7,370
Views
182
CrossRef citations to date
0
Altmetric
Review

Prescription omega-3 fatty acids and their lipid effects: physiologic mechanisms of action and clinical implications

, , &
Pages 391-409 | Published online: 10 Jan 2014

References

  • Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation106, 3143–3421 (2002).
  • Meigs JB, D’Agostino RB Sr, Wilson PW, Cupples LA, Nathan DM, Singer DE. Risk variable clustering in the insulin resistance syndrome. The Framingham Offspring Study. Diabetes46, 1594–1600 (1997).
  • Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third national health and nutrition examination survey. JAMA287, 356–359 (2002).
  • Chan DC, Barrett HP, Watts GF. Dyslipidemia in visceral obesity: mechanisms, implications, and therapy. Am. J. Cardiovasc. Drugs4, 227–246 (2004).
  • Bays HE, Chapman RH, Grandy S. The relationship of body mass index to diabetes mellitus, hypertension and dyslipidaemia: comparison of data from two national surveys. Int. J. Clin. Pract.61, 737–747 (2007).
  • Bays H, Blonde L, Rosenson R. Adiposopathy: how do diet, exercise and weight loss drug therapies improve metabolic disease in overweight patients? Exp. Rev. Cardiovasc. Ther.4, 871–895 (2006).
  • Bays H, Ballantyne C. Adiposopathy: why do adiposity and obesity cause metabolic disease? Future Lipidol.1, 389–420 (2006).
  • Athyros VG, Giouleme OI, Nikolaidis NL et al. Long-term follow-up of patients with acute hypertriglyceridemia-induced pancreatitis. J. Clin. Gastroenterol.34, 472–475 (2002).
  • Yadav D, Pitchumoni CS. Issues in hyperlipidemic pancreatitis. J. Clin. Gastroenterol.36, 54–62 (2003).
  • Kyriakidis AV, Raitsiou B, Sakagianni A et al. Management of acute severe hyperlipidemic pancreatitis. Digestion73, 259–264 (2006).
  • Fortson MR, Freedman SN, Webster PD III. Clinical assessment of hyperlipidemic pancreatitis. Am. J. Gastroenterol.90, 2134–2139 (1995).
  • Hopkins PN, Heiss G, Ellison RC et al. Coronary artery disease risk in familial combined hyperlipidemia and familial hypertriglyceridemia: a case–control comparison from the National Heart, Lung, and Blood Institute Family Heart Study. Circulation108, 519–523 (2003).
  • Veerkamp MJ, de Graaf J, Bredie SJH, Hendriks JCM, Demacker PNM, Stalenhoef AFH. Diagnosis of familial combined hyperlipidemia based on lipid phenotype expression in 32 families: results of a 5-year follow-up study. Arterioscler. Thromb. Vasc. Biol.22, 274–282 (2002).
  • Suviolahti E, Lilja HE, Pajukanta P. Unraveling the complex genetics of familial combined hyperlipidemia. Ann. Med.38, 337–351 (2006).
  • Garcia-Otin AL, Civeira F, Peinado-Onsurbe J, Gonzalvo C, Llobera M, Pocovi M. Acquired lipoprotein lipase deficiency associated with chronic urticaria. A new etiology for type I hyperlipoproteinemia. Eur. J. Endocrinol.141, 502–505 (1999).
  • Nauck MS, Nissen H, Hoffmann MM et al. Detection of mutations in the apolipoprotein CII gene by denaturing gradient gel electrophoresis. Identification of the splice site variant apolipoprotein CII-Hamburg in a patient with severe hypertriglyceridemia. Clin. Chem.44, 1388–1396 (1998).
  • Heath RB, Karpe F, Milne RW, Burdge GC, Wootton SA, Frayn KN. Selective partitioning of dietary fatty acids into the VLDL TG pool in the early postprandial period. J. Lipid Res.44, 2065–2072 (2003).
  • Schneeman BO, Kotite L, Todd KM, Havel RJ. Relationships between the responses of triglyceride-rich lipoproteins in blood plasma containing apolipoproteins B-48 and B-100 to a fat-containing meal in normolipidemic humans. Proc. Natl Acad. Sci. USA90, 2069–2073 (1993).
  • Gan SI, Edwards AL, Symonds CJ, Beck PL. Hypertriglyceridemia-induced pancreatitis: A case-based review. World J. Gastroenterol.12, 7197–7202 (2006).
  • Zhang JQ, Ji LL, Fogt DL, Fretwell VS. Effect of exercise duration on postprandial hypertriglyceridemia in men with metabolic syndrome. J. Appl. Physiol.103, 1339–1345 (2007).
  • Nishijima H, Satake K, Igarashi K, Morita N, Kanazawa N, Okita K. Effects of exercise in overweight Japanese with multiple cardiovascular risk factors. Med. Sci. Sports Exerc.39, 926–933 (2007).
  • Gardner CD, Kiazand A, Alhassan S et al. Comparison of the Atkins, Zone, Ornish, and LEARN diets for change in weight and related risk factors among overweight premenopausal women: the A TO Z Weight Loss Study: a randomized trial. JAMA297, 969–977 (2007).
