118
Views
61
CrossRef citations to date
0
Altmetric
Review

HDL-replacement therapy: mechanism of action, types of agents and potential clinical indications

, &
Pages 1203-1215 | Published online: 10 Jan 2014

References

  • Barr DP, Russ EM, Eder HA. Protein–lipid relationships in human plasma. II. In atherosclerosis and related conditions. Am. J. Med.11, 480–493 (1951).
  • Chhabria MT, Suhagia BN, Brahmkshatriya PS. HDL elevation and lipid lowering therapy: current scenario and future perspectives. Recent Patents Cardiovasc. Drug Discov.2, 214–227 (2007).
  • Wong NC. Novel therapies to increase apolipoprotein AI and HDL for the treatment of atherosclerosis. Curr. Opin. Investig. Drugs8, 718–728 (2007).
  • Sacks FM. The relative role of low-density lipoprotein cholesterol and high-density lipoprotein cholesterol in coronary artery disease: evidence from large-scale statin and fibrate trials. Am. J. Cardiol.88, N14–N18 (2001).
  • Baigent C, Keech A, Kearney PM et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet366, 1267–1278 (2005).
  • Guyton JR. Niacin in cardiovascular prevention: mechanisms, efficacy, and safety. Curr. Opin. Lipidol.18, 415–420 (2007).
  • Joy T, Hegele RA. Is raising HDL a futile strategy for atheroprotection? Nat. Rev. Drug Discov.7, 143–155 (2008).
  • Kastelein JJ, van Leuven SI, Burgess L et al. Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia. N. Engl. J. Med.356, 1620–1630 (2007).
  • Barter PJ, Caulfield M, Eriksson M et al. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med.357, 2109–2122 (2007).
  • Brewer HB Jr, Remaley AT, Neufeld EB, Basso F, Joyce C. Regulation of plasma high-density lipoprotein levels by the ABCA1 transporter and the emerging role of high-density lipoprotein in the treatment of cardiovascular disease. Arterioscler. Thromb. Vasc. Biol.24, 1755–1760 (2004).
  • Newton RS, Krause BR. HDL therapy for the acute treatment of atherosclerosis. Atheroscler. Suppl.3, 31–38 (2002).
  • Conca P, Franceschini G. Synthetic HDL as a new treatment for atherosclerosis regression: has the time come? Nutr. Metab. Cardiovasc. Dis.18(4), 329–335 (2008).
  • Calabresi L, Sirtori CR, Paoletti R, Franceschini G. Recombinant apolipoprotein A-IMilano for the treatment of cardiovascular diseases. Curr. Atheroscler. Rep.8, 163–167 (2006).
  • Marchesi M, Sirtori CR. Therapeutic use of the high-density lipoprotein protein and peptides. Expert Opin. Investig. Drugs15, 227–241 (2006).
  • Yancey PG, Bortnick AE, Kellner-Weibel G, de la Llera-Moya M, Phillips MC, Rothblat GH. Importance of different pathways of cellular cholesterol efflux. Arterioscler. Thromb. Vasc. Biol.23, 712–719 (2003).
  • Basso F, Freeman L, Knapper CL et al. Role of the hepatic ABCA1 transporter in modulating intrahepatic cholesterol and plasma HDL cholesterol concentrations. J. Lipid Res.44, 296–302 (2003).
  • Brunham LR, Kruit JK, Iqbal J et al. Intestinal ABCA1 directly contributes to HDL biogenesis in vivo. J. Clin. Invest.116, 1052–1062 (2006).
  • Nofer JR, Remaley AT. Tangier disease: still more questions than answers. Cell. Mol. Life Sci.62, 2150–2160 (2005).
  • Oram JF, Vaughan AM. ATP-binding cassette cholesterol transporters and cardiovascular disease. Circ. Res.99, 1031–1043 (2006).
  • Cavelier C, Lorenzi I, Rohrer L, von Eckardstein A. Lipid efflux by the ATP-binding cassette transporters ABCA1 and ABCG1. Biochim. Biophys. Acta1761, 655–666 (2006).
  • Williams DL, Connelly MA, Temel RE et al. Scavenger receptor BI and cholesterol trafficking. Curr. Opin. Lipidol.10, 329–339 (1999).
