immunodeficiency virus type 1. Faseb J.5(10), 2349–2360 (1991).
  • Gruters RA, van Baalen CA, Osterhaus AD. The advantage of early recognition of HIV-infected cells by cytotoxic T-lymphocytes. Vaccine20(15), 2011–2015 (2002).
  • van Baalen CA, Guillon C, van Baalen M et al. Impact of antigen expression kinetics on the effectiveness of HIV-specific cytotoxic T lymphocytes. Eur. J. Immunol.32(9), 2644–2652 (2002).
  • Ali A, Lubong R, Ng H, Brooks DG, Zack JA, Yang OO. Impacts of epitope expression kinetics and class I downregulation on the antiviral activity of human immunodeficiency virus type 1-specific cytotoxic T lymphocytes. J. Virol.78(2), 561–567 (2004).
  • Addo MM, Altfeld M, Rosenberg ES et al. The HIV-1 regulatory proteins Tat and Rev are frequently targeted by cytotoxic T lymphocytes derived from HIV-1-infected individuals. Proc. Natl Acad. Sci. USA98(4), 1781–1786 (2001).
  • Altfeld M, Addo MM, Eldridge RL et al. Vpr is preferentially targeted by CTL during HIV-1 infection. J. Immunol.167(5), 2743–2752 (2001).
  • Masemola A, Mashishi T, Khoury G et al. Hierarchical targeting of subtype C HIV-1 proteins by CD8+ T cells: correlation with viral load. J. Virol.78(7), 3233–3243 (2004).
  • McMichael AJ, Phillips RE. Escape of human immunodeficiency virus from immune control. Ann. Rev. Immunol.15, 271–296 (1997).
  • Goulder PJ, Watkins DI. HIV and SIV CTL escape: implications for vaccine design. Nat. Rev. Immunol.4(8), 630–640 (2004).
  • Geretti AM. HIV-1 subtypes: epidemiology and significance for HIV management. Curr. Opin. Infect. Dis.19(1), 1–7 (2006).
  • Pantaleo G, Demarest JF, Schacker T et al. The qualitative nature of the primary immune response to HIV infection is a prognosticator of disease progression independent of the initial level of plasma viremia. Proc. Natl Acad. Sci. USA94(1), 254–258 (1997).
  • Alexander-Miller MA, Leggatt GR, Berzofsky JA. Selective expansion of high- or low-avidity cytotoxic T lymphocytes and efficacy for adoptive immunotherapy. Proc. Natl Acad. Sci. USA93(4), 4102–4107 (1996).
  • Alexander-Miller MA, Leggatt GR, Sarin A, Berzofsky JA. Role of antigen, CD8, and cytotoxic T lymphocyte (CTL) avidity in high dose antigen induction of apoptosis of effector CTL. J. Exp. Med.184(2), 485–492 (1996).
  • Yee C, Savage PA, Lee PP, Davis MM, Greenberg PD. Isolation of high avidity melanoma-reactive CTL from heterogeneous populations using peptide-MHC tetramers. J. Immunol.162(4), 2227–2234 (1999).
  • Pantaleo G, Soudeyns H, Demarest JF et al. Evidence for rapid disappearance of initially expanded HIV-specific CD8+ T cell clones during primary HIV infection. Proc. Natl Acad. Sci. USA94(18), 9848–9853 (1997).
  • Snyder JT, Alexander-Miller MA, Berzofskyl JA, Belyakov IM. Molecular mechanisms and biological significance of CTL avidity. Curr. HIV Res.1(3), 287–294 (2003).
  • Lichterfeld M, Yu XG, Cohen D et al. HIV-1 Nef is preferentially recognized by CD8 T cells in primary HIV-1 infection despite a relatively high degree of genetic diversity. AIDS18(10), 1383–1392 (2004).
  • Pantaleo G, Fauci AS. New concepts in the immunopathogenesis of HIV infection. Ann. Rev. Immunol.13, 487–512 (1995).
  • Borrow P, Lewicki H, Wei X et al. Antiviral pressure exerted by HIV-1-specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nat. Med.3(2), 205–217 (1997).
  • Price DA, Goulder PJ, Klenerman P et al. Positive selection of HIV-1 cytotoxic T lymphocyte escape variants during primary infection. Proc. Natl Acad. Sci. USA94, 1890–1895 (1997).
  • O’Connor DH, Allen TM, Vogel TU et al. Acute phase cytotoxic T lymphocyte escape is a hallmark of simian immunodeficiency virus infection. Nat. Med.493–499 (2002).
