232
Views
52
CrossRef citations to date
0
Altmetric
Special Focus Issue: Cancer Vaccines - Review

Promising particle-based vaccines in cancer therapy

, , , , &
Pages 1103-1119 | Published online: 09 Jan 2014

References

  • Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer7(8), 573–584 (2007).
  • Decatris MP, Sundar S, O’Byrne KJ. Platinum-based chemotherapy in metastatic breast cancer: current status. Cancer Treat. Rev.30(1), 53–81 (2004).
  • Launay-Vacher V, Rey JB, Isnard-Bagnis C, Deray G, Daouphars M. Prevention of cisplatin nephrotoxicity: state of the art and recommendations from the European Society of Clinical Pharmacy Special Interest Group on Cancer Care. Cancer Chemother. Pharmacol.61(6), 903–909 (2008).
  • Waxman ES. Advances in chemotherapy for non-small cell lung cancer. Semin. Oncol. Nurs.24(1), 49–56 (2008).
  • Rosenberg SA, Yang JC, White DE, Steinberg SM. Durability of complete responses in patients with metastatic cancer treated with high-dose interleukin-2: identification of the antigens mediating response. Ann. Surg.228(3), 307–319 (1998).
  • Muul LM, Spiess PJ, Director EP, Rosenberg SA. Identification of specific cytolytic immune responses against autologous tumor in humans bearing malignant melanoma. J. Immunol.138(3), 989–995 (1987).
  • Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat. Rev. Cancer8(4), 299–308 (2008).
  • Rosenberg SA, Yannelli JR, Yang JC et al. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J. Natl Cancer Inst.86(15), 1159–1166 (1994).
  • de Vries IJ, Lesterhuis WJ, Scharenborg NM et al. Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin. Cancer Res.9(14), 5091–5100 (2003).
  • Ballestrero A, Boy D, Moran E, Cirmena G, Brossart P, Nencioni A. Immunotherapy with dendritic cells for cancer. Adv. Drug Deliv. Rev.60(2), 173–183 (2008).
  • Singh M, O’Hagan D. Advances in vaccine adjuvants. Nat. Biotechnol.17(11), 1075–1081 (1999).
  • Fifis T, Gamvrellis A, Crimeen-Irwin B et al. Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J. Immunol.173(5), 3148–3154 (2004).
  • O’Hagan DT, MacKichan ML, Singh M. Recent developments in adjuvants for vaccines against infectious diseases. Biomol. Eng.18(3), 69–85 (2001).
  • Pelkmans L. Secrets of caveolae- and lipid raft-mediated endocytosis revealed by mammalian viruses. Biochim. Biophys. Acta1746(3), 295–304 (2005).
  • Mottram PL, Leong D, Crimeen-Irwin B et al. Type 1 and 2 immunity following vaccination is influenced by nanoparticle size: formulation of a model vaccine for respiratory syncytial virus. Mol. Pharm.4(1), 73–84 (2007).
  • Foged C, Brodin B, Frokjaer S, Sundblad A. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int. J. Pharm.298(2), 315–322 (2005).
  • Thiele L, Merkle HP, Walter E. Phagocytosis and phagosomal fate of surface-modified microparticles in dendritic cells and macrophages. Pharm. Res.20(2), 221–228 (2003).
  • Josephson L, Tung CH, Moore A, Weissleder R. High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug. Chem.10(2), 186–191 (1999).
  • Minigo G, Scholzen A, Tang CK et al. Poly-l-lysine-coated nanoparticles: a potent delivery system to enhance DNA vaccine efficacy. Vaccine25(7), 1316–1327 (2007).
  • Little SR, Lynn DM, Ge Q et al. Poly-β amino ester-containing microparticles enhance the activity of nonviral genetic vaccines. Proc. Natl Acad. Sci. USA101(26), 9534–9539 (2004).
  • Thiele L, Rothen-Rutishauser B, Jilek S, Wunderli-Allenspach H, Merkle HP, Walter E. Evaluation of particle uptake in human blood monocyte-derived cells in vitro. Does phagocytosis activity of dendritic cells measure up with macrophages? J. Control Release76(1–2), 59–71 (2001).
  • Bachmann MF, Rohrer UH, Kundig TM, Burki K, Hengartner H, Zinkernagel RM. The influence of antigen organization on B cell responsiveness. Science262(5138), 1448–1451 (1993).
  • Bachmann MF, Zinkernagel RM. Neutralizing antiviral B cell responses. Annu. Rev. Immunol.15, 235–270 (1997).
  • Fehr T, Skrastina D, Pumpens P, Zinkernagel RM. T cell-independent type I antibody response against B cell epitopes expressed repetitively on recombinant virus particles. Proc. Natl Acad. Sci. USA95(16), 9477–9481 (1998).