  • Monga A, Arora A, Makkar RP, Gupta AK. Hypertriglyceridemia-induced acute pancreatitis – treatment with heparin and insulin. Indian J. Gastroenterol.22, 102–103 (2003).
  • Loo Chee-Chuen , Tan JYL. Decreasing the plasma triglyceride level in hypertriglycerideia-induced pancreatitis in pregnancy: a case report. Am. J. Obstet. Gynecol.187, 241–242 (2002).
  • Gursoy A, Kulaksizoglu M, Sahin M et al. Severe hypertriglyceridemia-induced pancreatitis during pregnancy. J. Natl Med. Assoc.98, 655–657 (2006).
  • Oh RC, Lanier JB. Management of hypertriglyceridemia. Am. Fam. Physician75, 1365–1371 (2007).
  • Bays H, Stein EA. Pharmacotherapy for dyslipidaemia – current therapies and future agents. Expert Opin. Pharmacother.4, 1901–1938 (2003).
  • Harper CR, Jacobson TA. An evidence-based approach to the use of combination drug therapy for mixed dyslipidemia. JCOM13, 57 (2006).
  • Shils ME, Shike M, Ross AC, Caballero B, Cousins RJ. Lipids, sterols, and their metabolites. In: Modern Nutrition in Health and Disease (10th Edition). Shils ME, Shike M, Ross AC, Caballero B, Cousins RJ (Eds). Lippincott Williams & Wilkins (2007).
  • Berg JM, Tymoczko JL, Stryer L. Biochemistry (6th Edition). WH Freeman and Company, NY, USA (2007).
  • Ginsberg HN, Zhang YL, Hernandez-Ono A. Regulation of plasma triglycerides in insulin resistance and diabetes. Arch. Med. Res.36, 232–240 (2005).
  • Cohn JS, Marcoux C, Davignon J. Detection, quantification, and characterization of potentially atherogenic triglyceride-rich remnant lipoproteins. Arterioscler. Thromb. Vasc. Biol.19, 2474–2486 (1999).
  • Marcoux C, Hopkins PN, Wang T et al. Remnant-like particle cholesterol and triglyceride levels of hypertriglyceridemic patients in the fed and fasted state. J. Lipid Res.41, 1428–1436 (2000).
  • Wilson DE, Hata A, Kwong LK et al. Mutations in exon 3 of the lipoprotein lipase gene segregating in a family with hypertriglyceridemia, pancreatitis, and non-insulin-dependent diabetes. J. Clin. Invest.92, 203–211 (1993).
  • Jap TS, Jenq SF, Wu YC, Chiu CY, Cheng HM. Mutations in the lipoprotein lipase gene as a cause of hypertriglyceridemia and pancreatitis in Taiwan. Pancreas27, 122–126 (2003).
  • Bays H, Abate N, Chandalia M. Adiposopathy: sick fat causes high blood sugar, high blood pressure and dyslipedmia. Future Cardiol.39–59 (2005).
  • Bays H, Mandarino L, DeFronzo RA. Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of Type 2 diabetes mellitus: peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach. J. Clin. Endocrinol. Metab.89, 463–478 (2004).
  • Chitturi S, Farrell GC. Etiopathogenesis of nonalcoholic steatohepatitis. Sem. Liver Dis.21, 27–41 (2001).
  • Svegliati-Baroni G, Candelaresi C, Saccomanno S et al. A model of insulin resistance and nonalcoholic steatohepatitis in rats: role of peroxisome proliferator-activated receptor-alpha and n-3 polyunsaturated fatty acid treatment on liver injury. Am. J. Pathol.169, 846–860 (2006).
  • Julius U. Influence of plasma free fatty acids on lipoprotein synthesis and diabetic dyslipidemia. Exp. Clin. Endocrinol. Diabetes111, 246–250 (2003).
  • Millar JS, Stone SJ, Tietge UJ et al. Short-term overexpression of DGAT1 or DGAT2 increases hepatic triglyceride but not VLDL triglyceride or apoB production. J. Lipid Res.47, 2297–2305 (2006).
  • Ginsberg HN. New perspectives on atherogenesis: role of abnormal triglyceride-rich lipoprotein metabolism. Circulation106, 2137–2142 (2002).
  • McKenney J. Dyslipidemias, atherosclerosis, and coronary heart disease. In: Applied Therapeutics: The Clinical Use of Drugs (8th Edition). Koda-Kimble MA, Young LY, Kradjan WA, Guglielmo BJ, Alldredge BK (Eds). Lipincott, Williams and Wilkins (2005).
  • Yuan G, Al-Shali KZ, Hegele RA. Hypertriglyceridemia: its etiology, effects and treatment. CMAJ176, 1113–1120 (2007).
  • Fung MA, Frohlich JJ. Common problems in the management of hypertriglyceridemia. CMAJ167, 1261–1266 (2002).
  • Ayyobi AF, Brunzell JD. Lipoprotein distribution in the metabolic syndrome, Type 2 diabetes mellitus, and familial combined hyperlipidemia. Am. J. Cardiol.92, 27J–33J (2003).
  • Dunbar RL, Rader DJ. Demystifying triglycerides: a practical approach for the clinician. Cleve. Clin. J. Med.72, 661–680 (2005).