  • Out R, Hoekstra M, Habets K et al. Combined deletion of macrophage ABCA1 and ABCG1 leads to massive lipid accumulation in tissue macrophages and distinct atherosclerosis at relatively low plasma cholesterol levels. Arterioscler. Thromb. Vasc. Biol.28, 258–264 (2008).
  • Yvan-Charvet L, Ranalletta M, Wang N et al. Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. J. Clin. Invest.117, 3900–3908 (2007).
  • Santamarina-Fojo S, Lambert G, Hoeg JM, Brewer HB Jr. Lecithin-cholesterol acyltransferase: role in lipoprotein metabolism, reverse cholesterol transport and atherosclerosis. Curr. Opin. Lipidol.11, 267–275 (2000).
  • Asztalos BF, Schaefer EJ, Horvath KV et al. Role of LCAT in HDL remodeling: investigation of LCAT deficiency states. J. Lipid Res.48, 592–599 (2007).
  • Connelly MA, Williams DL. SR-BI and HDL cholesteryl ester metabolism. Endocr. Res.30, 697–703 (2004).
  • de Grooth GJ, Klerkx AH, Stroes ES, Stalenhoef AF, Kastelein JJ, Kuivenhoven JA. A review of CETP and its relation to atherosclerosis. J. Lipid Res.45, 1967–1974 (2004).
  • Bjorkhem I, Lund E, Rudling M. Coordinate regulation of cholesterol 7 α-hydroxylase and HMG-CoA reductase in the liver. Subcell. Biochem.28, 23–55 (1997).
  • Barter PJ, Rye KA. Relationship between the concentration and anti-atherogenic activity of high-density lipoproteins. Curr. Opin. Lipidol.17, 399–403 (2006).
  • Mineo C, Deguchi H, Griffin JH, Shaul PW. Endothelial and antithrombotic actions of HDL. Circ. Res.98, 1352–1364 (2006).
  • Lerch PG, Spycher MO, Doran JE. Reconstituted high density lipoprotein (rHDL) modulates platelet activity in vitro and ex vivo. Thromb. Haemost.80, 316–320 (1998).
  • Norata GD, Banfi C, Pirillo A et al. Oxidised-HDL3 induces the expression of PAI-1 in human endothelial cells. Role of p38MAPK activation and mRNA stabilization. Br. J. Haematol.127, 97–104 (2004).
  • Barter PJ, Nicholls S, Rye KA, Anantharamaiah GM, Navab M, Fogelman AM. Antiinflammatory properties of HDL. Circ. Res.95, 764–772 (2004).
  • Navab M, Anantharamaiah GM, Fogelman AM. The role of high-density lipoprotein in inflammation. Trends Cardiovasc. Med.15, 158–161 (2005).
  • Ansell BJ, Watson KE, Fogelman AM, Navab M, Fonarow GC. High-density lipoprotein function recent advances. J. Am. Coll. Cardiol.46, 1792–1798 (2005).
  • Navab M, Ananthramaiah GM, Reddy ST et al. The double jeopardy of HDL. Ann. Med.37, 173–178 (2005).
  • Navab M, Ananthramaiah GM, Reddy ST et al. The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. J. Lipid Res.45, 993–1007 (2004).
  • Han R, Lai R, Ding Q et al. Apolipoprotein A-I stimulates AMP-activated protein kinase and improves glucose metabolism. Diabetologia50, 1960–1968 (2007).
  • Brunham LR, Kruit JK, Pape TD et al. β-cell ABCA1 influences insulin secretion, glucose homeostasis and response to thiazolidinedione treatment. Nat. Med.13, 340–347 (2007).
  • Mastorikou M, Mackness M, Mackness B. Defective metabolism of oxidized phospholipid by HDL from people with type 2 diabetes. Diabetes55, 3099–3103 (2006).
  • Persegol L, Verges B, Foissac M, Gambert P, Duvillard L. Inability of HDL from type 2 diabetic patients to counteract the inhibitory effect of oxidised LDL on endothelium-dependent vasorelaxation. Diabetologia49, 1380–1386 (2006).
  • Passarelli M, Tang C, McDonald TO et al. Advanced glycation end product precursors impair ABCA1-dependent cholesterol removal from cells. Diabetes54, 2198–2205 (2005).
