946
Views
111
CrossRef citations to date
0
Altmetric
Review

Pulmonary vaccine delivery

&
Pages 213-226 | Published online: 09 Jan 2014

References

  • Woodland DL, Randall TD. Anatomical features of anti-viral immunity in the respiratory tract. Sem. Immunol.16, 163–170 (2004).
  • Brandtzaeg P. Humoral immune-response patterns of human mucosae – induction and relation to bacterial respiratory tract infections. J. Infect. Dis.165, S167–S176 (1992).
  • Breiman RF, Butler JC, McInnes PM. Vaccines to prevent respiratory infection: opportunities on the near and far horizon. Curr. Opin. Infect. Dis.12, 145–152 (1999).
  • Mestecky J. Mucosal Immunology (3rd Edition). Academic Press, CA, USA (2005).
  • MacDonald TT. The mucosal immune system. Parasite Immunol.25, 235–246 (2003).
  • Lugton I. Mucosa-assocaited lymphoid tissues as sites for uptake, carriage and excretion of tubercle bacilli and other pathogenic mycobacteria. Immunol. Cell Biol.77, 364–372 (1999).
  • Kiyono H, Kweon MN, Hiroi T et al. The mucosal immune system: from specialized immune defense to inflammation and allergy. Acta Odontol. Scand.59(3), 145–153 (2001).
  • van Ginkel FW, Nguyen HH, McGhee JR. Vaccines for mucosal immunity to combat emerging infectious diseases. Emerg. Infect. Dis6(2), 123–132 (2000).
  • Gallichan WS, Rosenthal KL. Long-lived cytotoxic T lymphocyte memory in mucosal tissues after mucosal but not systemic immunization. J. Exp. Med.184, 1879–1890 (1996).
  • Mestecky J. The common mucosal immune system and current strategies for induction of immune responses in external secretions. J. Clin. Immunol.7, 265–276 (1987).
  • Mackay CR. Homing of naive, memory and effector lymphocytes. Curr. Opin. Immunol.5, 423–427 (1993).
  • McCray PBJ, Bentley L. Human airway epithelia express a β-defensin. Am. J. Respir. Cell Mol. Biol.16, 343–349 (1997).
  • Larrick JW, Hirata M, Balint RF et al. Human CAP18: a novel antimirobial liposaccharide-binding protein. Infect. Immun.63, 1291–1297 (1995).
  • Wright JR. Immunomodulatory functions of surfactant. Physiol. Rev.77, 931–962 (1997).
  • Bivas-Benita M, Ottenhoff THM, Junginger HE et al. Pulmonary DNA vaccination: concepts, possibilities and perspectives. J. Control. Release107, 1–29 (2005).
  • Bezdicek P, Crystal RG. Pulmonary macrophages. In: The Lung: Scientific Foundations. Crystal RG, West JB (Eds). Lippincott-Raven Publishers, PA, USA 859–875 (1997).
  • Holt PG, Stumbles PA, McWilliam AS. Functional studies on dendritic cells in the respiratory tract and related mucosal tissues. J. Leukoc. Biol.66, 272–275 (1999).
  • Poulter LW. Pulmonary macrophages. In: Pulmonary Defences. Stockley RA (Ed.). John Wiley & Sons Ltd, Chichester, UK 77–92 (1997).
  • Banchereau J, Briere F, Caux C et al. Immunobiology of dendritic cells. Annu. Rev. Immunol.18, 767–811 (2000).
  • Bienenstock J, McDermott MR. Bronchus- and nasal-associated lymphoid tissues. Immunol. Rev.206, 22–31 (2005).
  • Moyron-Quiroz JE, Rangel-Moreno J, Kusser K et al. Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat. Med.10, 927–934 (2004).
  • Smith DJ, Bot S, Dellamary L et al. Evaluation of novel aerosol formulations designed for mucosal vaccination against influenza virus. Vaccine21, 2805–2812 (2003).
  • Hitchner SB, Reising G. Flock vacciantion for Newcastle disease by atomization of the B1 strain of virus. Proc. Am. Vet. Med. Assoc.89, 258–264 (1952).