  • Vakkilainen J, Jauhiainen M, Ylitalo K et al. LDL particle size in familial combined hyperlipidemia: effects of serum lipids, lipoprotein-modifying enzymes, and lipid transfer proteins. J. Lipid Res.43, 598–603 (2002).
  • Davignon J, Genest J Jr. Genetics of lipoprotein disorders. Endocrinol. Metab. Clin. North Am.27, 521–550 (1998).
  • Nagasaka H, Kikuta H, Chiba H et al. Two cases with transient lipoprotein lipase (LPL) activity impairment: evidence for the possible involvement of an LPL inhibitor. Eur. J. Pediatr.162, 132–138 (2003).
  • Smelt AH, de BF. Apolipoprotein E and familial dysbetalipoproteinemia: clinical, biochemical, and genetic aspects. Sem. Vasc. Med.4, 249–257 (2004).
  • Siri PW, Krauss RM. Influence of dietary carbohydrate and fat on LDL and HDL particle distributions. Curr. Atheroscler. Rep.7, 455–459 (2005).
  • Austin MA, Hokanson JE, Edwards KL. Hypertriglyceridemia as a cardiovascular risk factor. Am. J. Cardiol.81, 7B–12B (1998).
  • Sarwar N, Danesh J, Eiriksdottir G et al. Triglycerides and the risk of coronary heart disease: 10,158 incident cases among 262,525 participants in 29 Western prospective studies. Circulation115, 450–458 (2007).
  • Jones JD. Hypertriglyceridemia and coronary heart disease. Arch. Fam. Med.9, 189–190 (2000).
  • Assmann G, Schulte H, Cullen P. New and classical risk factors the Munster heart study (PROCAM). Eur. J. Med. Res.2, 237–242 (1997).
  • Stampfer MJ, Krauss RM, Ma J et al. A prospective study of triglyceride level, low-density lipoprotein particle diameter, and risk of myocardial infarction. JAMA276, 882–888 (1996).
  • Sniderman AD. Apolipoprotein B versus non-high-density lipoprotein cholesterol: and the winner is.. Circulation112, 3366–3367 (2005).
  • Ingelsson E, Sullivan LM, Murabito JM et al. Prevalence and prognostic impact of subclinical cardiovascular disease in individuals with the metabolic syndrome and diabetes. Diabetes56, 1718–1726 (2007).
  • Miller M, Ginsberg HN, Schaefer EJ. Relative atherogenicity and predictive value of non-high-density lipoprotein cholesterol for coronary heart disease. Am. J. Cardiol. (2008) (In Press).
  • Durrington PN. Can measurement of apolipoprotein B replace the lipid profile in the follow-up of patients with lipoprotein disorders? Clin. Chem.48, 401–402 (2002).
  • Bays H, McKenney J, Davidson M. Torcetrapib/atorvastatin combination therapy. Exp. Rev. Cardiovasc. Ther.3, 789–820 (2005).
  • Campos H, Moye LA, Glasser SP, Stampfer MJ, Sacks FM. Low-density lipoprotein size, pravastatin treatment, and coronary events. JAMA286, 1468–1474 (2001).
  • Pastromas S, Terzi AB, Tousoulis D, Koulouris S. Postprandial lipemia: an under-recognized atherogenic factor in patients with diabetes mellitus. Int. J. Cardiol. (2007).
  • Marschang P, Gotsch C, Kirchmair R, Kaser S, Kahler CM, Patsch JR. Postprandial, but not postabsorptive low-density lipoproteins increase the expression of intercellular adhesion molecule-1 in human aortic endothelial cells. Atherosclerosis186, 101–106 (2006).
  • Vine DF, Takechi R, Russell JC, Proctor SD. Impaired postprandial apolipoprotein-B48 metabolism in the obese, insulin-resistant JCR:LA-cp rat: increased atherogenicity for the metabolic syndrome. Atherosclerosis190, 282–290 (2007).
  • Lopez-Miranda J, Perez-Martinez P, Marin C, Moreno JA, Gomez P, Perez-Jimenez F. Postprandial lipoprotein metabolism, genes and risk of cardiovascular disease. Curr. Opin. Lipidol.17, 132–138 (2006).
  • Zilversmit DB. Atherogenesis: a postprandial phenomenon. Circulation60, 473–485 (1979).
  • Mack WJ, Krauss RM, Hodis HN. Lipoprotein subclasses in the Monitored Atherosclerosis Regression Study (MARS). Treatment effects and relation to coronary angiographic progression. Arterioscler. Thromb. Vasc. Biol.16, 697–704 (1996).
  • Nordestgaard BG, Stender S, Kjeldsen K. Severe hypertriglyceridemia, large lipoproteins and protection against atherosclerosis. Scand. J. Clin. Lab. Invest. Suppl.186, 7–12 (1987).
  • Silveira A. Postprandial triglycerides and blood coagulation. Exp. Clin. Endocrinol. Diabetes109, S527–S532 (2001).
  • Sacks FM, Alaupovic P, Moye LA et al. VLDL, apolipoproteins B, CIII, and E, and risk of recurrent coronary events in the Cholesterol and Recurrent Events (CARE) trial. Circulation102, 1886–1892 (2000).