  • Zhang X-Q, Dahle CE, Weiner GJ, Salem AK. A comparative study of the antigen-specific immune response induced by co-delivery of CpG ODN and antigen using fusion molecules or biodegradable microparticles. J. Pharmaceut. Sci.96(12), 3283–3292 (2007).
  • Mesa C, Fernandez LE. Challenges facing adjuvants for cancer immunotherapy. Immunol. Cell Biol.82(6), 644–650 (2004).
  • Men Y, Tamber H, Audran R, Gander B, Corradin G. Induction of a cytotoxic T lymphocyte response by immunization with a malaria specific CTL peptide entrapped in biodegradable polymer microspheres. Vaccine15(12–13), 1405–1412 (1997).
  • Peter K, Men Y, Pantaleo G, Gander B, Corradin G. Induction of a cytotoxic T-cell response to HIV-1 proteins with short synthetic peptides and human compatible adjuvants. Vaccine19(30), 4121–4129 (2001).
  • Kovacsovics-Bankowski M, Rock KL. A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science267(5195), 243–246 (1995).
  • Shen Z, Reznikoff G, Dranoff G, Rock KL. Cloned dendritic cells can present exogenous antigens on both MHC class I and class II molecules. J. Immunol.158(6), 2723–2730 (1997).
  • Schulz O, Reis e Sousa C. Cross-presentation of cell-associated antigens by CD8α+ dendritic cells is attributable to their ability to internalize dead cells. Immunology107(2), 183–189 (2002).
  • Thiele L, Merkle HP, Walter E. Phagocytosis of synthetic particulate vaccine delivery systems to program dendritic cells. Expert Rev. Vaccines1(2), 215–226 (2002).
  • Fifis T, Mottram P, Bogdanoska V, Hanley J, Plebanski M. Short peptide sequences containing MHC class I and/or class II epitopes linked to nano-beads induce strong immunity and inhibition of growth of antigen-specific tumour challenge in mice. Vaccine23(2), 258–266 (2004).
  • Greenwood DL, Dynon K, Kalkanidis M, Xiang S, Plebanski M, Scheerlinck JP. Vaccination against foot-and-mouth disease virus using peptides conjugated to nano-beads. Vaccine26(2), 2706–2713 (2008).
  • Scheerlinck JP, Gloster S, Gamvrellis A, Mottram PL, Plebanski M. Systemic immune responses in sheep, induced by a novel nano-bead adjuvant. Vaccine24(8), 1124–1131 (2006).
  • Morein B, Villacres-Eriksson M, Lovgren-Bengtsson K. ISCOM, a delivery system for parenteral and mucosal vaccination. Dev. Biol. Stand.92, 33–39 (1998).
  • Smith RE, Donachie AM, Grdic D, Lycke N, Mowat AM. Immune-stimulating complexes induce an IL-12-dependent cascade of innate immune responses. J. Immunol.162(9), 5536–5546 (1999).
  • Rimmelzwaan GF, Nieuwkoop N, Brandenburg A et al. A randomized, double blind study in young healthy adults comparing cell mediated and humoral immune responses induced by influenza ISCOM vaccines and conventional vaccines. Vaccine19(9–10), 1180–1187 (2000).
  • Villacres MC, Behboudi S, Nikkila T, Lovgren-Bengtsson K, Morein B. Internalization of ISCOM-borne antigens and presentation under MHC class I or class II restriction. Cell. Immunol.185(1), 30–38 (1998).
  • Davis ID, Chen W, Jackson H et al. Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad integrated antibody and CD4+ and CD8+ T cell responses in humans. Proc. Natl Acad. Sci. USA101(29), 10697–10702 (2004).
  • Frazer IH, Quinn M, Nicklin JL et al. Phase 1 study of HPV16-specific immunotherapy with E6E7 fusion protein and ISCOMATRIX adjuvant in women with cervical intraepithelial neoplasia. Vaccine23(2), 172–181 (2004).
  • Chen W, Yan W, Huang L. A simple but effective cancer vaccine consisting of an antigen and a cationic lipid. Cancer Immunol. Immunother.57(4), 517–530 (2008).
  • North S, Butts C. Vaccination with BLP25 liposome vaccine to treat non-small cell lung and prostate cancers. Expert Rev. Vaccines4(3), 249–257 (2005).
  • Sangha R, North S. L-BLP25: a MUC1-targeted peptide vaccine therapy in prostate cancer. Expert Opin. Biol. Ther.7(11), 1723–1730 (2007).
  • Powell JS, Nugent DJ, Harrison JA et al. Safety and pharmacokinetics of a recombinant factor VIII with pegylated liposomes in severe hemophilia A. J. Thromb. Haemost.6(2), 277–283 (2008).
  • Peek LJ, Middaugh CR, Berkland C. Nanotechnology in vaccine delivery. Adv. Drug Deliv. Rev.60(8), 915–928 (2008).
  • Luo Y, O’Hagan D, Zhou H et al. Plasmid DNA encoding human carcinoembryonic antigen (CEA) adsorbed onto cationic microparticles induces protective immunity against colon cancer in CEA-transgenic mice. Vaccine21(17–18), 1938–1947 (2003).