  • Murphy D, van Alstine WG, Clark LK et al. Aerosol vaccination of pigs against Mycoplasma hyopneumoniae infection. Am. J. Vet. Res.54, 1874–1880 (1993).
  • Sharma JM. Introduction to poultry vaccines and immunity. Adv. Vet. Med.41, 481–494 (1999).
  • al-Tarcga B, Kojnok J, Varro C. Immunization of day-old chicks having maternally derived antibodies against infectious bronchitis: degree of protection as monitored by cilliary activity after intratracheal challenge. Acta Vet. Hung.39, 83–93 (1991).
  • Deuter A, Douthee DJ, Mockett APA. Folwpox virus: pathogenicity and vaccination of day-old chickens via the aerosol route. Res. Vet. Sci.50, 362–364 (1991).
  • Aleksandrov NI, Gefen NY. A method of aerogenic (inhalation) immunization and possibilities of improving it. Voenno-Med. Zhur.11 (1958).
  • Eigelsbach HT, Tigertt WD, Saslaw S et al. Live and killed tularemia vaccines: evaluation in animals and man. Proc. Army Sci. Conf. US Military Acad., West Point, NY1, 235–246 (1962).
  • Aleksandrov NI, Gefen NE, Garin NS et al. Experiment of mass aerogenic vacciantion of people against anthrax. Voenno-Med. Zhur.8, 27–32 (1959).
  • Rosenthal SR, McEnery JT, Raisys N. Aerogenic BCG vaccination against tuberculosis in animal and human subjects. J. Asthma Res.5(4), 309–323 (1968).
  • Ganguly R, Ogra PL, Regas S et al. Rubella immunization of volunteers via the respiratory tract. Infect. Immun.8(4), 497–502 (1973).
  • Shlyakhov EN. Allergy in anthrax. Kartia Moldoveniaska, Kishinev188 (1968).
  • Shlyakhov EN, Rubinstein E. Human live anthrax vaccine in the former USSR. Vaccine12, 727–730 (1994).
  • Shlyakhov E, Rubinstein E, Novikov I. Anthrax post-vaccinal cell-mediated immunity in humans: kinetics pattern. Vaccine15(6–7), 631–636 (1997).
  • Tarnvik A. Nature of protective immunity to Francisella tularensis. Rev. Infect. Dis.11, 440–451 (1989).
  • Hornick RB, Eigelsbach HT. Aerogenic immunization of man with live tularemia vaccine. Bacteriol. Rev.30(3), 532–538 (1966).
  • Cutts FT, Clements CJ, Bennett JV. Alternative routes of measles immunization. Biologicals25, 323–328 (1997).
  • Bennett JV, Fernadez de Castro J, Valdespino-Gomez JL et al. Aerosolized measles and measles–rubella vaccines induce better measles antibody booster responses than injected vaccines: randomized trial in Mexican school children. Bull. World Health Organ.80, 806–812 (2002).
  • Wong-Chew RM, Islas-Romero R, Garcia-Garcia MDL et al. Immunogenicity of aerosol measles vaccine given as the primary measles immunization to nine-month-old Mexican children. Vaccine24(5), 683–690 (2005).
  • Coates AL, Tipples G, Leung K et al. How many infective viral particles are necessary for successful mass measles immunization by aerosol? Vaccine24, 1578–1585 (2006).
  • Laube BL. The expanding role of aerosols in systemic drug delivery, gene therapy and vaccination. Res. Care50(9), 1161–1176 (2005).
  • LiCalsi C, Maniaci M, Christensen T et al. A powder formulation of measles vaccine for aerosol delivery. Vaccine19, 2629–2636 (2001).
  • Henao-Restrepo AM, Auguado MT. Measles aerosol immunization and its potential contribution to further reduce measles mortality worldwide. In: Respiratory Drug Delivery. Dalby RN, Bryon PR, Peart J et al. (Eds). Davis Healthcare International Publishing, IL, USA 65–72 (2006).
  • Sepulveda-Amor JS, Valdespino-Gomez JL, Garcia-Garcia MDL et al. A randomized trial demonstrating successful boosting responses following simultaneous aerosols of measles and rubella (MR) vaccine in school age children. Vaccine20, 2790–2795 (2002).