  • Kawakami A, Aikawa M, Alcaide P, Luscinskas FW, Libby P, Sacks FM. Apolipoprotein CIII induces expression of vascular cell adhesion molecule-1 in vascular endothelial cells and increases adhesion of monocytic cells. Circulation114, 681–687 (2006).
  • Rahm JJ, Holman RT. The relationship of single dietary polyunsaturated fatty acids to fatty acid composition of lipids from subcellular particles of liver. J. Lipid Res.169–176 (2007).
  • Jump DB. The biochemistry of n-3 polyunsaturated fatty acids. J. Biol. Chem.277, 8755–8758 (2002).
  • Arterburn LM, Hall EB, Oken H. Distribution, interconversion, and dose response of n-3 fatty acids in humans. Am. J. Clin. Nutr.83, 1467S–1476S (2006).
  • Kris-Etherton PM, Harris WS, Appel LJ. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation106, 2747–2757 (2002).
  • Mozaffarian D, Rimm EB. Fish intake, contaminants, and human health: evaluating the risks and the benefits. JAMA296, 1885–1899 (2006).
  • Harris WS, Ginsberg HN, Arunakul N et al. Safety and efficacy of Omacor in severe hypertriglyceridemia. J. Cardiovasc. Risk4, 385–391 (1997).
  • Harris WS. n-3 fatty acids and lipoproteins: comparison of results from human and animal studies. Lipids31, 243–252 (1996).
  • Lewis A, Lookinland S, Beckstrand RL, Tiedeman ME. Treatment of hypertriglyceridemia with omega-3 fatty acids: a systematic review. J. Am. Acad. Nurse Pract.16, 384–395 (2004).
  • Park Y, Harris WS. Omega-3 fatty acid supplementation accelerates chylomicron triglyceride clearance. J. Lipid Res.44, 455–463 (2003).
  • Williams CM, Moore F, Morgan L, Wright J. Effects of n-3 fatty acids on postprandial triacylglycerol and hormone concentrations in normal subjects. Br. J. Nutr.68, 655–666 (1992).
  • Weintraub MS, Zechner R, Brown A, Eisenberg S, Breslow JL. Dietary polyunsaturated fats of the W-6 and W-3 series reduce postprandial lipoprotein levels. Chronic and acute effects of fat saturation on postprandial lipoprotein metabolism. J. Clin. Invest.82, 1884–1893 (1988).
  • Bays H. Clinical overview of Omacor: a concentrated formulation of omega-3 polyunsaturated fatty acids. Am. J. Cardiol.98, 71i–76i (2006).
  • Wendland E, Farmer A, Glasziou P, Neil A. Effect of alpha linolenic acid on cardiovascular risk markers: a systematic review. Heart92, 166–169 (2006).
  • Wilkinson P, Leach C, Ah-Sing EE et al. Influence of alpha-linolenic acid and fish-oil on markers of cardiovascular risk in subjects with an atherogenic lipoprotein phenotype. Atherosclerosis181, 115–124 (2005).
  • Bryhn M, Hansteen H, Schanche T, Aakre SE. The bioavailability and pharmacodynamics of different concentrations of omega-3 acid ethyl esters. Prostaglandins Leukot. Essent. Fatty Acids75, 19–24 (2006).
  • Bays HE. Safety considerations with omega-3 fatty acid therapy. Am. J. Cardiol.99, 35C–43C (2007).
  • Brunton S, Collins N. Differentiating prescription omega-3-acid ethyl esters (P-OM3) from dietarty-supplement omega-3-fatty acids. Curr. Med. Res. Opin.23, 1139–1145 (2007).
  • Collins N, Tighe AP, Brunton SA, Kris-Etherton PM. Differences between dietary supplement and prescription drug omega-3 fatty acid formulations: a legislative and regulatory perspective. J. Am. Coll. Nutr. (2008) (In Press).
  • Reliant Pharmaceuticals. Lovaza™ (omega-3-acid ethyl esters) capsules (2007).
  • Vanschoonbeek K, Feijge MA, Paquay M et al. Variable hypocoagulant effect of fish oil intake in humans: modulation of fibrinogen level and thrombin generation. Arterioscler. Thrombos.: J. Vasc. Biol.24, 1734–1740 (2004).
  • Mueller BA, Talbert RL. Biological mechanisms and cardiovascular effects of omega-3 fatty acids. Clin. Pharm.7, 795–807 (1988).
  • Harris WS. Expert opinion: omega-3 fatty acids and bleeding-cause for concern? Am. J. Cardiol.99, 44C–46C (2007).
  • Bender NK, Kraynak MA, Chiquette E, Linn WD, Clark GM, Bussey HI. Effects of Marine Fish Oils on the Anticoagulation Status of Patients Receiving Chronic Warfarin Therapy. J. Thromb. Thrombolysis5, 257–261 (1998).
  • Harris WS, Miller M, Tighe AP, Davidson MH, Schaefer EJ. Omega-3 fatty acids and coronoary heart disease risk: clinical and mechanistic perspectives. Atherosclerosis (2007) (In Press).
