1,129
Views
109
CrossRef citations to date
0
Altmetric
Review

Use of viral vectors for the development of vaccines

, &
Pages 255-266 | Published online: 09 Jan 2014

References

  • Girard MP, Osmanov SK, Kieny MP. A review of vaccine research and development: the human immunodeficiency virus (HIV). Vaccine24, 4062–4081 (2006).
  • Girard MP, Reed ZH, Friede M et al. A review of human vaccine research and development: malaria. Vaccine25, 1567–1580 (2007).
  • Glück R, Burri KG, Metcalfe I. Adjuvant and antigen delivery properties of virosomes. Curr. Drug Deliv.4, 395–400 (2005).
  • Duerr A, Wasserheit JN, Corey L. HIV vaccines: new frontiers in vaccine development. Clin. Infect. Dis.43, 500–511 (2006).
  • Dudek T, Knipe DM. Replication-defective viruses as vaccines and vaccine vectors. Virology344, 230–239 (2006).
  • Tangy F, Naim HY. Live attenuated measles vaccine as a potential multivalent pediatric vaccination vector. Viral Immunol.18, 317–326 (2005).
  • Lorin C, Mollet L, Delebecque F et al. A single injection of recombinant measles virus vaccines expressing human immunodeficiency virus (HIV) type 1 clade B envelope glycoproteins induces neutralizing antibodies and cellular immune responses to HIV. J. Virol.78, 146–157 (2004).
  • Gans H, DeHovitz R, Forghani B, Beeler J, Maldonado Y, Arvin AM. Measles and mumps vaccination as a model to investigate the developing immune system: passive and active immunity during the first year of life. Vaccine21, 3398–3405 (2003).
  • Dilraj A, Cutts FT, de Castro JF et al. Response to different measles vaccine strains given by aerosol and subcutaneous routes to schoolchildren: a randomised trial. Lancet355, 798–803 (2000).
  • Bennett JV, Fernandez de Castro J, Valdespino-Gomez JL et al. Aerosolized measles and measles–rubella vaccines induce better measles antibody booster responses than injected vaccines: randomized trials in Mexican schoolchildren. Bull. World Health Organ.80, 806–812 (2002).
  • Spearman P. Current progress in the development of HIV vaccines. Curr. Pharm. Des.12, 1147–1167 (2006).
  • Souza AP, Haut L, Reyes-Sandoval A, Pinto AR. Recombinant viruses as vaccines against viral diseases. Braz. J. Med. Biol. Res.38, 509–522 (2005).
  • Vajdy M, Singh M. Intranasal delivery of vaccines against HIV. Expert. Opin. Drug Deliv.3, 247–259 (2006).
  • Young LS, Searle PF, Onion D, Mautner V. Viral gene therapy strategies: from basic science to clinical application. J. Pathol.208, 299–318 (2006).
  • Excler JL. AIDS vaccine development: perspectives, challenges & hopes. Indian J. Med. Res.121, 568–581 (2005).
  • Sauter SL, Rahman A, Muralidhar G. Non-replicating viral vector-based AIDS vaccines: interplay between viral vectors and the immune system. Curr. HIV Res.3, 157–181 (2005).
  • Zuniga A, Wang Z, Liniger M et al. Attenuated measles virus as a vaccine vector. Vaccine DOI:10.1016/j.vaccine.2007.01.064 (2007) (Epub ahead of print).
  • Davison AJ, Benko M, Harrach B. Genetic content and evolution of adenoviruses. J. Gen. Virol.84, 2895–2908 (2003).
  • Relph KL, Harrington KJ, Pandha H. Adenoviral strategies for the gene therapy of cancer. Semin. Oncol.32, 573–582 (2005).
  • Goncalves MA, de Vries AA. Adenovirus: from foe to friend. Rev. Med. Virol.16, 167–186 (2006).
  • Fallaux FJ, Bout A, van der Velde I et al. New helper cells and matched early region 1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses. Hum. Gene Ther.9, 1909–1917 (1998).
  • Shiver JW, Fu TM, Chen L et al. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature415, 331–335 (2002).
  • Shiver JW, Emini EA. Recent advances in the development of HIV-1 vaccines using replication-incompetent adenovirus vectors. Annu. Rev. Med.55, 355–372 (2004).
  • Casimiro DR, Chen L, Fu TM et al. Comparative immunogenicity in rhesus monkeys of DNA plasmid, recombinant vaccinia virus, and replication-defective adenovirus vectors expressing a human immunodeficiency virus type 1 gag gene. J. Virol.77, 6305–6313 (2003).