  • Lombry C, Marteleur A, Arras M et al. Local and systemic immune responses to intratracheal instillation of antigen and DNA vaccines in mice. Pharm. Res.21, 127–135 (2004).
  • Bivas-Benita M, van Meijgaarden KE, Franken KL et al. Pulmonary delivery of chitosan-DNA nanoparticles enhances the immunogenicity of a DNA vaccine encoding HLA-A*0201-restricted T cell spitopes of Mycobacterium tuberculosis. Vaccine22, 1609–1615 (2004).
  • Gupta PK, Hickey AJ. Contemporary approaches in aerosolized drug delivery to the lung. J. Control. Release17, 129–148 (1991).
  • Reynolds HY. Modulating airway defenses against microbes. Curr. Opin. Pulmonary Med.8(3), 154–165 (2002).
  • Leung K, Louca E, Coates AL. Comparison of breath-enhanced to breath-actuated nebulizers for rate, consistency, and efficiency. Chest126, 1619–1627 (2004).
  • Denyer J, Dyche T, Nikander K et al. Halolite: a novel liquid drug aerosol delivery system. Thorax52(Suppl. 6), A83 (1997).
  • Ganderton D. Targeted delivery of inhaled drugs: current challenges and future goals. J. Aerosol. Med.12(Suppl. 1), S3–S8 (1999).
  • Dolovich M. New propellant-free technologies under investigation. J. Aerosol. Med.12(Suppl. 1), S9–S17 (1999).
  • Colan JW, Shen H, Kuolee R et al. Aerosol, but not intradermal-immunization with the live vaccine strain of Francisella tularensis protects mice against subsequent aerosol challenge with a highly virulent type A strain of the pathogen by an α-β T cell- and interferon γ-dependent mechanism. Vaccine23, 2477–2485 (2005).
  • Cohn ML, Davis CL. Airborne immunization against tuberculosis. Science128, 1282–1283 (1958).
  • Lefford MJ. Induction and expression of immunity after BCG immunization. Infect. Immun.18(3), 646–653 (1977).
  • Schwarz LA, Johnson JL, Black M et al. Delivery of DNA-cationic liposome complexes by small-particle aerosol. Hum. Gene Ther.7, 731–741 (1996).
  • Newman SP, Weisz AWB, Talaee N et al. Improvement of drug delivery with breath actuated pressurised aerosol for patients with poor inhaler technique. Thorax46, 712–716 (1991).
  • Brown AR, George DW, Matteson DK. Vaccinator device for delivering propellant-driven aerosols of Streptococcus suis bacterin into the respiratory tracts of swine. Vaccine15(11), 1165–1173 (1997).
  • Hickey AJ. Pharmaceutical Inhalation Aerosol Technology (2nd Edition). Marcel Dekker, NY, USA (2004).
  • Tobyn M, Staniforth JN, Morton D et al. Active and intelligent inhaler device development. Int. J. Pharm.277, 31–37 (2004).
  • Middlebrook G. Immunological aspects of airborne infection: reactions to inhaled antigens. Bacterilog. Rev.25, 331–346 (1961).
  • Jemski JV, Walker JS. Aerosol vaccination of mice with a live, temperature-sensitive recombinant influenza virus. Infect. Immun.13(3), 818–824 (1976).
  • LiCalsi C, Christensen T, Bennett J et al. Dry powder inhalation as a potential delivery method for vaccines. Vaccine17, 1796–1803 (1999).
  • Hill M, Vaughan L, Dolovich M. Dose targeting for dry powder inhalers. In: Respiratory Drug Delivery. Dalby R, Bryon P, Farr S (Eds). Interpharm Press, Inc., IL, USA 197–208 (1996).
  • Degen WGJ, Jansen T, Schijns VEJC. Vaccine adjuvant technology: from mechanistic concepts to practical applications. Expert Rev. Vaccines2(2), 327–335 (2003).
  • Seong S-Y, Matzinger P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat. Rev. Immunol.4(6), 469–478 (2004).