  • Harris WS, Bulchandani D. Why do omega-3 fatty acids lower serum triglycerides? Curr. Opin. Lipidol.17, 387–393 (2006).
  • Yoshikawa T, Shimano H, Memiya-Kudo M et al. Identification of liver X receptor-retinoid X receptor as an activator of the sterol regulatory element-binding protein 1c gene promoter. Mol. Cell Biol.21, 2991–3000 (2001).
  • Horton JD, Bashmakov Y, Shimomura I, Shimano H. Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. Proc. Natl Acad. Sci. USA95, 5987–5992 (1998).
  • Le Jossic-Corcos C, Gonthier C, Zaghini I, Logette E, Shechter I, Bournot P. Hepatic farnesyl diphosphate synthase expression is suppressed by polyunsaturated fatty acids. Biochem. J.385, 787–794 (2005).
  • Yoshikawa T, Shimano H, Yahagi N et al. Polyunsaturated fatty acids suppress sterol regulatory element-binding protein 1c promoter activity by inhibition of liver X receptor (LXR) binding to LXR response elements. J. Biol. Chem.277, 1705–1711 (2002).
  • Kramer JA, LeDeaux J, Butteiger D et al. Transcription profiling in rat liver in response to dietary docosahexaenoic acid implicates stearoyl-coenzyme a desaturase as a nutritional target for lipid lowering. J. Nutr.133, 57–66 (2003).
  • Zaima N, Sugawara T, Goto D, Hirata T. Trans geometric isomers of EPA decrease LXRalpha-induced cellular triacylglycerol via suppression of SREBP-1c and PGC-1β. J. Lipid Res.47, 2712–2717 (2006).
  • Davidson MH. Mechanisms for the hypotriglyceridemic effect of marine omega-3 fatty acids. Am. J. Cardiol.98, 27i–33i (2006).
  • Dagnelie PC, Rietveld T, Swart GR, Stijnen T, van den Berg JW. Effect of dietary fish oil on blood levels of free fatty acids, ketone bodies and triacylglycerol in humans. Lipids29, 41–45 (1994).
  • Parks JS, Johnson FL, Wilson MD, Rudel LL. Effect of fish oil diet on hepatic lipid metabolism in nonhuman primates: lowering of secretion of hepatic triglyceride but not apoB. J. Lipid Res.31, 455–466 (1990).
  • Khan S, Minihane AM, Talmud PJ et al. Dietary long-chain n-3 PUFAs increase LPL gene expression in adipose tissue of subjects with an atherogenic lipoprotein phenotype. J. Lipid Res.43, 979–985 (2002).
  • Chambrier C, Bastard JP, Rieusset J et al. Eicosapentaenoic acid induces mRNA expression of peroxisome proliferator-activated receptor gamma. Obes. Res.10, 518–525 (2002).
  • Leibowitz MD, Fievet C, Hennuyer N et al. Activation of PPARdelta alters lipid metabolism in db/db mice. FEBS Lett.473, 333–336 (2000).
  • Zhao A, Yu J, Lew JL, Huang L, Wright SD, Cui J. Polyunsaturated fatty acids are FXR ligands and differentially regulate expression of FXR targets. DNA Cell Biol.23, 519–526 (2004).
  • Shachter NS. Apolipoproteins C-I and C-III as important modulators of lipoprotein metabolism. Curr. Opin. Lipidol.12, 297–304 (2001).
  • Jong MC, Hofker MH, Havekes LM. Role of ApoCs in lipoprotein metabolism: functional differences between ApoC1, ApoC2, and ApoC3. Arterioscler. Thromb. Vasc. Biol.19, 472–484 (1999).
  • Claudel T, Inoue Y, Barbier O et al. Farnesoid X receptor agonists suppress hepatic apolipoprotein CIII expression. Gastroenterology125, 544–555 (2003).
  • Kast HR, Nguyen CM, Sinal CJ et al. Farnesoid X-activated receptor induces apolipoprotein C-II transcription: a molecular mechanism linking plasma triglyceride levels to bile acids. Mol. Endocrinol.15, 1720–1728 (2001).
  • Sirvent A, Claudel T, Martin G et al. The farnesoid X receptor induces very low density lipoprotein receptor gene expression. FEBS Lett.566, 173–177 (2004).
  • Durrington PN, Bhatnagar D, Mackness MI et al. An omega-3 polyunsaturated fatty acid concentrate administered for one year decreased triglycerides in simvastatin treated patients with coronary heart disease and persisting hypertriglyceridaemia. Heart85, 544–548 (2001).
  • Chan DC, Watts GF, Barrett PH, Beilin LJ, Redgrave TG, Mori TA. Regulatory effects of HMG CoA reductase inhibitor and fish oils on apolipoprotein B-100 kinetics in insulin-resistant obese male subjects with dyslipidemia. Diabetes51, 2377–2386 (2002).
  • Nordoy A, Bonaa KH, Nilsen H, Berge RK, Hansen JB, Ingebretsen OC. Effects of simvastatin and omega-3 fatty acids on plasma lipoproteins and lipid peroxidation in patients with combined hyperlipidaemia. J. Intern. Med.243, 163–170 (1998).