  • Santra S, Seaman MS, Xu L et al. Replication-defective adenovirus serotype 5 vectors elicit durable cellular and humoral immune responses in nonhuman primates. J. Virol.79, 6516–6522 (2005).
  • Barouch DH. Rational design of gene-based vaccines. J. Pathol.208, 283–289 (2006).
  • Santosuosso M, McCormick S, Xing Z. Adenoviral vectors for mucosal vaccination against infectious diseases. Viral Immunol.18, 283–291 (2005).
  • Yang ZY, Wyatt LS, Kong WP, Moodie Z, Moss B, Nabel GJ. Overcoming immunity to a viral vaccine by DNA priming before vector boosting. J. Virol.77, 799–803 (2003).
  • Barouch DH, Pau MG, Custers JH et al. Immunogenicity of recombinant adenovirus serotype 35 vaccine in the presence of pre-existing anti-Ad5 immunity. J. Immunol.172, 6290–6297 (2004).
  • Lemckert AA, Sumida SM, Holterman L et al. Immunogenicity of heterologous prime–boost regimens involving recombinant adenovirus serotype 11 (Ad11) and Ad35 vaccine vectors in the presence of anti-Ad5 immunity. J. Virol.79, 9694–9701 (2005).
  • Roberts DM, Nanda A, Havenga MJ et al. Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity. Nature441, 239–243 (2006).
  • Gomez-Roman VR, Grimes GJ Jr, Potti GK et al. Oral delivery of replication-competent adenovirus vectors is well tolerated by SIV- and SHIV-infected rhesus macaques. Vaccine24, 5064–5072 (2006).
  • Bangari DS, Mittal SK. Development of nonhuman adenoviruses as vaccine vectors. Vaccine24, 849–862 (2006).
  • Arlen PM, Kaufman HL, DiPaola RS. Pox viral vaccine approaches. Semin. Oncol.32, 549–555 (2005).
  • Mastrangelo MJ, Eisenlohr LC, Gomella L, Lattime EC. Poxvirus vectors: orphaned and underappreciated. J. Clin. Invest.105, 1031–1034 (2000).
  • Robinson HL. New hope for an AIDS vaccine. Nat. Rev. Immunol.2, 239–250 (2002).
  • Im EJ, Hanke T. MVA as vector for vaccines against HIV-1. Expert Rev. Vaccines3, 89–97 (2004).
  • Drexler I, Staib C, Sutter G. Modified vaccinia virus Ankara as antigen delivery system: how can we best use its potential? Curr. Opin. Biotechnol.6, 506–512 (2004).
  • Strauss JH, Strauss EG. The alphaviruses: gene expression, replication, and evolution. Microbiol. Rev.58, 491–562 (1994).
  • Schlesinger S, Dubensky TW. Alphavirus vectors for gene expression and vaccines. Curr. Opin. Biotechnol.10, 434–439 (1999).
  • Polo JM, Belli BA, Driver DA et al. Stable alphavirus packaging cell lines for Sindbis virus and Semliki Forest virus-derived vectors. Proc. Natl Acad. Sci. USA96, 4598–4603 (1999).
  • Liljestrom P, Garoff H. A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology (NY)9, 1356–1361 (1991).
  • Tubulekas I, Berglund P, Fleeton M, Liljestrom P. Alphavirus expression vectors and their use as recombinant vaccines: a minireview. Gene190, 191–195 (1997).
  • MacDonald GH, Johnston RE. Role of dendritic cell targeting in Venezuelan equine encephalitis virus pathogenesis. J. Virol.74, 914–922 (2000).
  • Gardner JP, Frolov I, Perri S et al. Infection of human dendritic cells by a Sindbis virus replicon vector is determined by a single amino acid substitution in the E2 glycoprotein. J. Virol.74, 11849–11857 (2000).
  • Lundstrom K. Alphavirus vectors for vaccine production and gene therapy. Expert Rev. Vaccines2, 447–459 (2003).
  • Perri S, Greer CE, Thudium K et al. An alphavirus replicon particle chimera derived from Venezuelan equine encephalitis and sindbis viruses is a potent gene-based vaccine delivery vector. J. Virol.77, 10394–10403 (2003).
  • Davis NL, Caley IJ, Brown KW et al. Vaccination of macaques against pathogenic simian immunodeficiency virus with Venezuelan equine encephalitis virus replicon particles. J. Virol.74, 371–378 (2000).
  • Romano G. Current development of adeno-associated viral vectors. Drug News Perspect.18, 311–316 (2005).