  • McKeever U, Barman S, Hao T et al. Protective immune responses elicited in mice by immunization with formulations of poly(lactide-co-glycolide) microparticles. Vaccine20(11–12), 1524–1531 (2002).
  • Sapin A, Garcion E, Clavreul A, Lagarce F, Benoit JP, Menei P. Development of new polymer-based particulate systems for anti-glioma vaccination. Int. J. Pharm.309(1–2), 1–5 (2006).
  • Dass CR, Choong PF. The use of chitosan formulations in cancer therapy. J. Microencapsul.25(4), 275–279 (2008).
  • Dass CR, Friedhuber AM, Khachigian LM, Dunstan DE, Choong PF. Biocompatible chitosan-DNAzyme nanoparticle exhibits enhanced biological activity. J. Microencapsul.4, 1–5 (2008).
  • Kim JH, Kim YS, Park K et al. Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice. J. Control Release127(1), 41–49 (2008).
  • Trickler WJ, Nagvekar AA, Dash AK. A novel nanoparticle formulation for sustained paclitaxel delivery. AAPS PharmSciTech9(2), 486–493 (2008).
  • Hadaschik BA, Jackson J, Fazli L et al. Intravesically administered antisense oligonucleotides targeting heat-shock protein-27 inhibit the growth of non-muscle-invasive bladder cancer. BJU Int.102(5), 610–616 (2008).
  • Dean HJ, Fuller D, Osorio JE. Powder and particle-mediated approaches for delivery of DNA and protein vaccines into the epidermis. Comp. Immunol. Microbiol. Infect. Dis.26(5–6), 373–388 (2003).
  • Condon C, Watkins SC, Celluzzi CM, Thompson K, Falo LD Jr. DNA-based immunization by in vivo transfection of dendritic cells. Nat. Med.2(10), 1122–1128 (1996).
  • Garg S, Oran A, Wajchman J et al. Genetic tagging shows increased frequency and longevity of antigen-presenting, skin-derived dendritic cells in vivo. Nat. Immunol.4(9), 907–912 (2003).
  • Sun W, Qian H, Zhang X et al. Induction of protective and therapeutic antitumour immunity using a novel tumour-associated antigen-specific DNA vaccine. Immunol. Cell Biol.84(5), 440–447 (2006).
  • Garcia-Hernandez Mde L, Gray A, Hubby B, Kast WM. in vivo effects of vaccination with six-transmembrane epithelial antigen of the prostate: a candidate antigen for treating prostate cancer. Cancer Res.67(3), 1344–1351 (2007).
  • Qin H, Zhou C, Wang D et al. Enhancement of antitumour immunity by a novel chemotactic antigen DNA vaccine encoding chemokines and multiepitopes of prostate-tumour-associated antigens. Immunology117(3), 419–430 (2006).
  • Cassaday RD, Sondel PM, King DM et al. A Phase I study of immunization using particle-mediated epidermal delivery of genes for gp100 and GM-CSF into uninvolved skin of melanoma patients. Clin. Cancer Res.13(2 Pt 1), 540–549 (2007).
  • Hung CF, Monie A, Alvarez RD, Wu TC. DNA vaccines for cervical cancer: from bench to bedside. Exp. Mol. Med.39(6), 679–689 (2007).
  • Kohli AK, Alpar HO. Potential use of nanoparticles for transcutaneous vaccine delivery: effect of particle size and charge. Int. J. Pharm.275(1–2), 13–17 (2004).
  • Walsh MC, Banas JA, Mudzinski SP, Preissler MT, Graziano RF, Gosselin EJ. A two-component modular approach for enhancing T-cell activation utilizing a unique anti-FcγRI-streptavidin construct and microspheres coated with biotinylated-antigen. Biomol. Eng.20(1), 21–33 (2003).
  • Oelke M, Maus MV, Didiano D, June CH, Mackensen A, Schneck JP. Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells. Nat. Med.9(5), 619–624 (2003).
  • Durai M, Krueger C, Ye Z et al.in vivo functional efficacy of tumor-specific T cells expanded using HLA-Ig based artificial antigen presenting cells (aAPC). Cancer Immunol. Immunother. DOI: 10.1007/s00262-008-0542-1 (2008) (Epub ahead of print).
  • Shen C, Zhang J, Xia L, Meng F, Xie W. Induction of tumor antigen-specific cytotoxic T cell responses in naive mice by latex microspheres-based artificial antigen-presenting cell constructs. Cell. Immunol.247(1), 28–35 (2007).
  • Grgacic EV, Anderson DA. Virus-like particles: passport to immune recognition. Methods40(1), 60–65 (2006).
