210
Views
41
CrossRef citations to date
0
Altmetric
Special Focus Issue: Cancer Vaccines - Review

Promises and challenges for the development of Listeria monocytogenes-based immunotherapies

&
Pages 1069-1084 | Published online: 09 Jan 2014

References

  • Katano M, Morisaki T. The past, the present and future of the OK-432 therapy for patients with malignant effusions. Anticancer Res.18(5D), 3917–3925 (1998).
  • Brandau S, Suttmann H. Thirty years of BCG immunotherapy for non-muscle invasive bladder cancer: a success story with room for improvement. Biomed. Pharmacother.61(6), 299–305 (2007).
  • Trinchieri G, Sher A. Cooperation of Toll-like receptor signals in innate immune defence. Nat. Rev. Immunol.7(3), 179–190 (2007).
  • O’Neill LA. How Toll-like receptors signal: what we know and what we don’t know. Curr. Opin. Immunol.18(1), 3–9 (2006).
  • Eisenbarth SC, Colegio OR, O’Connor W, Sutterwala FS, Flavell RA. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature453(7198), 1122–1126 (2008).
  • Horsmans Y, Berg T, Desager JP et al. Isatoribine, an agonist of TLR7, reduces plasma virus concentration in chronic hepatitis C infection. Hepatology42(3), 724–731 (2005).
  • Luo Y, Yamada H, Chen X et al. Recombinant Mycobacterium bovis bacillus Calmette–Guerin (BCG) expressing mouse IL-18 augments Th1 immunity and macrophage cytotoxicity. Clin. Exp. Immunol.137(1), 24–34 (2004).
  • King I, Bermudes D, Lin S et al. Tumor-targeted Salmonella expressing cytosine deaminase as an anticancer agent. Hum. Gene Ther.13(10), 1225–1233 (2002).
  • Pawelek JM, Low KB, Bermudes D. Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res.57(20), 4537–4544 (1997).
  • Vassaux G, Nitcheu J, Jezzard S, Lemoine NR. Bacterial gene therapy strategies. J. Pathol.208(2), 290–298 (2006).
  • Pardoll D, Allison J. Cancer immunotherapy: breaking the barriers to harvest the crop. Nat. Med.10(9), 887–892 (2004).
  • Rogers HW, Unanue ER. Neutrophils are involved in acute, nonspecific resistance to Listeria monocytogenes in mice. Infect. Immun.61(12), 5090–5096 (1993).
  • Pamer EG. Immune responses to Listeria monocytogenes. Nat. Rev. Immunol.4(10), 812–823 (2004).
  • Zenewicz LA, Shen H. Innate and adaptive immune responses to Listeria monocytogenes: a short overview. Microbes Infect.9(10), 1208–1215 (2007).
  • Wallace ME, Smyth MJ. The role of natural killer cells in tumor control – effectors and regulators of adaptive immunity. Springer Semin. Immunopathol.27(1), 49–64 (2005).
  • Lanier LL. Evolutionary struggles between NK cells and viruses. Nat. Rev. Immunol.8(4), 259–268 (2008).
  • Bahjat KS, Prell RA, Allen HE et al. Activation of immature hepatic NK cells as immunotherapy for liver metastatic disease. J. Immunol.179(11), 7376–7384 (2007).
  • Shen H, Kanoh M, Maruyama S et al. Attenuated Listeria infection activates natural killer cell cytotoxicity to regress melanoma growth in vivo. Microbiol. Immunol.52(2), 107–117 (2008).
  • Yoshimura K, Jain A, Allen HE et al. Selective targeting of antitumor immune responses with engineered live-attenuated Listeria monocytogenes. Cancer Res.66(2), 1096–1104 (2006).
  • Pasare C, Medzhitov R. Toll-dependent control mechanisms of CD4 T cell activation. Immunity21(5), 733–741 (2004).
  • Le Bon A, Tough DF. Type I interferon as a stimulus for cross-priming. Cytokine Growth Factor Rev.19(1), 33–40 (2008).
  • Le Bon A, Tough DF. Links between innate and adaptive immunity via type I interferon. Curr. Opin. Immunol.14(4), 432–436 (2002).