  • Marciani DJ. Vaccine adjuvants: role and mechanisms of action in vaccine immunogenicity. Drug Discov. Today8(20), 934–943 (2003).
  • Martin T, De Donato S, Minutello A et al. Safety and immunogenicity of biocine adjuvanted influenza vaccine in elderly patients. In: 7th European Congress of Clinical Microbiology and Infectious Diseases (Vienna). Excerpta Medica, Confer. Press. Austria, March 26–30, 1995.
  • Kahn JO, Sinangil E, Baenziger J et al. Clinical and immunologic responses to human immunodeficiency virus (HIV) type I SF2 gp120 subunit vaccine combined with MF59 adjuvant with or without muramyl tripep-tide dipalmitoyl phosphatidylethanolamine in non-HIV-infected human volunteers. J. Infect. Dis.170, 1288–1291 (1994).
  • Giannini SL, Hanon E, Moris P et al. Enhanced humoral and memory B cellular immunity using HPV16/18 L1 VLP vaccine formulated with the MPL/aluminium salt combination (AS04) compared to aluminium salt only. Vaccine24, 5937–5949 (2006).
  • Couch RB. Nasal vaccination, Escherichia coli enterotoxin, and Bell’s palsy. N. Engl. J. Med.350(9), 860–861 (2004).
  • Mutsch M, Zhou W, Rhodes P et al. Use of inactivated intranasal influenza vaccine and the risk of Bell’s palsy in Switzerland. N. Engl. J. Med.350(9), 896–903 (2004).
  • Lycke N. From toxin to adjuvant: the rational design of a vaccine adjuvant vector, CTA1-DD/ISCOM. Cell Microbiol.6, 23–32 (2004).
  • Peppoloni S, Ruggiero M, Contomi M et al. Mutants of the Escherichia coli heat-labile entertoxin as safe and strong adjuvants for intranasal delivery of vaccines. Expert Rev. Vaccines2(2), 285–293 (2003).
  • Nakaike S, Takeshita K, Shiono M et al. Studies of d-penicillamine on strain variability and lymph node cellularity in adjuvant arthritis. Agents Actions16, 514–520 (1985).
  • Tebbey PW, Scheuer CA, Peek JA et al. Effective mucosal immunization against respiratory syncytial virus using purified F protein and a genetically detoxified cholera holotoxin, CT-E29H. Vaccine18, 2723–2734 (2000).
  • Cusi MG, Zurbriggen R, Correale P et al. Influenza virosome are an effective delivery system for respiratory syncytial virus-F antigen inducing humoral and cell-mediated immunity. Vaccine20, 3436–3442 (2002).
  • Schmolka IR. A comparison of block copolymer surfactant gels. Am. Oil Chem. Soc.68, 206–209 (1997).
  • Westerink MAJ, Smithson SL, Srivastava N et al. ProJuvant (Pluronic F127/chitosan) enhances the immune response to intranasally administered tetanus toxoid. Vaccine20, 711–723 (2002).
  • Evora C, Soriano I, Rogers RA et al. Relating the phagocytosis of microparticules by alveolar macrophages to surface chemistry: the effect of 1,2-dipalmitoylphosphatidylcholine. J. Control. Release51, 143–152 (1998).
  • Densmore CL. Polyethylenimine-based gene therapy by inhalation. Expert Opin. Biol. Ther.3(7), 1083–1092 (2003).
  • Raychaudhuri A, Rock KL. Fully mobilizing host defense: building better vaccines. Nat. Biotechnol.16, 1025–1031 (1998).
  • Gilbert BE, Wyde PR, Wilson SZ et al. Aerosol and intraperitoneal administration of ribavarin and ribavarin triacetate: pharmacokinetics and protection of mice against intracerebral infection with influenza A/WDN virus. Antimicrob. Agents Chemother.35, 1448–1453 (1991).
  • Parthasarathy R, Gilbert B, Mehta K. Aerosol delivery of liposomal all-trans retinoic acid to the lungs. Cancer Chemother. Pharmacol.43, 277–283 (1999).