  • Nieuwdorp M, Vergeer M, Bisoendial RJ et al. Reconstituted HDL infusion restores endothelial function in patients with type 2 diabetes mellitus. Diabetologia51, 1081–1084 (2008).
  • Kobayashi K, Lopez LR, Shoenfeld Y, Matsuura E. The role of innate and adaptive immunity to oxidized low-density lipoprotein in the development of atherosclerosis. Ann. NY Acad. Sci.1051, 442–454 (2005).
  • Villarroel F, Bastias A, Casado A, Amthauer R, Concha MI. Apolipoprotein A-I, an antimicrobial protein in Oncorhynchus mykiss: evaluation of its expression in primary defence barriers and plasma levels in sick and healthy fish. Fish Shellfish Immunol.23, 197–209 (2007).
  • James RW. A long and winding road: defining the biological role and clinical importance of paraoxonases. Clin. Chem. Lab. Med.44, 1052–1059 (2006).
  • Movva R, Rader DJ. Laboratory assessment of HDL heterogeneity and function. Clin. Chem.54, 788–800 (2008).
  • Remaley AT, Warnick GR. High density lipoprotein: what is the best way to measure its anti-atherogenic potential? Expert Opin. Med. Diagn.2(7), 773–788 (2008).
  • Vaisar T, Pennathur S, Green PS et al. Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J. Clin. Invest.117, 746–756 (2007).
  • Nofer JR, van der GM, Tolle M et al. HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3. J. Clin. Invest.113, 569–581 (2004).
  • Chen CL, Huang SS, Huang JS. Cholesterol modulates cellular TGF-β responsiveness by altering TGF-β binding to TGF-β receptors. J. Cell. Physiol.215, 223–233 (2008).
  • Chen CL, Liu IH, Fliesler SJ, Han X, Huang SS, Huang JS. Cholesterol suppresses cellular TGF-β responsiveness: implications in atherogenesis. J. Cell. Sci.120, 3509–3521 (2007).
  • Trogan E, Feig JE, Dogan S et al. Gene expression changes in foam cells and the role of chemokine receptor CCR7 during atherosclerosis regression in ApoE-deficient mice. Proc. Natl Acad. Sci. USA103, 3781–3786 (2006).
  • Terasaka N, Wang N, Yvan-Charvet L, Tall AR. High-density lipoprotein protects macrophages from oxidized low-density lipoprotein-induced apoptosis by promoting efflux of 7-ketocholesterol via ABCG1. Proc. Natl Acad. Sci. USA104, 15093–15098 (2007).
  • Badimon JJ, Badimon L, Fuster V. Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterol-fed rabbit. J. Clin. Invest.85, 1234–1241 (1990).
  • Kaul S, Rukshin V, Santos R et al. Intramural delivery of recombinant apolipoprotein A-IMilano/phospholipid complex (ETC-216) inhibits in-stent stenosis in porcine coronary arteries. Circulation107, 2551–2554 (2003).
  • Carlson LA. Effect of a single infusion of recombinant human proapolipoprotein A-I liposomes (synthetic HDL) on plasma lipoproteins in patients with low high density lipoprotein cholesterol. Nutr. Metab. Cardiovasc. Dis.5, 85–91 (1995).
  • Eriksson M, Carlson LA, Miettinen TA, Angelin B. Stimulation of fecal steroid excretion after infusion of recombinant proapolipoprotein A-I. Potential reverse cholesterol transport in humans. Circulation100, 594–598 (1999).
  • Bisoendial RJ, Hovingh GK, Levels JH et al. Restoration of endothelial function by increasing high-density lipoprotein in subjects with isolated low high-density lipoprotein. Circulation107, 2944–2948 (2003).
  • Nanjee MN, Crouse JR, King JM et al. Effects of intravenous infusion of lipid-free apo A-I in humans. Arterioscler. Thromb. Vasc. Biol.16, 1203–1214 (1996).
  • Franceschini G, Sirtori CR, Capurso A, Weisgraber KH, Mahley RW. A-IMilano apoprotein. Decreased high density lipoprotein cholesterol levels with significant lipoprotein modifications and without clinical atherosclerosis in an Italian family. J. Clin. Invest.66, 892–900 (1980).