  • Li C, Bowles DE, van Dyke T, Samulski RJ. Adeno-associated virus vectors: potential applications for cancer gene therapy. Cancer Gene Ther.12, 913–925 (2005).
  • Romano G. Gene transfer in experimental medicine. Drug News Perspect.16, 267–276 (2003).
  • Romano G. The controversial role of adenoviral-derived vectors in gene therapy programs: where do we stand? Drug News Perspect.19, 99–106 (2006).
  • Clark KR. Recent advances in recombinant adeno-associated virus vector production. Kidney Int.61(Suppl. 1), 9–15 (2002).
  • Morenweiser R. Downstream processing of viral vectors and vaccines. Gene Ther.12(Suppl. 1), S103–S110 (2005).
  • Merten OW, Geny-Fiamma C, Douar AM. Current issues in adeno-associated viral vector production. Gene Ther.12(Suppl. 1), S51–S61 (2005).
  • Johnson PR, Schnepp BC, Connell MJ et al. Novel adeno-associated virus vector vaccine restricts replication of simian immunodeficiency virus in macaques. J. Virol.79, 955–965 (2005).
  • Hilleman MR. Current overview of the pathogenesis and prophylaxis of measles with focus on practical implications. Vaccine20, 651–665 (2001).
  • Radecke F, Spielhofer P, Schneider H et al. Rescue of measles viruses from cloned DNA. EMBO J.14, 5773–5784 (1995).
  • Radecke F, Billeter MA. Reverse genetics meets the nonsegmented negative-strand RNA viruses. Rev. Med. Virol.7, 49–63 (1997).
  • Cathomen T, Naim HY, Cattaneo R. Measles viruses with altered glycoprotein cytoplasmic tails retain efficient budding and gain cell fusion competence. J. Virol.72, 1224–1234 (1998).
  • Spielhofer P, Bachi T, Fehr T et al. Chimeric measles viruses with a foreign envelope. J. Virol.72, 2150–2159 (1998).
  • Naim HY, Ehler E, Billeter MA. Measles virus matrix protein specifies virus budding and envelope glycoprotein sorting in polarized epithelial cells. EMBO J.19, 3576–3585 (2000).
  • Neumeister C, Nanan R, Cornu T et al. Measles virus and canine distemper virus target proteins into a TAP independent MHC class I-restricted antigen-processing pathway. J. Gen. Virol.82, 441–447 (2001).
  • Singh M, Cattaneo R, Billeter MA. A recombinant measles virus expressing hepatitis B virus surface antigen induces humoral immune responses in genetically modified mice. J. Virol.73, 4823–4828 (1999).
  • Wang Z, Hangartner L, Cornu TI et al. Recombinant measles viruses expressing heterologous antigens of mumps and simian immunodeficiency viruses. Vaccine19, 2329–2336 (2001).
  • Despres P, Combredet C, Frenkiel MP, Lorin C, Brahic M, Tangy F. Live measles vaccine expressing the secreted form of the West Nile virus envelope glycoprotein protects against West Nile virus encephalitis. J. Infect. Dis.191, 207–214 (2005).
  • Griffin DE. Immune responses during measles virus infection. Curr. Top. Microbiol. Immunol.117–134 (1995).
  • Lorin C, Delebecque F, Labrousse V et al. A recombinant live attenuated measles vaccine vector primes effective HLA-A0201-restricted cytotoxic T lymphocytes and broadly neutralizing antibodies against HIV-1 conserved epitopes. Vaccine23, 4463–4472 (2005).
  • Schmitt B. Vesicular stomatitis. Vet. Clin. North Am. Food Anim. Pract.18, 453–459 (2002).
  • Quiroz E, Moreno N, Peralta PH, Tesh RB. A human case of encephalitis associated with vesicular stomatitis virus (Indiana serotype) infection. Am. J. Trop. Med. Hyg.39, 312–314 (1988).
  • Roberts A, Buonocore L, Price R, Forman J, Rose JK. Attenuated vesicular stomatitis viruses as vaccine vectors. J. Virol.73, 3723–3732 (1999).
  • Publicover J, Ramsburg E, Rose JK. Characterization of nonpathogenic, live, viral vaccine vectors inducing potent cellular immune responses. J. Virol.78(17), 9317–9324 (2004).
  • Roberts A, Reuter JD, Wilson JH et al. Complete protection from papillomavirus challenge after a single vaccination with a vesicular stomatitis virus vector expressing high levels of L1 protein. J. Virol.78(6), 3196–3199 (2004).