  • Lu D, Hickey AJ. Liposomal dry powders as aerosols for pulmonary delivery of proteins. AAPS Pharm. Sci. Tech.6(4), E641–E648 (2005).
  • Niven RW, Speer M, Schreier H. Nebulization of liposomes. I. Effects of lipid compositions. Pharm. Res.9, 515–520 (1992).
  • Schreier H, Mobley WC, Concessio N et al. Formulation and in vitro performance of liposome powder aerosols. STP Pharma. Sci.4, 38–44 (1994).
  • Skalko-Basnet N, Pavelic Z, Becirevic-Lacan M. Liposomes containing drug and cyclodextrin prepared by the one-step spray-drying method. Drug Dev. Ind. Pharm.26, 1279–1284 (2000).
  • de Haan A, Groen G, Prop J et al. Mucosal immunoadjuvant activity of liposomes: role of alveolar macrophages. Immunology89(4), 488–493 (1996).
  • Griffiths GD. Liposomally-encapsulated ricin toxoid vaccine delivered intratracheally elicits a good immune response and protects against a lethal pulmonary dose of ricin toxin. Vaccine15, 1933–1939 (1997).
  • Griffiths GD, Philips GJ, Bailey SC. Comparison of the quality of protection elicited by toxoid and peptide liposomal vaccine formulations against ricin as assessed by markers of imflammation. Vaccine17, 2563–2568 (1999).
  • Burgener D, Huckriede A, Wilschut J. Virosomes as an antigen delivery system. J. Liposome Res.10, 329–338 (2000).
  • Lowell GH, Kaminski RW, Grate S et al. Intransal and intramuscular proteosome-staphylococcal enterotoxin B (SEB) toxoid vaccines: immunogenicity and efficacy against lethal SEB intoxication in mice. Infect. Immun.64(5), 1706–1713 (1996).
  • Lowell GH, Colleton C, Frost D et al. Immunogenicity and efficacy against lethal aerosol staphylococcal enterotoxin B challenge in monkeys by intramuscular and respiratory delivery of proteosome-toxoid vaccines. Infect. Immun.64(11), 4686–4693 (1996).
  • Bot A, Smith DJ, Bot S et al. Receptor-mediated targeting of spray-dried lipid particles coformulated with immunoglobin and loaded with a prototype vaccine. Pharm. Res.18(7), 971–979 (2001).
  • Saraf S, Mishra D, Asthana A et al. Lipid microparticles for mucosal immunization against hepeatitis B. Vaccine24(1), 45–56 (2006).
  • Flick-Smith HC, Eyles JE, Hebdon R et al. Mucosal or parenteral adminstration of microsphere-associated Bacillus anthracis protective antigen protects against anthrax infection in mice. Infect. Immun.70(4), 2022–2028 (2002).
  • Eyles JE, Sharp GJE, Williamson ED et al. Intranasal administration of poly-lactic acid microsphere co-encapsulated Yersinia pestis subunits confers protection from pneumonic plague in the mouse. Vaccine16(7), 698–707 (1998).
  • Eyles JE, Williamson ED, Spiers ID et al. Protection studies following bronchopulmonary and intramuscular imunization with Yersinia pestis F1 and V subunit vaccines coencapsulated in biodegradable microspheres: a comparison of efficacy. Vaccine18, 3266–3271 (2000).
  • Reddy ST, Swartz MA, Hubbell JA. Targeting dendritic cells with biomaterials: developing the next generation of vaccines. Trends Immunol.27(12), 573–579 (2006).
  • Avrameas A, McIlroy D, Hosmalin A et al. Expression of a mannose/fucose membrane lectin on human dendritic cells. Eur. J. Immunol.26, 394–400 (1996).
  • Copland MJ, Baird MA, Radesa T et al. Liposomal delivery of antigen to human dendritic cells. Vaccine21, 883–890 (2003).
  • Bivas-Benita M, Zwier R, Junginger HE et al. Non-invasive pulmonary aerosol delivery in mice by the endotracheal route. Eur. J. Pharm. Biopharm.61, 214–218 (2005).