  • Yusim K, Kesmir C, Gaschen B et al. Clustering patterns of cytotoxic T-lymphocyte epitopes in human immunodeficiency virus type 1 (HIV-1) proteins reveal imprints of immune evasion on HIV-1 global variation. J. Virol.76(17), 8757–8768 (2002).
  • Ogg GS, Jin X, Bonhoeffer S et al. Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA. Science279(5359), 2103–2106 (1998).
  • Dalod M, Dupuis M, Deschemin JC et al. Weak anti-HIV CD8(+) T-cell effector activity in HIV primary infection. J. Clin. Invest.104(10), 1431–1439 (1999).
  • Gea-Banacloche JC, Migueles SA, Martino L et al. Maintenance of large numbers of virus-specific CD8+ T cells in HIV-infected progressors and long-term nonprogressors. J Immunol.165(2), 1082–1092 (2000).
  • Betts MR, Ambrozak DR, Douek DC et al. Analysis of total human immunodeficiency virus (HIV)-specific CD4(+) and CD8(+) T-cell responses: relationship to viral load in untreated HIV infection. J. Virol.75(24), 11983–11991 (2001).
  • Edwards BH, Bansal A, Sabbaj S, Bakari J, Mulligan MJ, Goepfert PA. Magnitude of functional CD8+ T-cell responses to the gag protein of human immunodeficiency virus type 1 correlates inversely with viral load in plasma. J. Virol.76(5), 2298–2305 (2002).
  • Addo MM, Yu XG, Rathod A et al. Comprehensive epitope analysis of human immunodeficiency virus type 1 (HIV-1)-specific T-cell responses directed against the entire expressed HIV-1 genome demonstrate broadly directed responses, but no correlation to viral load. J. Virol.77(3), 2081–2092 (2003).
  • Migueles SA, Laborico AC, Shupert WL et al. HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nat. Immunol.3(11), 1061–1068 (2002).
  • Zimmerli SC, Harari A, Cellerai C, Vallelian F, Bart PA, Pantaleo G. HIV-1-specific IFN-γ/IL-2-secreting CD8 T cells support CD4-independent proliferation of HIV-1-specific CD8 T cells. Proc. Natl Acad. Sci. USA102(20), 7239–7244 (2005).
  • Betts M, Nason MC, West SM et al. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T-cells. Blood107(12), 4781–4789 (2006).
  • Appay V, Nixon DF, Donahoe SM et al. HIV-specific CD8(+) T cells produce antiviral cytokines but are impaired in cytolytic function. J. Exp. Med.192(1), 63–76 (2000).
  • Lieberman J, Shankar P, Manjunath N, Andersson J. Dressed to kill? A review of why antiviral CD8 T lymphocytes fail to prevent progressive immunodeficiency in HIV-1 infection. Blood98(6), 1667–1677 (2001).
  • McCutchan FE, Sankale JL, M’Boup S et al. HIV type 1 circulating recombinant form CRF09_cpx from west Africa combines subtypes A, F, G, and may share ancestors with CRF02_AG and Z321. AIDS Res. Hum. Retroviruses20(8), 819–826 (2004).
  • Cao H, Kanki P, Sankale’ J-L et al. Cytotoxic T-lymphocyte cross-reactivity among different human immunodeficiency virus type 1 clades: implications for vaccine development. J. Virol.71(11), 8615–8623 (1997).
  • Betts MR, Krowka J, Santamaria C et al. Cross-clade human immunodeficiency virus (HIV)-specific cytotoxic T-lymphocyte responses in HIV-infected Zambians. J. Virol.71(11), 8908–8911 (1997).
  • Lynch JA, DeSouza M, Robb MD et al. Cross-clade cytotoxic T cell response to HIV-1 proteins among HLA disparate North Americans and Thais. J. Infect. Dis.178(4), 1040–1046 (1998).
  • Wilson SE, Pedersen SL, Kunich JC et al. Cross-clade envelope glycoprotein 160-specific CD8+ cytotoxic T lymphocyte responses in early HIV type 1 clade B infection. AIDS Res. Hum. Retroviruses14(11), 925–937 (1998).
  • Dorrell L, Dong T, Ogg GS et al. Distinct recognition of non-clade B human immunodeficiency virus type 1 epitopes by cytotoxic T lymphocytes generated from donors infected in Africa. J. Virol.73(2), 1708–1714 (1999).