  • Davidson MH, Stein EA, Bays HE et al. Efficacy and tolerability of adding prescription omega-3 fatty acids 4 g/d to simvastatin 40 mg/d in hypertriglyceridemic patients: an 8-week, randomized, double-blind, placebo-controlled study. Clin. Ther.29, 1354–1367 (2007).
  • Ginsberg HN, Le NA, Gibson JC. Regulation of the production and catabolism of plasma low density lipoproteins in hypertriglyceridemic subjects. Effect of weight loss. J. Clin. Invest.75, 614–623 (1985).
  • Simopoulos AP. Omega-3 fatty acids in inflammation and autoimmune diseases. J. Am. Coll. Nutr.21, 495–505 (2002).
  • Zamaria N. Alteration of polyunsaturated fatty acid status and metabolism in health and disease. Reprod. Nutrit. Develop.44, 273–282 (2004).
  • Cardoso CR, Souza MA, Ferro EA, Favoreto S Jr, Pena JD. Influence of topical administration of n-3 and n-6 essential and n-9 nonessential fatty acids on the healing of cutaneous wounds. Wound Rep. Reg.12, 235–243 (2004).
  • Logan AC. Omega-3 fatty acids and acne. Arch. Dermatol.139, 941–942 (2003).
  • DiGiacomo RA, Kremer JM, Shah DM. Fish-oil dietary supplementation in patients with Raynaud’s phenomenon: a double-blind, controlled, prospective study. Am. J. Med.86, 158–164 (1989).
  • Donadio JV Jr. Omega-3 polyunsaturated fatty acids: a potential new treatment of immune renal disease. Mayo Clin. Proc.66, 1018–1028 (1991).
  • Devereux G, Seaton A. Diet as a risk factor for atopy and asthma. J. Allergy Clin. Immunol.115, 1109–1117 (2005).
  • Donadio JV, Grande JP. The role of fish oil/omega-3 fatty acids in the treatment of IgA nephropathy. Semin. Nephrol.24, 225–243 (2004).
  • Mickleborough TD. Dietary omega-3 polyunsaturated fatty acid supplementation and airway hyperresponsiveness in asthma. J. Asthma42, 305–314 (2005).
  • Mickleborough TD, Rundell KW. Dietary polyunsaturated fatty acids in asthma- and exercise-induced bronchoconstriction. Eur. J. Clin. Nutr.59, 1335–1346 (2005).
  • Wong KW. Clinical efficacy of n-3 fatty acid supplementation in patients with asthma. J. Am. Diet Assoc.105, 98–105 (2005).
  • Simopoulos AP. Essential fatty acids in health and chronic diseases. Forum of Nutrition56, 67–70 (2003).
  • Curtis CL, Rees SG, Cramp J et al. Effects of n-3 fatty acids on cartilage metabolism. Proc. Nutrit. Soc.61, 381–389 (2002).
  • Saldeen P, Saldeen T. Women and omega-3 Fatty acids. Obstet. Gynecol. Surv.59, 722–730 (2004).
  • Bourre JM. Dietary omega-3 Fatty acids and psychiatry: mood, behaviour, stress, depression, dementia and aging. J. Nutr. Health Aging9, 31–38 (2005).
  • Lin PY, Su KP. A meta-analytic review of double-blind, placebo-controlled trials of antidepressant efficacy of omega-3 fatty acids. J. Clin. Psychiatry68, 1056–1061 (2007).
  • Wozniak J, Biederman J, Mick E et al. Omega-3 fatty acid monotherapy for pediatric bipolar disorder: a prospective open-label trial. Eur. Neuropsychopharmacol.17, 440–447 (2007).
  • Amminger GP, Berger GE, Schafer MR, Klier C, Friedrich MH, Feucht M. Omega-3 fatty acids supplementation in children with autism: a double-blind randomized, placebo-controlled pilot study. Biol. Psychiatr.61, 551–553 (2007).
  • Peet M, Stokes C. Omega-3 fatty acids in the treatment of psychiatric disorders. Drugs65, 1051–1059 (2005).
  • Young G, Conquer J. Omega-3 fatty acids and neuropsychiatric disorders. Reprod. Nutr. Develop.45, 1–28 (2005).
  • Puri BK, Bydder GM, Counsell SJ et al. MRI and neuropsychological improvement in Huntington disease following ethyl-EPA treatment. Neuroreport13, 123–126 (2002).
  • Schwarz S, Leweling H. Multiple sclerosis and nutrition. Multiple Sclerosis11, 24–32 (2005).
  • Ayton AK, Azaz A, Horrobin DF. A pilot open case series of ethyl-EPA supplementation in the treatment of anorexia nervosa. Prostaglandins Leukot. Essent. Fatty Acids71, 205–209 (2004).
  • Kitajka K, Sinclair AJ, Weisinger RS et al. Effects of dietary omega-3 polyunsaturated fatty acids on brain gene expression. Proc. Natl Acad. Sci. USA101, 10931–10936 (2004).
  • Decsi T, Koletzko B. N-3 fatty acids and pregnancy outcomes. Curr. Opin. Clin. Nutr. Metab. Care8, 161–166 (2005).