  • Weisgraber KH, Rall SC Jr, Bersot TP, Mahley RW, Franceschini G, Sirtori CR. Apolipoprotein A-IMilano. Detection of normal A-I in affected subjects and evidence for a cysteine for arginine substitution in the variant A-I. J. Biol. Chem.258, 2508–2513 (1983).
  • Franceschini G, Calabresi L, Chiesa G et al. Increased cholesterol efflux potential of sera from ApoA-IMilano carriers and transgenic mice. Arterioscler. Thromb. Vasc. Biol.19, 1257–1262 (1999).
  • Calabresi L, Vecchio G, Longhi R et al. Molecular characterization of native and recombinant apolipoprotein A-IMilano dimer. The introduction of an interchain disulfide bridge remarkably alters the physicochemical properties of apolipoprotein A-I. J. Biol. Chem.269, 32168–32174 (1994).
  • Bielicki JK, Oda MN. Apolipoprotein A-I(Milano) and apolipoprotein A-I(Paris) exhibit an antioxidant activity distinct from that of wild-type apolipoprotein A-I. Biochemistry41, 2089–2096 (2002).
  • Jia Z, Natarajan P, Forte TM, Bielicki JK. Thiol-bearing synthetic peptides retain the antioxidant activity of apolipoproteinA-I(Milano). Biochem. Biophys. Res. Commun.297, 206–213 (2002).
  • Franceschini G, Sirtori CR, Bosisio E et al. Relationship of the phenotypic expression of the A-IMilano apoprotein with plasma lipid and lipoprotein patterns. Atherosclerosis58, 159–174 (1985).
  • Sirtori CR, Calabresi L, Franceschini G et al. Cardiovascular status of carriers of the apolipoprotein A-I(Milano) mutant: the Limone sul Garda study. Circulation103, 1949–1954 (2001).
  • Nissen SE, Tsunoda T, Tuzcu EM et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA290, 2292–2300 (2003).
  • Nicholls SJ, Tuzcu EM, Sipahi I et al. Relationship between atheroma regression and change in lumen size after infusion of apolipoprotein A-I Milano. J. Am. Coll. Cardiol.47, 992–997 (2006).
  • Nissen SE. Effect of intensive lipid lowering on progression of coronary atherosclerosis: evidence for an early benefit from the Reversal of Atherosclerosis with Aggressive Lipid Lowering (REVERSAL) trial. Am. J. Cardiol.96, F61–F68 (2005).
  • Nissen SE. Effect of intensive lipid lowering on progression of coronary atherosclerosis: evidence for an early benefit from the Reversal of Atherosclerosis with Aggressive Lipid Lowering (REVERSAL) trial. Am. J. Cardiol.96(5A), 61F–68F (2005).
  • Ibanez B, Vilahur G, Cimmino G et al. Rapid change in plaque size, composition, and molecular footprint after recombinant apolipoprotein A-I Milano (ETC-216) administration: magnetic resonance imaging study in an experimental model of atherosclerosis. J. Am. Coll. Cardiol.51, 1104–1109 (2008).
  • Parolini C, Marchesi M, Lorenzon P et al. Dose-related effects of repeated ETC-216 (recombinant apolipoprotein A-I Milano/1-palmitoyl-2-oleoyl phosphatidylcholine complexes) administrations on rabbit lipid-rich soft plaques: in vivo assessment by intravascular ultrasound and magnetic resonance imaging. J. Am. Coll. Cardiol.51, 1098–1103 (2008).
  • Kaul S, Shah PK. ApoA-I Milano/phospholipid complexes emerging pharmacological strategies and medications for the prevention of atherosclerotic plaque progression. Curr. Drug Targets Cardiovasc. Haematol. Disord.5, 471–479 (2005).
  • Spieker LE, Sudano I, Hurlimann D et al. High-density lipoprotein restores endothelial function in hypercholesterolemic men. Circulation105, 1399–1402 (2002).
  • Nanjee MN, Cooke CJ, Garvin R et al. Intravenous apoA-I/lecithin discs increase pre-β-HDL concentration in tissue fluid and stimulate reverse cholesterol transport in humans. J. Lipid Res.42, 1586–1593 (2001).