  • Paavonen J, Jenkins D, Bosch FX et al. Efficacy of a prophylactic adjuvanted bivalent L1 virus-like-particle vaccine against infection with human papillomavirus types 16 and 18 in young women: an interim analysis of a Phase III double-blind, randomised controlled trial. Lancet369(9580), 2161–2170 (2007).
  • Harper DM, Franco EL, Wheeler CM et al. Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial. Lancet367(9518), 1247–1255 (2006).
  • Pinto LA, Castle PE, Roden RB et al. HPV-16 L1 VLP vaccine elicits a broad-spectrum of cytokine responses in whole blood. Vaccine23(27), 3555–3564 (2005).
  • Hildesheim A, Herrero R, Wacholder S et al. Effect of human papillomavirus 16/18 L1 viruslike particle vaccine among young women with preexisting infection: a randomized trial. JAMA298(7), 743–753 (2007).
  • Kondo K, Ochi H, Matsumoto T, Yoshikawa H, Kanda T. Modification of human papillomavirus-like particle vaccine by insertion of the cross-reactive L2-epitopes. J. Med. Virol.80(5), 841–846 (2008).
  • Loomba R, Liang TJ. Treatment of chronic hepatitis B. Antivir. Ther.12(Suppl. 3), H33–H41 (2007).
  • Zhang Y, Song S, Liu C et al. Generation of chimeric HBc proteins with epitopes in E.coli: formation of virus-like particles and a potent inducer of antigen-specific cytotoxic immune response and anti-tumor effect in vivo. Cell. Immunol.247(1), 18–27 (2007).
  • Traquina P, Morandi M, Contorni M, Van Nest G. MF59 adjuvant enhances the antibody response to recombinant hepatitis B surface antigen vaccine in primates. J. Infect. Dis.174(6), 1168–1175 (1996).
  • O’Hagan DT. MF59 is a safe and potent vaccine adjuvant that enhances protection against influenza virus infection. Expert Rev. Vaccines6(5), 699–710 (2007).
  • Ott G, Barchfeld GL, Chernoff D, Radhakrishnan R, van Hoogevest P, Van Nest G. MF59. Design and evaluation of a safe and potent adjuvant for human vaccines. Pharm. Biotechnol.6, 277–296 (1995).
  • Valensi JP, Carlson JR, Van Nest GA. Systemic cytokine profiles in BALB/c mice immunized with trivalent influenza vaccine containing MF59 oil emulsion and other advanced adjuvants. J. Immunol.153(9), 4029–4039 (1994).
  • Ronnberg B, Fekadu M, Morein B. Adjuvant activity of non-toxic Quillaja saponaria Molina components for use in ISCOM matrix. Vaccine13(14), 1375–1382 (1995).
  • Stieneker F, Kersten G, van Bloois L et al. Comparison of 24 different adjuvants for inactivated HIV-2 split whole virus as antigen in mice. Induction of titres of binding antibodies and toxicity of the formulations. Vaccine13(1), 45–53 (1995).
  • Sanders MT, Brown LE, Deliyannis G, Pearse MJ. ISCOMTM-based vaccines: the second decade. Immunol. Cell Biol.83(2), 119–128 (2005).
  • Sundquist B, Lovgren K, Hoglund S, Morein B. Influenza virus ISCOMs: biochemical characterization. Vaccine6(1), 44–48 (1988).
  • Sundquist B, Lovgren K, Morein B. Influenza virus ISCOMs: antibody response in animals. Vaccine6(1), 49–53 (1988).
  • Crouch CF, Daly J, Hannant D, Wilkins J, Francis MJ. Immune responses and protective efficacy in ponies immunised with an equine influenza ISCOM vaccine containing an ‘American lineage’ H3N8 virus. Vaccine23(3), 418–425 (2004).
  • Chen Q, Jackson H, Parente P et al. Immunodominant CD4+ responses identified in a patient vaccinated with full-length NY-ESO-1 formulated with ISCOMATRIX adjuvant. Proc. Natl Acad. Sci. USA101(25), 9363–9368 (2004).
  • Maraskovsky E, Sjolander S, Drane DP et al. NY-ESO-1 protein formulated in ISCOMATRIX adjuvant is a potent anticancer vaccine inducing both humoral and CD8+ T-cell-mediated immunity and protection against NY-ESO-1+ tumors. Clin. Cancer Res.10(8), 2879–2890 (2004).
  • Yatvin MB, Lelkes PI. Clinical prospects for liposomes. Med. Phys.9(2), 149–175 (1982).
  • Smistad G, Jacobsen J, Sande SA. Multivariate toxicity screening of liposomal formulations on a human buccal cell line. Int. J. Pharm.330(1–2), 14–22 (2007).
  • Alving CR. Liposomes as carriers of antigens and adjuvants. J. Immunol. Methods140(1), 1–13 (1991).
  • Gregoriadis G. Immunological adjuvants: a role for liposomes. Immunol. Today11(3), 89–97 (1990).