  • Beauregard KE, Lee KD, Collier RJ, Swanson JA. pH-dependent perforation of macrophage phagosomes by listeriolysin O from Listeria monocytogenes. J. Exp. Med.186(7), 1159–1163 (1997).
  • O’Riordan M, Yi CH, Gonzales R, Lee KD, Portnoy DA. Innate recognition of bacteria by a macrophage cytosolic surveillance pathway. Proc. Natl Acad. Sci. USA99(21), 13861–13866 (2002).
  • Giedlin MA, Cook DN, Dubensky TW Jr. Vesicular stomatitis virus: an exciting new therapeutic oncolytic virus candidate for cancer or just another chapter from Field’s Virology? Cancer Cell4(4), 241–243 (2003).
  • Auerbuch V, Brockstedt DG, Meyer-Morse N, O’Riordan M, Portnoy DA. Mice lacking the type I interferon receptor are resistant to Listeria monocytogenes. J. Exp. Med.200(4), 527–533 (2004).
  • Carrero JA, Calderon B, Unanue ER. Type I interferon sensitizes lymphocytes to apoptosis and reduces resistance to Listeria infection. J. Exp. Med.200(4), 535–540 (2004).
  • O’Connell RM, Saha SK, Vaidya SA et al. Type I interferon production enhances susceptibility to Listeria monocytogenes infection. J. Exp. Med.200(4), 437–445 (2004).
  • Yang J, Yang M, Htut TM et al. Epstein–Barr virus-induced gene 3 negatively regulates IL-17, IL-22 and RORgt. Eur. J. Immunol.38(5), 1204–1214 (2008).
  • Carrero JA, Calderon B, Unanue ER. Lymphocytes are detrimental during the early innate immune response against Listeria monocytogenes. J. Exp. Med.203(4), 933–940 (2006).
  • Wille-Reece U, Flynn BJ, Lore K et al. HIV Gag protein conjugated to a Toll-like receptor 7/8 agonist improves the magnitude and quality of Th1 and CD8+ T cell responses in nonhuman primates. Proc. Natl Acad. Sci. USA102(42), 15190–15194 (2005).
  • Napolitani G, Rinaldi A, Bertoni F, Sallusto F, Lanzavecchia A. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat. Immunol.6(8), 769–776 (2005).
  • Mackaness GB. Cellular resistance to infection. J. Exp. Med.116, 381–406 (1962).
  • Bahjat KS, Liu W, Lemmens EE et al. Cytosolic entry controls CD8+ T cell potency during bacterial infection. Infect. Immun.74(11), 6387–6397 (2006).
  • Hamilton SE, Badovinac VP, Khanolkar A, Harty JT. Listeriolysin O-deficient Listeria monocytogenes as a vaccine delivery vehicle: antigen-specific CD8 T cell priming and protective immunity. J. Immunol.177(6), 4012–4020 (2006).
  • Lauvau G, Vijh S, Kong P et al. Priming of memory but not effector CD8 T cells by a killed bacterial vaccine. Science294(5547), 1735–1739 (2001).
  • Jung S, Unutmaz D, Wong P et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity17(2), 211–220 (2002).
  • Muraille E, Giannino R, Guirnalda P et al. Distinct in vivo dendritic cell activation by live versus killed Listeria monocytogenes. Eur. J. Immunol.35(5), 1463–1471 (2005).
  • Belz GT, Smith CM, Eichner D et al. Cutting edge: conventional CD8 a+ dendritic cells are generally involved in priming CTL immunity to viruses. J. Immunol.172(4), 1996–2000 (2004).
  • den Haan JM, Lehar SM, Bevan MJ. CD8+ but not CD8- dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med.192(12), 1685–1696 (2000).
  • Schnorrer P, Behrens GM, Wilson NS et al. The dominant role of CD8+ dendritic cells in cross-presentation is not dictated by antigen capture. Proc. Natl Acad. Sci. USA103(28), 10729–10734 (2006).
  • Belz GT, Shortman K, Bevan MJ, Heath WR. CD8a+ dendritic cells selectively present MHC class I-restricted noncytolytic viral and intracellular bacterial antigens in vivo. J. Immunol.175(1), 196–200 (2005).
  • Villadangos JA, Heath WR. Life cycle, migration and antigen presenting functions of spleen and lymph node dendritic cells: limitations of the Langerhans cells paradigm. Semin. Immunol.17(4), 262–272 (2005).