  • Buseyne F, Chaix ML, Fleury B et al. Cross-clade-specific cytotoxic T lymphocytes in HIV-1-infected children. Virology250(2), 316–324 (1998).
  • Gillespie GM, Kaul R, Dong T et al. Cross-reactive cytotoxic T lymphocytes against a HIV-1 p24 epitope in slow progressors with B*57. AIDS16(7), 961–972 (2002).
  • Coplan PM, Gupta SB, Dubey SA et al. Cross-reactivity of anti-HIV-1 T cell immune responses among the major HIV-1 clades in HIV-1-positive individuals from 4 continents. J. Infect. Dis.191(9), 1427–1434 (2005).
  • McKinnon LR, Ball TB, Kimani J et al. Cross-clade CD8(+) T-cell responses with a preference for the predominant circulating clade. J. Acquir. Immune Defic. Syndr.40(3), 245–249 (2005).
  • Barugahare B, Baker C, K'Aluoch O et al. Human immunodeficiency virus-specific responses in adult Ugandans: patterns of cross-clade recognition. J. Virol.79(7), 4132–4139 (2005).
  • Ferrari G, Humphrey W, McElrath MJ et al. Clade B-based HIV-1 vaccines elicit cross-clade cytotoxic T lymphocyte reactivities in uninfected volunteers. Proc. Natl Acad. Sci. USA94, 1396–1401 (1997).
  • Ferrari G, Neal W, Jones A et al. CD8 CTL responses in vaccinees: emerging patterns of HLA restricition and epitope recognition. Immunology Letters79(1–2), 37–45 (2001).
  • Novitsky V, Rybak N, McLane MF et al. Identification of human immunodeficiency virus type 1 subtype C Gag-, Tat-, Rev-, and Nef-specific elispot-based cytotoxic T-lymphocyte responses for AIDS vaccine design. J. Virol.75(19), 9210–9228 (2001).
  • Rutebemberwa A, Currier JR, Jagodzinski L et al. HIV-1 MN Env 15-mer peptides better detect HIV-1 specific CD8 T cell responses compared with consensus subtypes B and M group 15-mer peptides. AIDS19(11), 1165–1172 (2005).
  • Altfeld M, Allen TM, Yu XG et al. HIV-1 superinfection despite broad CD8+ T-cell responses containing replication of the primary virus. Nature420(6914), 434–439 (2002).
  • Yang OO, Daar ES, Jamieson BD et al. Human immunodeficiency virus type 1 clade B superinfection: evidence for differential immune containment of distinct clade B strains. J. Virol.79(2), 860–868 (2005).
  • Hoelscher M, Dowling WE, Sanders-Buell E et al. Detection of HIV-1 subtypes, recombinants, and dual infections in east Africa by a multi-region hybridization assay. AIDS16(15), 2055–2064 (2002).
  • Masemola AM, Mashishi TN, Khoury G et al. Novel and promiscuous CTL epitopes in conserved regions of Gag targeted by individuals with early subtype C HIV type 1 infection from Southern Africa. J. Immunol.173(7), 4607–4617 (2004).
  • Geels MJ, Dubey SA, Anderson K et al. Broad cross-clade T-cell responses to gag in individuals infected with human immunodeficiency virus type 1 non-B clades (A to G): importance of HLA anchor residue conservation. J. Virol.79(17), 11247–11258 (2005).
  • Gaschen B, Taylor J, Yusim K et al. Diversity considerations in HIV-1 vaccine selection. Science296(5577), 2354–2360 (2002).
  • Rosenberg ES, Billingsley JM, Caliendo AM et al. Vigorous HIV-1specific CD4+ T cell responses associated with control of viremia. Science278, 1447–1450 (1997).
  • Lichterfeld M, Kaufmann DE, Yu XG et al. Loss of HIV-1-specific CD8+ T cell proliferation after acute HIV-1 infection and restoration by vaccine-induced HIV-1-specific CD4+ T cells. J. Exp. Med.200(6), 701–712 (2004).
  • Brenchley JM, Schacker TW, Ruff LE et al. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J. Exp. Med.200(6), 749–759 (2004).
  • Veazey RS, DeMaria M, Chalifoux LV et al. Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection. Science280(5362), 427–431 (1998).
  • Douek DC, Brenchley JM, Betts MR et al. HIV preferentially infects HIV-specific CD4+ T cells. Nature417(6884), 95–98 (2002).