  • Tardif JC, Gregoire J, L’Allier PL et al. Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial. JAMA297, 1675–1682 (2007).
  • Graversen JH, Laurberg JM, Andersen MH et al. Trimerization of apolipoprotein A-I retards plasma clearance and preserves antiatherosclerotic properties. J. Cardiovasc. Pharmacol.51, 170–177 (2008).
  • Brinton EA, Eisenberg S, Breslow JL. Human HDL cholesterol levels are determined by apoA-I fractional catabolic rate, which correlates inversely with estimates of HDL particle size. Effects of gender, hepatic and lipoprotein lipases, triglyceride and insulin levels, and body fat distribution. Arterioscler. Thromb.14, 707–720 (1994).
  • Lee JY, Timmins JM, Mulya A et al. HDLs in apoA-I transgenic Abca1 knockout mice are remodeled normally in plasma but are hypercatabolized by the kidney. J. Lipid Res.46, 2233–2245 (2005).
  • Anantharamaiah GM, Jones JL, Brouillette CG et al. Studies of synthetic peptide analogs of the amphipathic helix. Structure of complexes with dimyristoyl phosphatidylcholine. J. Biol. Chem.260, 10248–10255 (1985).
  • Segrest JP, Garber DW, Brouillette CG, Harvey SC, Anantharamaiah GM. The amphipathic α helix: a multifunctional structural motif in plasma apolipoproteins. Adv. Protein Chem.45, 303–369 (1994).
  • Remaley AT, Thomas F, Stonik JA et al. Synthetic amphipathic helical peptides promote lipid efflux from cells by an ABCA1-dependent and an ABCA1-independent pathway. J. Lipid Res.44, 828–836 (2003).
  • Anantharamaiah G, Navab M, Reddy ST et al. Synthetic peptides: managing lipid disorders. Curr. Opin. Lipidol.17, 233–237 (2006).
  • Navab M, Anantharamaiah GM, Reddy ST et al. Oral D-4F causes formation of pre-β high-density lipoprotein and improves high-density lipoprotein-mediated cholesterol efflux and reverse cholesterol transport from macrophages in apolipoprotein E-null mice. Circulation109, 3215–3220 (2004).
  • Anantharamaiah GM, Mishra VK, Garber DW et al. Structural requirements for antioxidative and anti-inflammatory properties of apolipoprotein A-I mimetic peptides. J. Lipid Res.48, 1915–1923 (2007).
  • Bloedon LT, Dunbar R, Duffy D et al. Safety, pharmacokinetics, and pharmacodynamics of oral apoA-I mimetic peptide D-4F in high-risk cardiovascular patients. J. Lipid Res.49, 1344–1352 (2008).
  • Navab M, Anantharamaiah GM, Reddy ST, Fogelman AM. Apolipoprotein A-I mimetic peptides and their role in atherosclerosis prevention. Nat. Clin. Pract. Cardiovasc. Med.3, 540–547 (2006).
  • Sethi AA, Amar M, Shamburek RD, Remaley AT. Apolipoprotein AI mimetic peptides: possible new agents for the treatment of atherosclerosis. Curr. Opin. Investig. Drugs8, 201–212 (2007).
  • Vedhachalam C, Narayanaswami V, Neto N et al. The C-terminal lipid-binding domain of apolipoprotein E is a highly efficient mediator of ABCA1-dependent cholesterol efflux that promotes the assembly of high-density lipoproteins. Biochemistry46, 2583–2593 (2007).
  • Remaley A, Stonik J, Fairwell T, Demosky SJ, Neufeld EB, Brewer HB. Asymmetry in lipid affinity of multihelical amphipathic peptides: an important structural determinant for specificity of ABCA1-dependent cholesterol efflux by peptides [abstract]. Circulation110, 243 (2004).
  • Natarajan P, Forte TM, Chu B, Phillips MC, Oram JF, Bielicki JK. Identification of an apolipoprotein A-I structural element that mediates cellular cholesterol efflux and stabilizes ATP binding cassette transporter A1. J. Biol. Chem.279, 24044–24052 (2004).
  • Voogt J, Turner S, Chang B et al. Effect of the 5A bi-helical ApoA-I mimetic peptide on cholesterol efflux and global reverse cholesterol transport in vivo [abstract]. Presented at: ATVB Annual Meeting. Atlanta, GA, USA, 16–18 April 2008.