  • Alessandri JM, Guesnet P, Vancassel S et al. Polyunsaturated fatty acids in the central nervous system: evolution of concepts and nutritional implications throughout life. Reprod. Nutrit. Develop.44, 509–538 (2004).
  • Bourre JM. Roles of unsaturated fatty acids (especially omega-3 fatty acids) in the brain at various ages and during ageing. J. Nutr. Health Aging8, 163–174 (2004).
  • SanGiovanni JP, Chew EY. The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog. Ret. Eye Res.24, 87–138 (2005).
  • Cho E, Hung S, Willett WC et al. Prospective study of dietary fat and the risk of age-related macular degeneration. Am. J. Clin. Nutr.73, 209–218 (2001).
  • Facchinetti F, Fazzio M, Venturini P. Polyunsaturated fatty acids and risk of preterm delivery. Eur. Rev. Med. Pharmacol. Sci.9, 41–48 (2005).
  • Gazvani MR, Smith L, Haggarty P, Fowler PA, Templeton A. High omega-3: omega-6 fatty acid ratios in culture medium reduce endometrial-cell survival in combined endometrial gland and stromal cell cultures from women with and without endometriosis. Fertil. Steril.76, 717–722 (2001).
  • Terry PD, Rohan TE, Wolk A. Intakes of fish and marine fatty acids and the risks of cancers of the breast and prostate and of other hormone-related cancers: a review of the epidemiologic evidence. Am. J. Clin. Nutr.77, 532–543 (2003).
  • Terry PD, Terry JB, Rohan TE. Long-chain (n-3) fatty acid intake and risk of cancers of the breast and the prostate: recent epidemiological studies, biological mechanisms, and directions for future research. J. Nutr.134, 3412S–3420S (2004).
  • Albino AP, Juan G, Traganos F et al. Cell cycle arrest and apoptosis of melanoma cells by docosahexaenoic acid: association with decreased pRb phosphorylation. Cancer Res.60, 4139–4145 (2000).
  • Cawood AL, Carroll MP, Wootton SA, Calder PC. Is there a case for n-3 fatty acid supplementation in cystic fibrosis? Curr. Opin. Clin. Nutr. Metab. Care8, 153–159 (2005).
  • Tamizi fB, Tamizi B. Treatment of chronic fatigue syndrome by dietary supplementation with omega-3 fatty acids – a good idea? Med. Hypotheses58, 249–250 (2002).
  • Nettleton JA, Katz R. n-3 long-chain polyunsaturated fatty acids in Type 2 diabetes: a review. J. Am. Diet Assoc.105, 428–440 (2005).
  • Harris WS. Are omega-3 fatty acids the most important nutritional modulators of coronary heart disease risk? Curr. Atheroscler. Rep.6, 447–452 (2004).
  • Mozaffarian D, Psaty BM, Rimm EB et al. Fish intake and risk of incident atrial fibrillation. Circulation110, 368–373 (2004).
  • Ismail HM. The role of omega-3 fatty acids in cardiac protection: an overview. Front. Biosci.10, 1079–1088 (2005).
  • Christensen JH. n-3 fatty acids and the risk of sudden cardiac death. Emphasis on heart rate variability. Dan. Med. Bull.50, 347–367 (2003).
  • Schrepf R, Limmert T, Claus WP, Theisen K, Sellmayer A. Immediate effects of n-3 fatty acid infusion on the induction of sustained ventricular tachycardia. Lancet363, 1441–1442 (2004).
  • Geelen A, Zock PL, Brouwer IA et al. Effect of n-3 fatty acids from fish on electrocardiographic characteristics in patients with frequent premature ventricular complexes. Br. J. Nutr.93, 787–790 (2005).
  • Raitt MH, Connor WE, Morris C et al. Fish oil supplementation and risk of ventricular tachycardia and ventricular fibrillation in patients with implantable defibrillators: a randomized controlled trial. JAMA293, 2884–2891 (2005).
  • Frost L, Vestergaard P. n-3 Fatty acids consumed from fish and risk of atrial fibrillation or flutter: the Danish Diet, Cancer, and Health Study. Am. J. Clin. Nutr.81, 50–54 (2005).
  • Lee KW, Hamaad A, MacFadyen RJ, Lip GY. Effects of dietary fat intake in sudden death: reduction of death with omega-3 fatty acids. Curr. Cardiol. Rep.6, 371–378 (2004).
  • GISSI-Prevenzione Investigators. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico. Lancet354, 447–455 (1999).
  • Burr ML, Fehily AM, Gilbert JF et al. Effects of changes in fat, fish, and fibre intakes on death and myocardial reinfarction: diet and reinfarction trial (DART). Lancet2, 757–761 (1989).
  • He K, Song Y, Daviglus ML et al. Accumulated evidence on fish consumption and coronary heart disease mortality: a meta-analysis of cohort studies. Circulation109, 2705–2711 (2004).
  • Harris WS. n-3 fatty acids and serum lipoproteins: human studies. Am. J. Clin. Nutr.65, 1645S–1654S (1997).
  • Abbey M, Clifton P, Kestin M, Belling B, Nestel P. Effect of fish oil on lipoproteins, lecithin:cholesterol acyltransferase, and lipid transfer protein activity in humans. Arteriosclerosis10, 85–94 (1990).