  • Villa LL, Costa RL, Petta CA et al. Prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in young women: a randomised double-blind placebo-controlled multicentre Phase II efficacy trial. Lancet Oncol.6(5), 271–278 (2005).
  • Harper DM, Franco EL, Wheeler C et al. Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. Lancet364(9447), 1757–1765 (2004).
  • Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev.53(2), 283–318 (2001).
  • Omathanu P, Panchagnula R. Polymers in drug delivery. Curr. Opin. Chem. Biol.5(4), 447–451 (2001).
  • Stern ST, McNeil SE. Nanotechnology safety concerns revisited. Toxicol. Sci.101(1), 4–21 (2008).
  • Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev.55(3), 329–347 (2003).
  • Duncan R. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov.2(5), 347–360 (2003).
  • Duncan R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer6(9), 688–701 (2006).
  • Kaul G, Amiji M. Tumor-targeted gene delivery using poly(ethylene glycol)-modified gelatin nanoparticles: in vitro and in vivo studies. Pharm. Res.22(6), 951–961 (2005).
  • Nafee N, Taetz S, Schneider M, Schaefer UF, Lehr CM. Chitosan-coated PLGA nanoparticles for DNA/RNA delivery: effect of the formulation parameters on complexation and transfection of antisense oligonucleotides. Nanomedicine3(3), 173–183 (2007).
  • Loch-Neckel G, Nemen D, Puhl AC et al. Stealth and non-stealth nanocapsules containing camptothecin: in-vitro and in-vivo activity on B16-F10 melanoma. J. Pharm. Pharmacol.59(10), 1359–1364 (2007).
  • Laden F, Schwartz J, Speizer FE, Dockery DW. Reduction in fine particulate air pollution and mortality: extended follow-up of the Harvard Six Cities study. Am. J. Respir. Crit. Care Med.173(6), 667–672 (2006).
  • Kappos AD, Bruckmann P, Eikmann T et al. Health effects of particles in ambient air. Int. J. Hyg. Environ. Health207(4), 399–407 (2004).
  • Huaux F. New developments in the understanding of immunology in silicosis. Curr. Opin. Allergy Clin. Immunol.7(2), 168–173 (2007).
  • Wichmann HE. Diesel exhaust particles. Inhal. Toxicol.19(Suppl. 1), 241–244 (2007).
  • Brunekreef B, Holgate ST. Air pollution and health. Lancet360(9341), 1233–1242 (2002).
  • Wilson MR, Lightbody JH, Donaldson K, Sales J, Stone V. Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicol. Appl. Pharmacol.184(3), 172–179 (2002).
  • Ghio AJ, Devlin RB. Inflammatory lung injury after bronchial instillation of air pollution particles. Am. J. Respir. Crit. Care Med.164(4), 704–708 (2001).
  • Huang YC, Ghio AJ, Stonehuerner J et al. The role of soluble components in ambient fine particles-induced changes in human lungs and blood. Inhal. Toxicol.15(4), 327–342 (2003).
  • Kaewamatawong T, Kawamura N, Okajima M, Sawada M, Morita T, Shimada A. Acute pulmonary toxicity caused by exposure to colloidal silica: particle size dependent pathological changes in mice. Toxicol. Pathol.33(7), 743–749 (2005).
  • Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol. Appl. Pharmacol.175(3), 191–199 (2001).
  • Renwick LC, Brown D, Clouter A, Donaldson K. Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup. Environ. Med.61(5), 442–447 (2004).
  • Andaloussi AE, Lesniak MS. An increase in CD4+CD25+FOXP3+ regulatory T cells in tumor-infiltrating lymphocytes of human glioblastoma multiforme. Neuro Oncol.8(3), 234–243 (2006).
  • Yang Z-Z, Novak AJ, Stenson MJ, Witzig TE, Ansell SM. Intratumoral CD4+CD25+ regulatory T-cell-mediated suppression of infiltrating CD4+ T cells in B-cell non-Hodgkin lymphoma. Blood107(9), 3639–3646 (2006).
  • Viguier M, Lemaitre F, Verola O et al. Foxp3 Expressing CD4+CD25high regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J. Immunol.173(2), 1444–1453 (2004).
  • Ichihara F, Kono K, Takahashi A, Kawaida H, Sugai H, Fujii H. Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin. Cancer Res.9(12), 4404–4408 (2003).
  • Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B. Increase of regulatory T cells in the peripheral blood of cancer patients. Clin. Cancer Res.9(2), 606–612 (2003).
  • Marrack P, Bender J, Hildeman D et al. Homeostasis of α β TCR+ T cells. Nat. Immunol.1(2), 107–111 (2000).
  • Yokokawa J, Cereda V, Remondo C et al. Enhanced functionality of CD4+CD25highFoxP3+ regulatory T cells in the peripheral blood of patients with prostate cancer. Clin. Cancer Res.14(4), 1032–1040 (2008).
  • Woo EY, Yeh H, Chu CS et al. Cutting edge: regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J. Immunol.168(9), 4272–4276 (2002).