  • Nguyen SD, Jeong TS, Sok DE. Apolipoprotein A-I-mimetic peptides with antioxidant actions. Arch. Biochem. Biophys.451, 34–42 (2006).
  • Gupta H, White CR, Handattu S et al. Apolipoprotein E mimetic peptide dramatically lowers plasma cholesterol and restores endothelial function in watanabe heritable hyperlipidemic rabbits. Circulation111, 3112–3118 (2005).
  • Brousseau ME, Kauffman RD, Herderick EE et al. LCAT modulates atherogenic plasma lipoproteins and the extent of atherosclerosis only in the presence of normal LDL receptors in transgenic rabbits. Arterioscler. Thromb. Vasc. Biol.20, 450–458 (2000).
  • Foger B, Chase M, Amar MJ et al. Cholesteryl ester transfer protein corrects dysfunctional high density lipoproteins and reduces aortic atherosclerosis in lecithin cholesterol acyltransferase transgenic mice. J. Biol. Chem.274, 36912–36920 (1999).
  • Williams KJ, Werth VP, Wolff JA. Intravenously administered lecithin liposomes: a synthetic anti-atherogenic lipid particle. Perspect. Biol. Med.27, 417–431 (1984).
  • Rodrigueza WV, Pritchard PH, Hope MJ. The influence of size and composition on the cholesterol mobilizing properties of liposomes in vivo. Biochim. Biophys. Acta1153, 9–19 (1993).
  • Dietschy JM, Turley SD. Control of cholesterol turnover in the mouse. J. Biol. Chem.277, 3801–3804 (2002).
  • Hajj HH, Blain S, Boucher B, Denis M, Krimbou L, Genest J. Structural modification of plasma HDL by phospholipids promotes efficient ABCA1-mediated cholesterol release. J. Lipid Res.46, 1457–1465 (2005).
  • Rodrigueza WV, Klimuk SK, Pritchard PH, Hope MJ. Cholesterol mobilization and regression of atheroma in cholesterol-fed rabbits induced by large unilamellar vesicles. Biochim. Biophys. Acta1368, 306–320 (1998).
  • Roerdink F, Dijkstra J, Hartman G, Bolscher B, Scherphof G. The involvement of parenchymal, Kupffer and endothelial liver cells in the hepatic uptake of intravenously injected liposomes. Effects of lanthanum and gadolinium salts. Biochim. Biophys. Acta677, 79–89 (1981).
  • Pandey NR, Sparks DL. Phospholipids as cardiovascular therapeutics. Curr. Opin. Investig. Drugs9, 281–285 (2008).
  • Brewer HB, Alaupovic P, Kostner G et al. Selective plasma HDL delipidation and reinfusion: a new approach for acute HDL therapy in the treatment of cardiovascular disease. Circulation110, 51–52 (2004).
  • Pownall HJ. Detergent-mediated phospholipidation of plasma lipoproteins increases HDL cholesterophilicity and cholesterol efflux via SR-BI. Biochemistry45, 11514–11522 (2006).
  • Shaw J, Blombery P, Lyon S, Hosp A. Administration of intravenous high density lipoprotein leads to acute changes in human atherosclerotic plaque in vivo [abstract]. Circulation116, 678 (2007).
  • Bloomfield Rubins H, Davenport J, Babikian V et al. Reduction in stroke with gemfibrozil in men with coronary heart disease and low HDL cholesterol: the Veterans Affairs HDL Intervention Trial (VA-HIT). Cirulation103, 2828–2833 (2001).
  • Nasr HH, Loftus IM, Sayed S et al. A single dose of reconstituted high density lipoprotein reduces expression of tissue-factor in human carotid atherosclerotic plaques. Circulation116, II_33 (2007) (Abstract).
  • Calabresi L, Gomaraschi M, Rossoni G, Franceschini G. Synthetic high density lipoproteins for the treatment of myocardial ischemia/reperfusion injury. Pharmacol. Ther.111, 836–854 (2006).
  • Goldbourt U, Cohen L, Neufeld HN. High density lipoprotein cholesterol: prognosis after myocardial infarction. The Israeli Ischemic Heart Disease Study. Int. J. Epidemiol.15, 51–55 (1986).