  • Legac E, Autran B, Merle-Beral H, Katlama C, Debre P. CD4+CD7-CD57+ T cells: a new T-lymphocyte subset expanded during human immunodeficiency virus infection. Blood79(7), 1746–1753 (1992).
  • Harari A, Rizzardi GP, Ellefsen K et al. Analysis of HIV-1- and CMV-specific memory CD4 T-cell responses during primary and chronic infection. Blood100(4), 1381–1387 (2002).
  • Brenchley JM, Hill BJ, Ambrozak DR et al. T-cell subsets that harbor human immunodeficiency virus (HIV) in vivo: implications for HIV pathogenesis. J. Virol.78(3), 1160–1168 (2004).
  • Palmer BE, Blyveis N, Fontenot AP, Wilson CC. Functional and phenotypic characterization of CD57+CD4+ T cells and their association with HIV-1-induced T cell dysfunction. J. Immunol.175(12), 8415–8423 (2005).
  • Harrer T, Harrer E, Kalams SA et al. Cytotoxic T lymphocytes in asymptomatic long-term nonprogressing HIV-1 infection. J. Immunol.156, 2616–2623 (1996).
  • Migueles SA, Sabbaghian MS, Shupert WL et al. HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors. Proc. Natl Acad. Sci. USA97(6), 2709–2714 (2000).
  • O'Brien SJ, Gao X, Carrington M. HLA and AIDS: a cautionary tale. Trends Mol. Med.7(9), 379–381 (2001).
  • Leslie AJ, Pfafferott KJ, Chetty P et al. HIV evolution: CTL escape mutation and reversion after transmission. Nat. Med.10(3), 282–289 (2004).
  • Goulder PJ, Brander C, Tang Y et al. Evolution and transmission of stable CTL escape mutations in HIV infection. Nature412(6844), 334–338 (2001).
  • Gao X, Bashirova A, Iversen AK et al. AIDS restriction HLA allotypes target distinct intervals of HIV-1 pathogenesis. Nat. Med.11(12), 1290–1292 (2005).
  • Goulder PJ, Phillips RE, Colbert RA et al. Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nat. Med.3(2), 212–217 (1997).
  • Kelleher AD, Long C, Holmes EC et al. Clustered mutations in HIV-1 gag are consistently required for escape from HLA-B27-restricted cytotoxic T lymphocyte responses. J. Exp. Med.193(3), 375–386 (2001).
  • Feeney ME, Tang Y, Roosevelt KA et al. Immune escape precedes breakthrough human immunodeficiency virus type 1 viremia and broadening of the cytotoxic T-lymphocyte response in an HLA-B27-positive long-term-nonprogressing child. J. Virol.78(16), 8927–8930 (2004).
  • Currier JR, Harris ME, Cox JH et al. Immunodominance and cross-reactivity of B5703-restricted CD8 T lymphocytes from HIV type 1 subtype C-infected Ethiopians. AIDS Res. Hum. Retroviruses21(3), 239–245 (2005).
  • Martin MP, Gao X, Lee JH et al. Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat. Gen.31(4), 429–434 (2002).
  • Deacon NJ, Tsykin A, Solomon A et al. Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients. Science270(5238), 988–991 (1995).
  • Thornton AM, Shevach EM. Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J. Immunol.164(1), 183–190 (2000).
  • Orendi JM, Bloem AC, Borleffs JC et al. Activation and cell cycle antigens in CD4+ and CD8+ T cells correlate with plasma human immunodeficiency virus (HIV-1) RNA level in HIV-1 infection. J. Infect. Dis.178(5), 1279–1287 (1998).
  • Sousa AE, Carneiro J, Meier-Schellersheim M, Grossman Z, Victorino RM. CD4 T cell depletion is linked directly to immune activation in the pathogenesis of HIV-1 and HIV-2 but only indirectly to the viral load. J. Immunol.169(6), 3400–3406 (2002).
  • Hazenberg MD, Otto SA, van Benthem BH et al. Persistent immune activation in HIV-1 infection is associated with progression to AIDS. AIDS17(13), 1881–1888 (2003).
  • Hazenberg MD, Hamann D, Schuitemaker H, Miedema F. T cell depletion in HIV-1 infection: how CD4+ T cells go out of stock. Nat. Immunol.1(4), 285–289 (2000).
  • Douek DC. Disrupting T-cell homeostasis: how HIV-1 infection causes disease. AIDS Rev.5(3), 172–177 (2003).