  • Curiel TJ, Coukos G, Zou L et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med.10(9), 942–949 (2004).
  • Litzinger MT, Fernando R, Curiel TJ, Grosenbach DW, Schlom J, Palena C. IL-2 immunotoxin denileukin diftitox reduces regulatory T cells and enhances vaccine-mediated T-cell immunity. Blood110(9), 3192–3201 (2007).
  • Dannull J, Su Z, Rizzieri D et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J. Clin. Invest.115(12), 3623–3633 (2005).
  • Attia P. Inability of a fusion protein of IL-2 and diphtheria toxin (denileukin diftitox, DAB(389)IL-2, ONTAK) to eliminate regulatory T lymphocytes in patients with melanoma. J. Immunother.28(6), 582–592 (2005).
  • Birebent B, Lorho R, Lechartier H et al. Suppressive properties of human CD4+CD25+ regulatory T cells are dependent on CTLA-4 expression. Eur. J. Immunol.34(12), 3485–3496 (2004).
  • O’Mahony D, Morris JC, Quinn C et al. A pilot study of CTLA-4 blockade after cancer vaccine failure in patients with advanced malignancy. Clin. Cancer Res.13(3), 958–964 (2007).
  • Mocellin S, Mandruzzato S, Bronte V, Lise M, Nitti D. Part I: vaccines for solid tumours. Lancet Oncol.5(11), 681–689 (2004).
  • Restifo NP, Rosenberg SA. Use of standard criteria for assessment of cancer vaccines. Lancet Oncol.6(1), 3–4 (2005).
  • Siwolop S. Big steps for vaccine industry, fresh approaches and technology ignite new interest. In: New York Times. 25 July (2001).
  • Bosch FX, Lorincz A, Munoz N, Meijer CJ, Shah KV. The causal relation between human papillomavirus and cervical cancer. J. Clin. Pathol.55(4), 244–265 (2002).
  • Irigaray P, Newby JA, Clapp R et al. Lifestyle-related factors and environmental agents causing cancer: an overview. Biomed. Pharmacother.61(10), 640–658 (2007).
  • Engels EA. Infectious agents as causes of non-Hodgkin lymphoma. Cancer Epidemiol. Biomarkers Prev.16(3), 401–404 (2007).
  • Deyrup AT. Epstein–Barr virus-associated epithelial and mesenchymal neoplasms. Hum. Pathol.39(4), 473–483 (2008).
  • Herath CH, Chetty R. Epstein–Barr virus-associated lymphoepithelioma-like gastric carcinoma. Arch. Pathol. Lab. Med.132(4), 706–709 (2008).
  • HogenEsch H. Mechanisms of stimulation of the immune response by aluminum adjuvants. Vaccine20(Suppl. 3), S34–S39 (2002).
  • Gupta RK, Rost BE, Relyveld E, Siber GR. Adjuvant properties of aluminum and calcium compounds. Pharm. Biotechnol.6, 229–248 (1995).
  • Baylor NW, Egan W, Richman P. Aluminum salts in vaccines – US perspective. Vaccine20(Suppl. 3), S18–S23 (2002).
  • Gupta RK. Aluminum compounds as vaccine adjuvants. Adv. Drug Deliv. Rev.32(3), 155–172 (1998).
  • Relyveld EH, Henocq E, Raynaud M. [Study of the antidiphtheria vaccination of allergic subjects with a pure anatoxin absorbed on calcium phosphate]. Bull. World Health Organ.30, 321–325 (1964).
  • Gupta RK, Siber GR. Adjuvants for human vaccines – current status, problems and future prospects. Vaccine13(14), 1263–1276 (1995).
  • Audibert FM, Lise LD. Adjuvants: current status, clinical perspectives and future prospects. Immunol. Today14(6), 281–284 (1993).
  • Dougan G, Hormaeche C. How bacteria and their products provide clues to vaccine and adjuvant development. Vaccine24(Suppl. 2), S13–S19 (2006).
  • Kenney RT, Edelman R. Survey of human-use adjuvants. Expert Rev. Vaccines2(2), 167–188 (2003).
  • Lim S-K. Freund adjuvant induces TLR2 but not TLR4 expression in the liver of mice. Int. Immunopharmacol.3(1), 115–118 (2003).
  • Mata-Haro V, Cekic C, Martin M, Chilton PM, Casella CR, Mitchell TC. The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science316(5831), 1628–1632 (2007).
  • Ulrich JT, Myers KR. Monophosphoryl lipid A as an adjuvant. Past experiences and new directions. Pharm. Biotechnol.6, 495–524 (1995).
  • De Becker G, Moulin V, Pajak B et al. The adjuvant monophosphoryl lipid A increases the function of antigen-presenting cells. Int. Immunol.12(6), 807–815 (2000).