  • Allan RS, Waithman J, Bedoui S et al. Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity25(1), 153–162 (2006).
  • Neuenhahn M, Kerksiek KM, Nauerth M et al. CD8a+ dendritic cells are required for efficient entry of Listeria monocytogenes into the spleen. Immunity25(4), 619–630 (2006).
  • Warren SE, Mao DP, Rodriguez AE, Miao EA, Aderem A. Multiple Nod-like receptors activate caspase 1 during Listeria monocytogenes infection. J. Immunol.180(11), 7558–7564 (2008).
  • Cervantes J, Nagata T, Uchijima M, Shibata K, Koide Y. Intracytosolic Listeria monocytogenes induces cell death through caspase-1 activation in murine macrophages. Cell. Microbiol.10(1), 41–52 (2008).
  • Guzman CA, Domann E, Rohde M et al. Apoptosis of mouse dendritic cells is triggered by listeriolysin, the major virulence determinant of Listeria monocytogenes. Mol. Microbiol.20(1), 119–126 (1996).
  • Ozoren N, Masumoto J, Franchi L et al. Distinct roles of TLR2 and the adaptor ASC in IL-1β/IL-18 secretion in response to Listeria monocytogenes. J. Immunol.176(7), 4337–4342 (2006).
  • Khanna KM, McNamara JT, Lefrancois L. In situ imaging of the endogenous CD8 T cell response to infection. Science318(5847), 116–120 (2007).
  • Bessis N, GarciaCozar FJ, Boissier MC. Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Gene Ther.11(Suppl. 1), S10–S17 (2004).
  • Edelson BT, Cossart P, Unanue ER. Cutting edge: paradigm revisited: antibody provides resistance to Listeria infection. J. Immunol.163(8), 4087–4090 (1999).
  • Edelson BT, Unanue ER. Intracellular antibody neutralizes Listeria growth. Immunity14(5), 503–512 (2001).
  • Stevens R, Lavoy A, Nordone S, Burkhard M, Dean GA. Pre-existing immunity to pathogenic Listeria monocytogenes does not prevent induction of immune responses to feline immunodeficiency virus by a novel recombinant Listeria monocytogenes vaccine. Vaccine23(12), 1479–1490 (2005).
  • Bouwer HG, Shen H, Fan X et al. Existing antilisterial immunity does not inhibit the development of a Listeria monocytogenes-specific primary cytotoxic T-lymphocyte response. Infect. Immun.67(1), 253–258 (1999).
  • Tvinnereim AR, Hamilton SE, Harty JT. CD8+-T-cell response to secreted and nonsecreted antigens delivered by recombinant Listeria monocytogenes during secondary infection. Infect. Immun.70(1), 153–162 (2002).
  • Starks H, Bruhn KW, Shen H et al.Listeria monocytogenes as a vaccine vector: virulence attenuation or existing antivector immunity does not diminish therapeutic efficacy. J. Immunol.173(1), 420–427 (2004).
  • Vijh S, Pilip IM, Pamer EG. Noncompetitive expansion of cytotoxic T lymphocytes specific for different antigens during bacterial infection. Infect. Immun.67(3), 1303–1309 (1999).
  • Blair DA, Lefrancois L. Increased competition for antigen during priming negatively impacts the generation of memory CD4 T cells. Proc. Natl Acad. Sci. USA104(38), 15045–15050 (2007).
  • Jensen ER, Selvakumar R, Shen H et al. Recombinant Listeria monocytogenes vaccination eliminates papillomavirus-induced tumors and prevents papilloma formation from viral DNA. J. Virol.71(11), 8467–8474 (1997).
  • Yoshimura K, Jain A, Allen HE et al. Selective targeting of anti-tumor immune responses with engineered live-attenuated Listeria monocytogenes. Cancer Res.66(2), 1096–1104 (2006).
  • Brockstedt DG, Giedlin MA, Leong ML et al. Listeria-based cancer vaccines that segregate immunogenicity from toxicity. Proc. Natl Acad. Sci. USA101(38), 13832–13837 (2004).
  • Pan ZK, Ikonomidis G, Lazenby A, Pardoll D, Paterson Y. A recombinant Listeria monocytogenes vaccine expressing a model tumour antigen protects mice against lethal tumour cell challenge and causes regression of established tumours. Nat. Med.1(5), 471–477 (1995).