  • Berge KG, Canner PL, Hainline A Jr. High-density lipoprotein cholesterol and prognosis after myocardial infarction. Circulation66, 1176–1178 (1982).
  • Rossoni G, Gomaraschi M, Berti F, Sirtori CR, Franceschini G, Calabresi L. Synthetic high-density lipoproteins exert cardioprotective effects in myocardial ischemia/reperfusion injury. J. Pharmacol. Exp. Ther.308, 79–84 (2004).
  • Marchesi M, Booth EA, Davis T, Bisgaier CL, Lucchesi BR. Apolipoprotein A-IMilano and 1-palmitoyl-2-oleoyl phosphatidylcholine complex (ETC-216) protects the in vivo rabbit heart from regional ischemia-reperfusion injury. J. Pharmacol. Exp. Ther.311, 1023–1031 (2004).
  • Gomaraschi M, Calabresi L, Rossoni G et al. Anti-inflammatory and cardioprotective activities of synthetic high-density lipoprotein containing apolipoprotein A-I mimetic peptides. J. Pharmacol. Exp. Ther.324, 776–783 (2008).
  • Cockerill GW, McDonald MC, Mota-Filipe H, Cuzzocrea S, Miller NE, Thiemermann C. High density lipoproteins reduce organ injury and organ dysfunction in a rat model of hemorrhagic shock. FASEB J.15, 1941–1952 (2001).
  • Thiemermann C, Patel NS, Kvale EO et al. High density lipoprotein (HDL) reduces renal ischemia/reperfusion injury. J. Am. Soc. Nephrol.14, 1833–1843 (2003).
  • Cuzzocrea S, Dugo L, Patel NS et al. High-density lipoproteins reduce the intestinal damage associated with ischemia/reperfusion and colitis. Shock21, 342–351 (2004).
  • Paterno R, Ruocco A, Postiglione A, Hubsch A, Andresen I, Lang MG. Reconstituted high-density lipoprotein exhibits neuroprotection in two rat models of stroke. Cerebrovasc. Dis.17, 204–211 (2004).
  • Michikawa M. Cholesterol paradox: is high total or low HDL cholesterol level a risk for Alzheimer’s disease? J. Neurosci. Res.72, 141–146 (2003).
  • Fagan AM, Younkin LH, Morris JC et al. Differences in the Aβ40/Aβ42 ratio associated with cerebrospinal fluid lipoproteins as a function of apolipoprotein E genotype. Ann. Neurol.48, 201–210 (2000).
  • Pitas RE, Boyles JK, Lee SH, Hui D, Weisgraber KH. Lipoproteins and their receptors in the central nervous system. Characterization of the lipoproteins in cerebrospinal fluid and identification of apolipoprotein B,E(LDL) receptors in the brain. J. Biol. Chem.262, 14352–14360 (1987).
  • Mauch DH, Nagler K, Schumacher S et al. CNS synaptogenesis promoted by glia-derived cholesterol. Science294, 1354–1357 (2001).
  • Merched A, Xia Y, Visvikis S, Serot JM, Siest G. Decreased high-density lipoprotein cholesterol and serum apolipoprotein AI concentrations are highly correlated with the severity of Alzheimer’s disease. Neurobiol. Aging21, 27–30 (2000).
  • Poirier J, Davignon J, Bouthillier D, Kogan S, Bertrand P, Gauthier S. Apolipoprotein-E polymorphism and Alzheimers-disease. Lancet342, 697–699 (1993).
  • Kivipelto M, Helkala EL, Hanninen T et al. Midlife vascular risk factors and late-life mild cognitive impairment – a population-based study. Neurology56, 1683–1689 (2001).
  • Simons M, Keller P, De Strooper B, Beyreuther K, Dotti CG, Simons K. Cholesterol depletion inhibits the generation of β-amyloid in hippocampal neurons. Proc. Natl Acad. Sci. USA95, 6460–6464 (1998).
  • Fassbender K, Simons M, Bergmann C et al. Simvastatin strongly reduces levels of Alzheimer’s disease β-amyloid peptides A β 42 and A β 40 in vitro and in vivo. Proc. Natl Acad. Sci. USA98, 5856–5861 (2001).