  • Rose NF, Marx PA, Luckay A et al. An effective AIDS vaccine based on live attenuated vesicular stomatitis virus recombinants. Cell106, 539–549 (2001).
  • Publicover J, Ramsburg E, Rose JK. A single-cycle vaccine vector based on vesicular stomatitis virus can induce immune responses comparable to those generated by a replication-competent vector. J. Virol.79, 13231–13238 (2005).
  • Egan MA, Chong SY, Rose NF et al. Immunogenicity of attenuated vesicular stomatitis virus vectors expressing HIV type 1 Env and SIV Gag proteins: comparison of intranasal and intramuscular vaccination routes. AIDS Res. Hum. Retroviruses20, 989–1004 (2004).
  • Jones SM, Feldmann H, Stroher U et al. Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses. Nat. Med.11, 786–790 (2005).
  • Reiss CS, Plakhov IV, Komatsu T. Viral replication in olfactory receptor neurons and entry into the olfactory bulb and brain. Ann. NY Acad. Sci.855, 751–761 (1998).
  • Chen ST, Iida A, Guo L, Friedmann T, Yee JK. Generation of packaging cell lines for pseudotyped retroviral vectors of the G protein of vesicular stomatitis virus by using a modified tetracycline inducible system. Proc. Natl Acad. Sci. USA93(19), 10057–10062 (1996).
  • Johnson JE, Nasar F, Coleman JW et al. Neurovirulence properties of recombinant vesicular stomatitis virus vectors in non-human primates. Virology360(1), 36–49 (2006).
  • Bukreyev A, Skiadopoulos MH, Murphy BR et al. Nonsegmented negative-strand viruses as vaccine vectors. J. Virol.80(21), 10293–10306 (2006).
  • Schnell MJ. Viral vectors as potential HIV-1 vaccines. FEMS Microbiol. Lett.200(2), 123–129 (2001).
  • Takeda A, Igarashi H, Nakamura H et al. Protective efficacy of an AIDS vaccine, a single DNA priming followed by a single booster with a recombinant replication-defective Sendai virus vector, in a macaque AIDS model. J. Virol.77(17), 9710–9715 (2003).
  • Matano T, Kobayashi M, Igarashi H et al. Cytotoxic T lymphocyte-based control of simian immunodeficiency virus replication in a preclinical AIDS vaccine trial. J. Exp. Med.199(12), 1709–1718 (2004).
  • Slobod KS, Shenep JL, Lujan-Zilbermann J et al. Safety and immunogenicity of intranasal murine parainfluenza virus type 1 (Sendai virus) in healthy human adults. Vaccine22(23–24), 3182–3186 (2004).
  • Monath TP. Yellow fever vaccine. Expert Rev. Vaccines4(4), 553–574 (2005).
  • Monath TP, Guirakhoo F, Nichols R et al. Chimeric live, attenuated vaccine against Japanese encephalitis (ChimeriVax-JE): Phase II clinical trials for safety and immunogenicity, effect of vaccine dose and schedule, and memory response to challenge with inactivated Japanese encephalitis antigen. J. Infect. Dis.188, 1213–1230 (2003).
  • Arroyo J, Miller C, Catalan J et al. ChimeriVax-West Nile virus live-attenuated vaccine: preclinical evaluation of safety, immunogenicity, and efficacy. J. Virol.78, 12497–12507 (2004).
  • Brandler S, Brown N, Ermak TH et al. Replication of chimeric yellow fever virus-dengue serotype 1–4 virus vaccine strains in dendritic and hepatic cells. Am. J. Trop. Med. Hyg.72, 74–81 (2005).
  • Bredenbeek PJ, Molenkamp R, Spaan WJ et al. A recombinant Yellow fever 17D vaccine expressing Lassa virus glycoproteins. Virology345, 299–304 (2006).
  • Bonaldo MC, Garratt RC, Caufour PS et al. Surface expression of an immunodominant malaria protein B cell epitope by yellow fever virus. J. Mol. Biol.315, 873–885 (2002).
  • Tao D, Barba-Spaeth G, Rai U et al. Yellow fever 17D as a vaccine vector for microbial CTL epitopes: protection in a rodent malaria model. J. Exp. Med.201, 201–209 (2005).
  • Bonaldo MC, Garratt RC, Freire MS, Galler R. Expression of foreign protein epitopes at the surface of recombinant yellow fever 17D viruses based on three-dimensional modeling of its envelope protein. Cell Biochem. Biophys.44, 313–324 (2006).