  • Gunn GR, Zubair A, Peters C et al. Two Listeria monocytogenes vaccine vectors that express different molecular forms of human papilloma virus-16 (HPV-16) E7 induce qualitatively different T cell immunity that correlates with their ability to induce regression of established tumors Immortalized by HPV-16. J. Immunol.167, 6471–6479 (2001).
  • Liau LM, Jensen ER, Kremen T et al. Tumor immunity within the central nervous system stimulated by recombinant Listeria monocytogenes vaccination. Cancer Res.62, 2287–2293 (2002).
  • Craft N, Bruhn KW, Nguyen BD et al. The TLR7 agonist imiquimod enhances the anti-melanoma effects of a recombinant Listeria monocytogenes vaccine. J. Immunol.175(3), 1983–1990 (2005).
  • Shen H, Slifka MK, Matloubian M et al. Recombinant Listeria monocytogenes as a live vaccine vehicle for the induction of protective anti-viral cell-mediated immunity. Proc. Natl Acad. Sci. USA92(9), 3987–3991 (1995).
  • Farber JM, Ross WH, Harwig J. Health risk assessment of Listeria monocytogenes in Canada. Int. J. Food Microbiol.30(1–2), 145–156 (1996).
  • Farber JM, Peterkin PI. Listeria monocytogenes, a food-borne pathogen. Microbiol. Rev.55(3), 476–511 (1991).
  • Low JC, Donachie W. A review of Listeria monocytogenes and listeriosis. Vet. J.153(1), 9–29 (1997).
  • Lorber B. Listeriosis. Clin. Infect. Dis.24(1), 1–9 (1997).
  • Rivero GA, Torres HA, Rolston KV, Kontoyiannis DP. Listeria monocytogenes infection in patients with cancer. Diagn. Microbiol. Infect. Dis.47(2), 393–398 (2003).
  • Safdar A, Armstrong D. Listeriosis in patients at a comprehensive cancer center, 1955–1997. Clin. Infect. Dis.37(3), 359–364 (2003).
  • Goossens PL, Milon G. Induction of protective CD8+ T lymphocytes by an attenuated Listeria monocytogenes actA mutant. Int. Immunol.4(12), 1413–1418 (1992).
  • Portnoy DA, Auerbuch V, Glomski IJ. The cell biology of Listeria monocytogenes infection: the intersection of bacterial pathogenesis and cell-mediated immunity. J. Cell Biol.158(3), 409–414 (2002).
  • Tilney LG, Portnoy DA. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol.109, 1597–1607 (1989).
  • Angelakopoulos H, Loock K, Sisul D et al. Safety and shedding of an attenuated strain of Listeria monocytogenes with a deletion of actA/plcB in adult volunteers: a dose escalation study of oral inoculation. Infect. Immun.70(7), 3592–3601 (2002).
  • Cossart P, Pizarro-Cerda J, Lecuit M. Invasion of mammalian cells by Listeria monocytogenes: functional mimicry to subvert cellular functions. Trends Cell Biol.13(1), 23–31 (2003).
  • Singh R, Paterson Y. Listeria monocytogenes as a vector for tumor-associated antigens for cancer immunotherapy. Expert Rev. Vaccines5(4), 541–552 (2006).
  • Gray MJ, Freitag NE, Boor KJ. How the bacterial pathogen Listeria monocytogenes mediates the switch from environmental Dr. Jekyll to pathogenic Mr. Hyde. Infect. Immun.74(5), 2505–2512 (2006).
  • Vazquez-Boland JA, Kuhn M, Berche P et al. Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev.14(3), 584–640 (2001).
  • Souders NC, Sewell DA, Pan ZK et al. Listeria-based vaccines can overcome tolerance by expanding low avidity CD8+ T cells capable of eradicating a solid tumor in a transgenic mouse model of cancer. Cancer Immun.7(2), 1–12 (2007).
  • Curtiss R 3rd. Bacterial infectious disease control by vaccine development. J. Clin. Invest.110(8), 1061–1066 (2002).
  • Stritzker J, Janda J, Schoen C et al. Growth, virulence, and immunogenicity of Listeria monocytogenes aro mutants. Infect. Immun.72(10), 5622–5629 (2004).