  • Ho HN, Hultin LE, Mitsuyasu RT et al. Circulating HIV-specific CD8+ cytotoxic T cells express CD38 and HLA-DR antigens. J Immunol.150(7), 3070–3079 (1993).
  • Giorgi JV, Lyles RH, Matud JL et al. Predictive value of immunologic and virologic markers after long or short duration of HIV-1 infection. J. AIDS29(4), 346–355 (2002).
  • Eggena MP, Barugahare B, Jones N et al. Depletion of regulatory T cells in HIV infection is associated with immune activation. J. Immunol.174(7), 4407–4414 (2005).
  • Kinter AL, Hennessey M, Bell A et al. CD25(+)CD4(+) regulatory T cells from the peripheral blood of asymptomatic HIV-infected individuals regulate CD4(+) and CD8(+) HIV-specific T cell immune responses in vitro and are associated with favorable clinical markers of disease status. J. Exp. Med.200(3), 331–343 (2004).
  • Weiss L, Donkova-Petrini V, Caccavelli L, Balbo M, Carbonneil C, Levy Y. Human immunodeficiency virus-driven expansion of CD4+CD25+ regulatory T cells which suppress HIV-specific CD4 T-cell responses in HIV-infected patients. Blood104(10), 3249–3256 (2004).
  • Boritz E, Palmer BE, Wilson CC. Human immunodeficiency virus type 1 (HIV-1)-specific CD4+ T cells that proliferate in vitro detected in samples from most viremic subjects and inversely associated with plasma HIV-1 levels. J. Virol.78(22), 12638–12646 (2004).
  • Garba ML, Pilcher CD, Bingham AL, Eron J, Frelinger JA. HIV antigens can induce TGF-β(1)-producing immunoregulatory CD8+ T cells. J. Immunol.168(5), 2247–2254 (2002).
  • Toka FN, Suvas S, Rouse BT. CD4+ CD25+ T cells regulate vaccine-generated primary and memory CD8+ T-cell responses against herpes simplex virus type 1. J. Virol.78(23), 13082–13089 (2004).
  • Klein MR, van Baalen CA, Holwerda AM et al. Kinetics of Gag-specific cytotoxic T lymphocyte responses during the clinical course of HIV-1 infection: a longitudinal analysis of rapid progressors and long-term asymptomatics. J. Exp. Med.181, 1365–1372 (1995).
  • Betts MR, Krowka JF, Kepler TB et al. Human immunodeficiency virus type 1-specific cytotoxic T lymphocyte activity is inversely correlated with HIV type 1 viral load in HIV type 1-infected long-term survivors. AIDS Res. Hum. Retroviruses15(13), 1219–28 (1999).
  • Altman JD, Moss PA, Goulder PJ et al. Phenotypic analysis of antigen-specific T lymphocytes. Science274(5284), 94–96 (1996).
  • De Rosa SC, Herzenberg LA, Roederer M. 11-color, 13-parameter flow cytometry: identification of human naive T cells by phenotype, function, and T-cell receptor diversity. Nat. Med.7(2), 245–248 (2001).
  • Roederer M, Brenchley JM, Betts MR, De Rosa SC. Flow cytometric analysis of vaccine responses: how many colors are enough? Clin. Immunol.110(3), 199–205 (2004).
  • Sheehy ME, McDermott AB, Furlan SN, Klenerman P, Nixon DF. A novel technique for the fluorometric assessment of T lymphocyte antigen specific lysis. J. Immunol. Methods249(1–2), 99–110 (2001).
  • Herbeck JT, Nickle DC, Learn GH et al. Human immunodeficiency virus type 1 env evolves toward ancestral states upon transmission to a New Host. J. Virol.80(4), 1637–44 (2006).
  • Wilson NA, Reed J, Napoe GS et al. Vaccine-induced cellular immune responses reduce plasma viral concentrations after repeated low-dose challenge with pathogenic simian immunodeficiency virus SIVmac239. J. Virol.80(12), 5875–5885 (2006).
  • Mattapallil JJ, Douek DC, Buckler-White A et al. Vaccination preserves CD4 memory T cells during acute simian immunodeficiency virus challenge. J. Exp. Med.203(6), 1533–1541 (2006).
  • Letvin NL, Mascola JR, Sun Y et al. Preserved CD4+ central memory T cells and survival in vaccinated SIV-challenged monkeys. Science312(5779), 1530–1533 (2006).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.