  • Li S, Locke E, Bruder J et al. Viral vectors for malaria vaccine development. Vaccine25(14), 2567–2574 (2007).
  • Tang S, van Rij R, Silvera D, Andino R. Toward a poliovirus-based simian immunodeficiency virus vaccine: correlation between genetic stability and immunogenicity. J. Virol.71, 7841–7850 (1997).
  • Lee SG, Kim DY, Hyun BH, Bae YS. Novel design architecture for genetic stability of recombinant poliovirus: the manipulation of G/C contents and their distribution patterns increases the genetic stability of inserts in a poliovirus-based RPS-Vax vector system. J. Virol.76, 1649–1662 (2002).
  • Crotty S, Lohman BL, Lu FX, Tang S, Miller CJ, Andino R. Mucosal immunisation of cynomolgus macaques with two serotypes of live poliovirus vectors expressing simian immunodeficiency virus antigens: stimulation of humoral, mucosal, and cellular immunity. J. Virol.73, 9485–9495 (1999).
  • Crotty S, Andino R. Poliovirus vaccine strains as mucosal vaccine vectors and their potential use to develop an AIDS vaccine. Adv. Drug Deliv. Rev.56, 835–852 (2004).
  • Crotty S, Miller CJ, Lohman BL et al. Protection against simian immunodeficiency virus vaginal challenge by using Sabin poliovirus vectors. J. Virol.75, 7435–7452 (2001).
  • Mandl S, Hix L, Andino R. Preexisting immunity to poliovirus does not impair the efficacy of recombinant poliovirus vaccine vectors. J. Virol.75, 622–627 (2001).
  • Marconi P, Krisky D, Oligino T et al. Replication-defective herpes simplex virus vectors for gene transfer in vivo. Proc. Natl Acad. Sci. USA93, 11319–11320 (1996).
  • Roizman B, Sears AE. Human herpes viruses and their replication. In: Fields Virology (3rd Edition). Fields BN, Knipe DM, Howley PM (Eds). Lippincott-Raven, PA, USA 2231–2296 (1996).
  • Marconi P, Simonato M, Zucchini S et al. Replication-defective herpes simplex virus vectors for neurotrophic factor gene transfer in vitro and in vivo. Gene Ther.6, 904–912 (1999).
  • Glorioso JC, DeLuca NA, Fink DJ. Development and application of herpes simplex virus vectors for human gene therapy. Annu. Rev. Microbiol.49, 675–710 (1995).
  • Spaete RR, Frenkel N. The herpes simplex virus amplicon: a new eucaryotic defective-virus cloning-amplifying vector. Cell30, 295–304 (1982).
  • Shah K, Jacobs A, Breakefield XO, Weissleder R. Molecular imaging of gene therapy for cancer. Gene Ther.11, 1175–1187 (2004).
  • Jerusalinsky D, Epstein AL. Amplicon vectors as outstanding tools to study and modify cognitive functions. Curr. Gene Ther.6, 351–360 (2006).
  • Kennedy PG. Potential use of herpes simplex virus (HSV) vectors for gene therapy of neurological disorders. Brain120(Pt 7), 1245–1259 (1997).
  • Hocknell PK, Wiley RD, Wang X et al. Expression of human immunodeficiency virus type 1 gp120 from herpes simplex virus type 1-derived amplicons results in potent, specific, and durable cellular and humoral immune responses. J. Virol.76, 5565–5580 (2002).
  • Guffey MB, Parker JN, Luckett WS Jr et al. Engineered herpes simplex virus expressing bacterial cytosine deaminase for experimental therapy of brain tumors. Cancer Gene Ther.14(1), 45–56 (2007).
  • Kessler J, Muller J, Weir JP. Expression of the human immunodeficiency virus gag gene products by a replication-incompetent herpes simplex virus vector. Virus Res.54, 31–38 (1998).
  • Bozac A, Berto E, Vasquez F et al. Expression of human immunodeficiency virus type 1 tat from a replication-deficient herpes simplex type 1 vector induces antigen-specific T cell responses. Vaccine24, 49–50 (2006).
  • Kaur A, Sanford HB, Garry D et al. Ability of herpes simplex virus vectors to boost immune responses to DNA vectors and to protect against challenge by simian immunodeficiency virus. Virology357(2), 199–214 (2007).
  • Watanabe D, Brockman MA, Ndung’u T et al. Properties of a herpes simplex virus multiple immediate-early gene-deleted recombinant as a vaccine vector. Virology357(2), 186–198 (2006).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.