  • Stritzker J, Schoen C, Goebel W. Enhanced synthesis of internalin A in aro mutants of Listeria monocytogenes indicates posttranscriptional control of the inlAB mRNA. J. Bacteriol.187(8), 2836–2845 (2005).
  • Thompson RJ, Bouwer HG, Portnoy DA, Frankel FR. Pathogenicity and immunogenicity of a Listeria monocytogenes strain that requires D-alanine for growth. Infect. Immun.66(8), 3552–3561 (1998).
  • Rayevskaya MV, Frankel FR. Systemic immunity and mucosal immunity are induced against human immunodeficiency virus gag protein in mice by a new hyperattenuated strain of Listeria monocytogenes. J. Virol.75(6), 2786–2791 (2001).
  • Rayevskaya M, Kushnir N, Frankel FR. Safety and immunogenicity in neonatal mice of a hyperattenuated Listeria vaccine directed against human immunodeficiency virus. J. Virol.76(2), 918–922 (2002).
  • Friedman RS, Frankel FR, Xu Z, Lieberman J. Induction of human immunodeficiency virus (HIV)-specific CD8 T-cell responses by Listeria monocytogenes and a hyperattenuated Listeria strain engineered to express HIV antigens. J. Virol.74(21), 9987–9993 (2000).
  • Jiang S, Rasmussen RA, Nolan KM et al. Live attenuated Listeria monocytogenes expressing HIV Gag: immunogenicity in rhesus monkeys. Vaccine25(42), 7470–7479 (2007).
  • Li Z, Zhao X, Higgins DE, Frankel FR. Conditional lethality yields a new vaccine strain of Listeria monocytogenes for the induction of cell-mediated immunity. Infect. Immun.73(8), 5065–5073 (2005).
  • Li Z, Zhao X, Zhou C, Gu B, Frankel FR. A truncated Bacillus subtilis dal gene with a 3á ssrA gene tag regulates the growth and virulence of racemase-deficient Listeria monocytogenes. Microbiology152(Pt 10), 3091–3102 (2006).
  • Li Z, Zhang M, Zhou C et al. Novel vaccination protocol with two live mucosal vectors elicits strong cell-mediated immunity in the vagina and protects against vaginal virus challenge. J. Immunol.180(4), 2504–2513 (2008).
  • Shen H, Miller JF, Fan X et al. Compartmentalization of bacterial antigens: differential effects on priming of CD8 T cells and protective immunity. Cell92(4), 535–545 (1998).
  • Dietrich G, Bubert A, Gentschev I et al. Delivery of antigen-encoding plasmid DNA into the cytosol of macrophages by attenuated suicide Listeria monocytogenes. Nat. Biotechnol.16, 181–185 (1998).
  • Schoen C, Kolb-Maurer A, Geginat G et al. Bacterial delivery of functional messenger RNA to mammalian cells. Cell. Microbiol.7(5), 709–724 (2005).
  • Pilgrim S, Stritzker J, Schoen C et al. Bactofection of mammalian cells by Listeria monocytogenes: improvement and mechanism of DNA delivery. Gene Ther.10(24), 2036–2045 (2003).
  • Loeffler DI, Schoen CU, Goebel W, Pilgrim S. Comparison of different live vaccine strategies in vivo for delivery of protein antigen or antigen-encoding DNA and mRNA by virulence-attenuated Listeria monocytogenes. Infect. Immun.74(7), 3946–3957 (2006).
  • Souders NC, Verch T, Paterson Y. In vivo bactofection: listeria can function as a DNA-cancer vaccine. DNA Cell Biol,25(3), 142–151 (2006).
  • Datta SK, Okamoto S, Hayashi T et al. Vaccination with irradiated listeria induces protective T cell immunity. Immunity25(1), 143–152 (2006).
  • Brockstedt DG, Bahjat KS, Giedlin MA et al. Killed but metabolically active microbes: a new vaccine paradigm for eliciting effector T-cell responses and protective immunity. Nat. Med.11(8), 853–860 (2005).
  • Lauer P, Hanson B, Lemmens EE et al. Constitutive activation of the PrfA regulon enhances the potency of live-attenuated and KBMA Listeria monocytogenes-based vaccines. Infect. Immun.76(8), 3742–3753 (2008).