  • Okemoto K, Kawasaki K, Hanada K, Miura M, Nishijima M. A potent adjuvant monophosphoryl lipid A triggers various immune responses, but not secretion of IL-1{β} or activation of caspase-1. J. Immunol.176(2), 1203–1208 (2006).
  • Bowman CC, Clements JD. Differential biological and adjuvant activities of cholera toxin and Escherichia coli heat-labile enterotoxin hybrids. Infect. Immun.69(3), 1528–1535 (2001).
  • Chen X, Winkler-Pickett RT, Carbonetti NH, Ortaldo JR, Oppenheim JJ, Howard OM. Pertussis toxin as an adjuvant suppresses the number and function of CD4+CD25+ T regulatory cells. Eur. J. Immunol.36(3), 671–680 (2006).
  • Loots K, Loock MV, Vanrompay D, Goddeeris BM. CpG motifs as adjuvant in DNA vaccination against Chlamydophila psittaci in turkeys. Vaccine24(21), 4598–4601 (2006).
  • Verthelyi D, Kenney RT, Seder RA, Gam AA, Friedag B, Klinman DM. CpG oligodeoxynucleotides as vaccine adjuvants in primates. J. Immunol.168(4), 1659–1663 (2002).
  • Freund J. The mode of action of immunologic adjuvants. Bibl. Tuberc.10, 130–148 (1956).
  • Alving CR. Design and selection of vaccine adjuvants: animal models and human trials. Vaccine20(Suppl. 3), S56–S64 (2002).
  • Billiau A, Matthys P. Modes of action of Freund’s adjuvants in experimental models of autoimmune diseases. J. Leuk. Biol.70(6), 849–860 (2001).
  • Baldo V, Menegon T, Buoro S et al. [Vaccination against influenza in the elderly. Experience with adjuvant vaccines]. Ann. Ig.11(5), 369–374 (1999).
  • Menegon T, Baldo V, Bonello C, Dalla Costa D, Di Tommaso A, Trivello R. Influenza vaccines: antibody responses to split virus and MF59-adjuvanted subunit virus in an adult population. Eur. J. Epidemiol.15(6), 573–576 (1999).
  • De Donato S, Granoff D, Minutello M et al. Safety and immunogenicity of MF59-adjuvanted influenza vaccine in the elderly. Vaccine17(23–24), 3094–3101 (1999).
  • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell124(4), 783–801 (2006).
  • Genton B, Al-Yaman F, Anders R et al. Safety and immunogenicity of a three-component blood-stage malaria vaccine in adults living in an endemic area of Papua New Guinea. Vaccine18(23), 2504–2511 (2000).
  • Lopez JA, Weilenman C, Audran R et al. A synthetic malaria vaccine elicits a potent CD8+ and CD4+ T lymphocyte immune response in humans. Implications for vaccination strategies. Eur. J. Immunol.31(7), 1989–1998 (2001).
  • Slingluff CL Jr, Yamshchikov G, Neese P et al. Phase I trial of a melanoma vaccine with gp100(280–288) peptide and tetanus helper peptide in adjuvant: immunologic and clinical outcomes. Clin. Cancer Res.7(10), 3012–3024 (2001).
  • Toledo H, Baly A, Castro O et al. A Phase I clinical trial of a multi-epitope polypeptide TAB9 combined with Montanide ISA 720 adjuvant in non-HIV-1 infected human volunteers. Vaccine19(30), 4328–4336 (2001).
  • van Driel WJ, Ressing ME, Kenter GG et al. Vaccination with HPV16 peptides of patients with advanced cervical carcinoma: clinical evaluation of a Phase I–II trial. Eur. J. Cancer35(6), 946–952 (1999).
  • Hjorth RN, Bonde GM, Piner ED, Goldberg KM, Levner MH. The effect of Syntex adjuvant formulation (SAF-m) on humoral immunity to the influenza virus in the mouse. Vaccine15(5), 541–546 (1997).
  • Lidgate DM, Byars NE. Development of an emulsion-based muramyl dipeptide adjuvant formulation for vaccines. Pharm. Biotechnol.6, 313–324 (1995).
  • Singh M, O’Hagan DT. Recent advances in veterinary vaccine adjuvants. Int. J. Parasitol.33(5–6), 469–478 (2003).
  • Xiang SD, Scholzen A, Minigo G et al. Pathogen recognition and development of particulate vaccines: does size matter? Methods40(1), 1–9 (2006).
  • Gamvrellis A, Leong D, Hanley JC, Xiang SD, Mottram P, Plebanski M. Vaccines that facilitate antigen entry into dendritic cells. Immunol. Cell Biol.82(5), 506–516 (2004).
  • Cox JC, Sjolander A, Barr IG. ISCOMs and other saponin based adjuvants. Adv. Drug Deliv. Rev.32(3), 247–271 (1998).
  • Sjolander A, Cox JC, Barr IG. ISCOMs: an adjuvant with multiple functions. J. Leuk. Biol.64(6), 713–723 (1998).