  • Lu G, Windsor SL, Harris WS. Omega-3 fatty acids alter lipoprotein subfraction distributions and the in vitro conversion of very low density lipoproteins to low density lipoproteins. J. Nutr. Biochem.10, 151–158 (1999).
  • Mori TA, Burke V, Puddey IB et al. Purified eicosapentaenoic and docosahexaenoic acids have differential effects on serum lipids and lipoproteins, LDL particle size, glucose, and insulin in mildly hyperlipidemic men. Am. J. Clin. Nutr.71, 1085–1094 (2000).
  • Suzukawa M, Abbey M, Howe PR, Nestel PJ. Effects of fish oil fatty acids on low density lipoprotein size, oxidizability, and uptake by macrophages. J. Lipid Res.36, 473–484 (1995).
  • Rivellese AA, Maffettone A, Vessby B et al. Effects of dietary saturated, monounsaturated and n-3 fatty acids on fasting lipoproteins, LDL size and post-prandial lipid metabolism in healthy subjects. Atherosclerosis167, 149–158 (2003).
  • Calabresi L, Villa B, Canavesi M et al. An omega-3 polyunsaturated fatty acid concentrate increases plasma high-density lipoprotein 2 cholesterol and paraoxonase levels in patients with familial combined hyperlipidemia. Metabolism53, 153–158 (2004).
  • Sanders TA. Dietary fat and postprandial lipids. Curr. Atheroscler. Rep.5, 445–451 (2003).
  • von Schacky C. The role of omega-3 fatty acids in cardiovascular disease. Curr. Atheroscler. Rep.5, 139–145 (2003).
  • Schmitz PG, McCloud LK, Reikes ST, Leonard CL, Gellens ME. Prophylaxis of hemodialysis graft thrombosis with fish oil: double-blind, randomized, prospective trial. J. Am. Soc. Nephrol.13, 184–190 (2002).
  • Cartwright IJ, Pockley AG, Galloway JH, Greaves M, Preston FE. The effects of dietary omega-3 polyunsaturated fatty acids on erythrocyte membrane phospholipids, erythrocyte deformability and blood viscosity in healthy volunteers. Atherosclerosis55, 267–281 (1985).
  • Kaminski WE, Jendraschak E, Kiefl R, von Schacky C. Dietary omega-3 fatty acids lower levels of platelet-derived growth factor mRNA in human mononuclear cells. Blood81, 1871–1879 (1993).
  • Mayer K, Merfels M, Muhly-Reinholz M et al. Omega-3 fatty acids suppress monocyte adhesion to human endothelial cells: role of endothelial PAF generation. Am. J. Physiol. Heart Circ. Physiol.283, H811–H818 (2002).
  • von Schacky C, Baumann K, Angerer P. The effect of n-3 fatty acids on coronary atherosclerosis: results from SCIMO, an angiographic study, background and implications. Lipids36(Suppl.), S99–S102 (2001).
  • Mori TA, Beilin LJ. Omega-3 fatty acids and inflammation. Curr. Atheroscler. Rep.6, 461–467 (2004).
  • Kim DN, Eastman A, Baker JE et al. Fish oil, atherogenesis, and thrombogenesis. Ann. NY Acad. Sci.748, 474–480 (1995).
  • Sethi S. Inhibition of leukocyte-endothelial interactions by oxidized omega-3 fatty acids: a novel mechanism for the anti-inflammatory effects of omega-3 fatty acids in fish oil. Redox Rep.7, 369–378 (2002).
  • Ginsberg HN. Lipoprotein metabolism and its relationship to atherosclerosis. Med. Clin. North Am.78, 1–20 (1994).
  • McKeone BJ, Osmundsen K, Brauchi D et al. Alterations in serum phosphatidylcholine fatty acyl species by eicosapentaenoic and docosahexaenoic ethyl esters in patients with severe hypertriglyceridemia. J. Lipid Res.38, 429–436 (1997).
  • Abe Y, El-Masri B, Kimball KT et al. Soluble cell adhesion molecules in hypertriglyceridemia and potential significance on monocyte adhesion. Arterioscler. Thromb. J. Vasc. Biol.18, 723–731 (1998).
  • Pownall HJ, Brauchi D, Kilinc C et al. Correlation of serum triglyceride and its reduction by omega-3 fatty acids with lipid transfer activity and the neutral lipid compositions of high-density and low-density lipoproteins. Atherosclerosis143, 285–297 (1999).
  • Westphal S, Orth M, Ambrosch A, Osmundsen K, Luley C. Postprandial chylomicrons and VLDLs in severe hypertriacylglycerolemia are lowered more effectively than are chylomicron remnants after treatment with n-3 fatty acids. Am. J. Clin. Nutr.71, 914–920 (2000).
  • Stalenhoef AF, de GJ, Wittekoek ME, Bredie SJ, Demacker PN, Kastelein JJ. The effect of concentrated n-3 fatty acids versus gemfibrozil on plasma lipoproteins, low density lipoprotein heterogeneity and oxidizability in patients with hypertriglyceridemia. Atherosclerosis153, 129–138 (2000).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.