  • Lankowski AJ, Hohmann EL. Killed but metabolically active Salmonella typhimurium: application of a new technology to an old vector. J. Infect. Dis.195(8), 1203–1211 (2007).
  • Camilli A, Tilney LG, Portnoy DA. Dual roles of plcA in Listeria monocytogenes pathogenesis. Mol. Microbiol.8(1), 143–157 (1993).
  • Lauer P, Chow MY, Loessner MJ, Portnoy DA, Calendar R. Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J. Bacteriol.184(15), 4177–4178 (2002).
  • Brunt LM, Portnoy DA, Unanue ER. Presentation of Listeria monocytogenes to CD8+ T cells requires secretion of hemolysin and intracellular bacterial growth. J. Immunol.145(11), 3540–3546 (1990).
  • Sewell DA, Douven D, Pan ZK, Rodriguez A, Paterson Y. Regression of HPV-positive tumors treated with a new Listeria monocytogenes vaccine. Arch. Otolaryngol. Head Neck Surg.130(1), 92–97 (2004).
  • Souders NC, Sewell DA, Pan ZK et al.Listeria-based vaccines can overcome tolerance by expanding low avidity CD8+ T cells capable of eradicating a solid tumor in a transgenic mouse model of cancer. Cancer Immun.7, 2(2007).
  • Decatur AL, Portnoy DA. A PEST-like sequence in listeriolysin O essential for Listeria monocytogenes pathogenicity. Science290, 992–995 (2000).
  • Sewell DA, Shahabi V, Gunn GR 3rd et al. Recombinant Listeria vaccines containing PEST sequences are potent immune adjuvants for the tumor-associated antigen human papillomavirus-16 E7. Cancer Res.64(24), 8821–8825 (2004).
  • Hussain SF, Paterson Y. CD4+CD25+ regulatory T cells that secrete TGFβ and IL-10 are preferentially induced by a vaccine vector. J. Immunother.27(5), 339–346 (2004).
  • Schnupf P, Portnoy DA, Decatur AL. Phosphorylation, ubiquitination and degradation of listeriolysin O in mammalian cells: role of the PEST-like sequence. Cell. Microbiol.8(2), 353–364 (2006).
  • Schnupf P, Portnoy DA. Listeriolysin O: a phagosome-specific lysin. Microbes Infect.9(10), 1176–1187 (2007).
  • Shetron-Rama LM, Marquis H, Bouwer HG, Freitag NE. Intracellular induction of Listeria monocytogenes actA expression. Infect. Immun.70(3), 1087–1096 (2002).
  • Singh R, Dominiecki ME, Jaffee E, Paterson Y. Fusion to listeriolysin O and delivery by Listeria monocytogenes enhances the immunogenicity of HER-2/neu and reveals subdominant epitopes in the FVB/N mouse. J. Immunol.175(6), 3663–3673 (2005).
  • Singh R, Paterson Y. Immunoediting sculpts tumor epitopes during immunotherapy. Cancer Res.67(5), 1887–1892 (2007).
  • Desvaux M, Hebraud M. The protein secretion systems in Listeria: inside out bacterial virulence. FEMS Microbiol. Rev.30(5), 774–805 (2006).
  • Lenz LL, Portnoy DA. Identification of a second Listeria secA gene associated with protein secretion and the rough phenotype. Mol. Microbiol.45(4), 1043–1056 (2002).
  • Melero I, Hervas-Stubbs S, Glennie M, Pardoll DM, Chen L. Immunostimulatory monoclonal antibodies for cancer therapy. Nat. Rev. Cancer7(2), 95–106 (2007).
  • Emens LA, Jaffee EM. Leveraging the activity of tumor vaccines with cytotoxic chemotherapy. Cancer Res.65(18), 8059–8064 (2005).
  • Machiels JP, Reilly RT, Emens LA et al. Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice. Cancer Res.61(9), 3689–3697 (2001).
  • Drake CG, Jaffee E, Pardoll DM. Mechanisms of immune evasion by tumors. Adv. Immunol.90, 51–81 (2006).
  • Egen JG, Kuhns MS, Allison JP. CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat. Immunol.3(7), 611–618 (2002).
  • Flies DB, Chen L. The new B7s: playing a pivotal role in tumor immunity. J. Immunother.30(3), 251–260 (2007).