  • Dailey LA, Kleemann E, Wittmar M et al. Surfactant-free, biodegradable nanoparticles for aerosol therapy based on the branched polyesters, DEAPA-PVAL-g-PLGA. Pharm. Res.20, 2011–2020 (2003).
  • Hadinoto K, Phanapavudhikul P, Kewu Z, Tan RB. Dry powder aerosol delivery of large hollow nanoparticulate aggregates as prospective carriers of nanoparticulate drugs: effects of phospholipids. Int. J. Pharm.333(1–2), 187–198 (2006).
  • Sham JO, Zhang Y, Finlay WH et al. Formulation and characterization of spray-dried powders containing nanoparticles for aerosol delivery to the lung. Int. J. Pharm.269, 457–467 (2004).
  • Tabata Y, Ikada Y. Macrophages phagocytosis of biodegradable microspheres composed of l-lactic acid/glycolic acid homo- and copolymers. J. Biomed. Mater. Res.22, 837–858 (1988).
  • Lemiale F, Kong WP, Akyurek LM et al. Enhanced mucosal immunoglobulin A response of intranasal adenoviral vector human immunodeficiency virus vaccine and localization in the central nervous system. J. Virol.77, 10078–10087 (2003).
  • Wang J, Thorson L, Stokes RW et al. Single mucosal, but not perenteral, immunization with recombinant adenoviral-based vaccine provides potent protection from pulmonary tuberculosis. J. Immunol.173, 6357–6365 (2004).
  • Liu M, Acres B, Balloul JM et al. Gene-based vaccines and immunotherapeutics. Proc. Natl Acad. Sci. USA101(Suppl. 2), 14567–14571 (2004).
  • Derrick SC, Yang AL, Morris SL. Vaccination with a Sindbis virus-based DNA vaccine expressing antigen 85B induces protective immunity against Mycobacterium tuberculosis. Infect. Immun.73(11), 7727–7735 (2005).
  • Singh M, Ugozzoli M, Briones M et al. The effect of CTAB concentration in cationic PLG microparticles on DNA adsorption and in vivo performance. Pharm. Res.20, 247–251 (2003).
  • Densmore CL, Orson FM, Xu B et al. Aerosol delivery of robust polyethyleneimine–DNA complexes for gene therapy and genetic immunization. Mol. Ther.1, 180–188 (2000).
  • Regnstrom K, Ragnarsson EG, Koping-Hoggard M et al. PEI-a potent, but not harmless, mucosal immunostimulator of mixed T-helper cell response and FasL-mediated cell death in mice. Gene Ther.10, 1575–1583 (2003).
  • Harcourt JL, Anderson LJ, Sullender W, Tripp RA. Pulmonary delivery of respiratory syncytial virus DNA vaccines using macroaggragated albumin particles. Vaccine22, 2248–2260 (2004).
  • Steckel H, Bolzen N. Alternative sugars as portential carriers for dry powder inhalations. Int. J. Pharm.270, 297–306 (2004).
  • Byron PR. Determinants of drug and polypeptide bio-availability from aerosols delivered to the lungs. Adv. Drug Deliv. Rev.5, 107–132 (1990).
  • Chan HK, Clark A, Gondal MM et al. Spray dried powders and powder blends of recombinant human deoxyribonuclease (rhDNase) for aerosol delivery. Pharm. Res.14, 431–437 (1997).
  • Lucas P, Anderson K, Staniforth JN. Protein deposition from dry powder inhalers: fine particle multiplets as performance modifiers. Pharm. Res.15, 562–569 (1998).
  • Shah SP, Misra A. Liposomal amikacin dry powder inhaler: effect of fines on in vitro performance. AAPS Pharm. Sci. Tech.5(4), E65 (2004).
  • Maa YF, Nguyen PA, Sweny T et al. Protein inhalation powders: spray drying vs spray freeze-drying. Pharm. Res.16, 249–254 (1999).
  • Kuo MC, Tep V, Yang B et al. Effect of hygroscopic growth inhibitors on dry powder aerosol performance and bioavailability. American Association of Pharmaceutical Scientists Meeting. Ontario, Canada, November 10–14, 2002.