  • Schnurr M, Chen Q, Shin A et al. Tumor antigen processing and presentation depend critically on dendritic cell type and the mode of antigen delivery. Blood105(6), 2465–2472 (2005).
  • Skene CD, Sutton P. Saponin-adjuvanted particulate vaccines for clinical use. Methods40(1), 53–59 (2006).
  • Shek PN, Yung BY, Stanacev NZ. Comparison between multilamellar and unilamellar liposomes in enhancing antibody formation. Immunology49(1), 37–44 (1983).
  • Allison AG, Gregoriadis G. Liposomes as immunological adjuvants. Nature252(5480), 252 (1974).
  • Tyrrell DA, Heath TD, Colley CM, Ryman BE. New aspects of liposomes. Biochim. Biophys. Acta457(3–4), 259–302 (1976).
  • van Rooijen N, van Nieuwmegen R. Use of liposomes as biodegradable and harmless adjuvants. Methods Enzymol.93, 83–95 (1983).
  • Sigal LJ, Crotty S, Andino R, Rock KL. Cytotoxic T-cell immunity to virus-infected non-haematopoietic cells requires presentation of exogenous antigen. Nature398(6722), 77–80 (1999).
  • Singh M, Srivastava I. Advances in vaccine adjuvants for infectious diseases. Curr. HIV Res.1(3), 309–320 (2003).
  • Mohammed AR, Bramwell VW, Coombes AG, Perrie Y. Lyophilisation and sterilisation of liposomal vaccines to produce stable and sterile products. Methods40(1), 30–38 (2006).
  • Altin JG, Parish CR. Liposomal vaccines – targeting the delivery of antigen. Methods40(1), 39–52 (2006).
  • Lutsiak ME, Robinson DR, Coester C, Kwon GS, Samuel J. Analysis of poly(D,L-lactic-co-glycolic acid) nanosphere uptake by human dendritic cells and macrophages in vitro. Pharm. Res.19(10), 1480–1487 (2002).
  • Newman KD, Elamanchili P, Kwon GS, Samuel J. Uptake of poly(D,L-lactic-co-glycolic acid) microspheres by antigen-presenting cells in vivo. J. Biomed. Mater. Res.60(3), 480–486 (2002).
  • Randolph GJ, Inaba K, Robbiani DF, Steinman RM, Muller WA. Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity11(6), 753–761 (1999).
  • O’Hagan DT, Singh M, Ulmer JB. Microparticle-based technologies for vaccines. Methods40(1), 10–19 (2006).
  • Kumar M, Behera AK, Lockey RF et al. Intranasal gene transfer by chitosan-DNA nanospheres protects BALB/c mice against acute respiratory syncytial virus infection. Hum. Gene Ther.13(12), 1415–1425 (2002).
  • Roy K, Mao HQ, Huang SK, Leong KW. Oral gene delivery with chitosan – DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat. Med.5(4), 387–391 (1999).
  • Pavelic K, Hadzija M, Bedrica L et al. Natural zeolite clinoptilolite: new adjuvant in anticancer therapy. J. Mol. Med.78(12), 708–720 (2001).
  • Young KR, McBurney SP, Karkhanis LU, Ross TM. Virus-like particles: designing an effective AIDS vaccine. Methods40(1), 98–117 (2006).
  • Santi L, Huang Z, Mason H. Virus-like particles production in green plants. Methods40(1), 66–76 (2006).
  • Zhang ZY, Michael JG. Orally inducible immune unresponsiveness is abrogated by IFN-γ treatment. J. Immunol.144(11), 4163–4165 (1990).
  • Marinaro M, Boyaka PN, Finkelman FD et al. Oral but not parenteral interleukin (IL)-12 redirects T helper 2 (Th2)-type responses to an oral vaccine without altering mucosal IgA responses. J. Exp. Med.185(3), 415–427 (1997).
  • Rizza P, Ferrantini M, Capone I, Belardelli F. Cytokines as natural adjuvants for vaccines: where are we now? Trends Immunol.23(8), 381–383 (2002).
  • Egilmez NK, Kilinc MO, Gu T, Conway TF. Controlled-release particulate cytokine adjuvants for cancer therapy. Endocr. Metab. Immune Disord. Drug Targets7(4), 266–270 (2007).
  • Molinier-Frenkel V, Lengagne R, Gaden F et al. Adenovirus hexon protein is a potent adjuvant for activation of a cellular immune response. J. Virol.76(1), 127–135 (2002).
  • Cribbs DH, Ghochikyan A, Vasilevko V et al. Adjuvant-dependent modulation of Th1 and Th2 responses to immunization with {β}-amyloid. Int. Immunol.15(4), 505–514 (2003).
  • Rao JB, Chamberlain RS, Bronte V et al. IL-12 is an effective adjuvant to recombinant vaccinia virus-based tumor vaccines: enhancement by simultaneous B7-1 expression. J. Immunol.156(9), 3357–3365 (1996).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.