  • Goldberg MV, Maris CH, Hipkiss EL et al. Role of PD-1 and its ligand, B7-H1, in early fate decisions of CD8 T cells. Blood110(1), 186–192 (2007).
  • Hoos A, Parmiani G, Hege K et al. A clinical development paradigm for cancer vaccines and related biologics. J. Immunother.30(1), 1–15 (2007).
  • Minton NP. Clostridia in cancer therapy. Nat. Rev. Microbiol.1(3), 237–242 (2003).
  • Slobbe L, Lockhart E, O’Donnell MA et al. An in vivo comparison of bacillus Calmette–Guerin (BCG) and cytokine-secreting BCG vaccines. Immunology96(4), 517–523 (1999).
  • O’Donnell MA, Aldovini A, Duda RB et al. Recombinant Mycobacterium bovis BCG secreting functional interleukin-2 enhances g interferon production by splenocytes. Infect. Immun.62(6), 2508–2514 (1994).
  • Arnold J, de Boer EC, O’Donnell MA, Bohle A, Brandau S. Immunotherapy of experimental bladder cancer with recombinant BCG expressing interferon-g. J. Immunother.27(2), 116–123 (2004).
  • Wei SH, Yin W, An QX et al. A novel hepatitis C virus vaccine approach using recombinant bacillus Calmette-Guerin expressing multi-epitope antigen. Arch. Virol.153(6), 1021–1029 (2008).
  • Uno-Furuta S, Matsuo K, Tamaki S et al. Immunization with recombinant Calmette–Guerin bacillus (BCG)–hepatitis C virus (HCV) elicits HCV-specific cytotoxic T lymphocytes in mice. Vaccine21(23), 3149–3156 (2003).
  • Edelman R, Palmer K, Russ KG et al. Safety and immunogenicity of recombinant bacille Calmette–Guerin (rBCG) expressing Borrelia burgdorferi outer surface protein A (OspA) lipoprotein in adult volunteers: a candidate Lyme disease vaccine. Vaccine17(7–8), 904–914 (1999).
  • Xu Y, Zhu B, Wang Q et al. Recombinant BCG coexpressing Ag85B, ESAT-6 and mouse-IFN-g confers effective protection against Mycobacterium tuberculosis in C57BL/6 mice. FEMS Immunol. Med. Microbiol.51(3), 480–487 (2007).
  • Agrawal N, Bettegowda C, Cheong I et al. Bacteriolytic therapy can generate a potent immune response against experimental tumors. Proc. Natl Acad. Sci. USA101(42), 15172–15177 (2004).
  • Dang LH, Bettegowda C, Huso DL, Kinzler KW, Vogelstein B. Combination bacteriolytic therapy for the treatment of experimental tumors. Proc. Natl Acad. Sci. USA98(26), 15155–15160 (2001).
  • Radford KJ, Higgins DE, Pasquini S et al. A recombinant E. coli vaccine to promote MHC class I-dependent antigen presentation: application to cancer immunotherapy. Gene Ther.9(21), 1455–1463 (2002).
  • Toso JF, Gill VJ, Hwu P et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J. Clin. Oncol.20(1), 142–152 (2002).
  • Shata MT, Hone DM. Vaccination with a Shigella DNA vaccine vector induces antigen-specific CD8+ T cells and antiviral protective immunity. J. Virol.75(20), 9665–9670 (2001).
  • Franzusoff A, Duke RC, King TH, Lu Y, Rodell TC. Yeasts encoding tumour antigens in cancer immunotherapy. Expert Opin. Biol. Ther.5(4), 565–575 (2005).
  • Lu Y, Bellgrau D, Dwyer-Nield LD et al. Mutation-selective tumor remission with Ras-targeted, whole yeast-based immunotherapy. Cancer Res.64(15), 5084–5088 (2004).
  • Haller AA, Lauer GM, King TH et al. Whole recombinant yeast-based immunotherapy induces potent T cell responses targeting HCV NS3 and core proteins. Vaccine25(8), 1452–1463 (2007).
  • Al-Mariri A, Tibor A, Lestrate P et al. Yersinia enterocolitica as a vehicle for a naked DNA vaccine encoding Brucella abortus bacterioferritin or P39 antigen. Infect. Immun.70(4), 1915–1923 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.