  • Edwards DA, Hanes J, Caponetti G et al. Large porous particles for pulmonary drug delivery. Science276, 1868–1871 (1997).
  • Mohamed F, van der Walle CF. PLGA microcapsules with novel dimpled surfaces for pulmonary delivery of DNA. Int. J. Pharm.311, 97–107 (2006).
  • Rottem M, Shoenfeld Y. Vaccination and allergy. Curr. Opin. Otolaryngol. Head Neck Surg.12(3), 223–231 (2004).
  • Suman JD, Laube BL, Dalby RN. Comparison of nasal deposition and clearance of aerosol generated by nebulizer and an aqueous spray pump. Pharm. Res.16(10), 1648–1652 (1999).
  • Alpar HO, Bramwell VW. Current status of DNA vaccines and their route of adminstration. Crit. Rev. Ther. Drug Carr. Syst.19, 307–383 (2002).
  • Mikszta JA, Sullivan VJ, Dean C et al. Protective immunization against inhalational antrax: a comparison of minimally invasive delivery platforms. J. Infect. Dis.191, 278–288 (2005).
  • Hu KF, Merza EM, Akerblom L et al. The immunostimulating complex is an efficient mucosal delivery system for respiratory syncytial virus envelope antigens inducing high local and systemic antibody responses. Clin. Exp. Immunol.113, 235–243 (1998).
  • Borsutzky S, Fiorelli V, Ebensen T et al. Efficient mucosal delivery of the HIV-1 Tat protein using the synthetic lipopeptide MALP-2 as adjuvant. Eur. J. Immunol.33, 1548–1556 (2003).
  • Wimer-Mackin S, Hinchcliffe M, Petrie CR et al. An intranasal vaccine targeting both the Bacillus anthracis toxin and bacterium provides protection against aerosol spore challenge in rabbits. Vaccine24(18), 3953–3963 (2006).
  • Falero-Diaz G, Challacombe S, Bamerjee D et al. Intranasal vaccination of mice against infection with Mycoacterium tuberculosis. Vaccine18, 3223–3229 (2000).
  • Boyaka PN, Tafaro A, Fischer R et al. Effective mucosal immunity to anthrax: neutralizing antibodies and Th cell response following nasal immunization with protective antigen. J. Immunol.170, 5636–5643 (2003).
  • Tumpey TM, Renshaw M, Clements JD et al. Mucosal delivery of inactivated influenza vaccine induces B cell dependent heterosubtypic cross-protection against lethal influenza A H5N1 virus infection. J. Virology75(11), 5141–5150 (2001).
  • de Haan A, Tomee JFC, Huchshorn JP et al. Liposomes as an immunoadjuvant system for stimulation of mucosal and systemic antibody responses against inactivated measlese virus administered intranasally to mice. Vaccine13, 1320–1324 (1995).
  • de Haan A, Geerigs HJ, Huchshorn JP et al. Mucosal immunoadjuvant activity of liposomes: induction of systemic IgG and secretory IgA in mice by intranasal immunization with an influenza subunit vaccine and coadministered liposomes. Vaccine13, 1320–1324 (1995).
  • Lowell GH, Kaminski RW, Grate S et al. Intranasal and intramuscular proteosome-staphylococcal enterotoxin B (SEB) toxoid vaccines: immunogenicity and efficacy against lethal SEB intoxication in mice. Infect. Immun.64(5), 1706–1713 (1996).
  • Carpenter ZC, Williams ED, Eyles JE. Mucosal delivery of microparticle encapsulated ESAT-6 induces robust cell-mediated responses in the lung milieu. J. Control Release104, 67–77 (2005).
  • Greenway TE, Eldridge JH, Ludwig G et al. Induction of protective immune responses against venezuelan equine encephalitis (VEE) virus aerosol challenge with microsencapsulated VEE virus vaccine. Vaccine15(13), 1314–1323 (1998).
  • Cahill ES, O’Hagan DT, Illum L et al. Immune responses and protection against Bordetella pertussis infection after intranasal immunization of mice with filamentous haemagglutinin in solution or incorporated in biodegradable microparticles Vaccine13(5), 455–462 (1995).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.