  • Bonn V, Cheung RC, Chen B, Taghibiglou C, Van Iderstine SC, Adeli K. Simvastatin, an HMG-CoA reductase inhibitor induces the synthesis and secretion of apolipoprotein AI in HepG2 cells and primary hamster hepatocytes. Atherosclerosis163, 59–68 (2002).
  • Chong PH, Kezele R, Franklin C. High-density lipoprotein cholesterol and the role of statins. Circ. J.66, 1037–1044 (2002).
  • Vega GL, Weiner MF, Lipton AM et al. Reduction in levels of 24S-hydroxycholesterol by statin treatment in patients with Alzheimer disease. Arch. Neurol.60, 510–515 (2003).
  • Wang H, Durham L, Dawson H et al. An apolipoprotein E-based therapeutic improves outcome and reduces Alzheimer’s disease pathology following closed head injury: evidence of pharmacogenomic interaction. Neuroscience144, 1324–1333 (2007).
  • Buga GM, Frank JS, Mottino GA et al. D-4F decreases brain arteriole inflammation and improves cognitive performance in LDL receptor-null mice on a Western diet. J. Lipid Res.47, 2148–2160 (2006).
  • Trevisan R, Dodesini AR, Lepore G. Lipids and renal disease. J. Am. Soc. Nephrol.17, S145–S147 (2006).
  • Buga GM, Frank JS, Mottino GA et al. D-4F reduces EO6 immunoreactivity, SREBP-1c mRNA levels, and renal inflammation in LDL receptor-null mice fed a Western diet. J. Lipid Res.49, 192–205 (2008).
  • Baber U, Toto RD, de Lemos JA. Statins and cardiovascular risk reduction in patients with chronic kidney disease and end-stage renal failure. Am. Heart J.153, 471–477 (2007).
  • Opal SM, Scannon PJ, Vincent JL et al. Relationship between plasma levels of lipopolysaccharide (LPS) and LPS-binding protein in patients with severe sepsis and septic shock. J. Infect. Dis.180, 1584–1589 (1999).
  • Wray GM, Foster SJ, Hinds CJ, Thiemermann C. A cell wall component from pathogenic and non-pathogenic gram-positive bacteria (peptidoglycan) synergises with endotoxin to cause the release of tumour necrosis factor-α, nitric oxide production, shock, and multiple organ injury/dysfunction in the rat. Shock15, 135–142 (2001).
  • Emancipator K, Csako G, Elin RJ. In vitro inactivation of bacterial endotoxin by human lipoproteins and apolipoproteins. Infect. Immun.60, 596–601 (1992).
  • Eggesbo JB, Hjermann I, Hostmark AT, Kierulf P. LPS induced release of IL-1 β, IL-6, IL-8 and TNF-α in EDTA or heparin anticoagulated whole blood from persons with high or low levels of serum HDL. Cytokine8, 152–160 (1996).
  • Gordon BR, Parker TS, Levine DM et al. Low lipid concentrations in critical illness: implications for preventing and treating endotoxemia. Crit. Care Med.24, 584–589 (1996).
  • Hubsch AP, Casas AT, Doran JE. Protective effects of reconstituted high-density lipoprotein in rabbit gram-negative bacteremia models. J. Lab. Clin. Med.126, 548–558 (1995).
  • Levine DM, Parker TS, Donnelly TM, Walsh A, Rubin AL. In vivo protection against endotoxin by plasma high density lipoprotein. Proc. Natl. Acad. Sci. USA90, 12040–12044 (1993).
  • Garber DW, Datta G, Chaddha M et al. A new synthetic class A amphipathic peptide analogue protects mice from diet-induced atherosclerosis. J. Lipid Res.42, 545–552 (2001).
  • Datta G, White CR, Chaddha M, Palgunachari MN, Anantharamaiah GM, Smythis L. The ApoA-I mimetic peptide, 4F, inhibits LPS-induced inflammatory reactions through dysregulation of the NFkB activation pathway. Circulation (2007) (Abstract)
  • Pajkrt D, Doran JE, Koster F et al. Antiinflammatory effects of reconstituted high-density lipoprotein during human endotoxemia. J. Exp. Med.184, 1601–1608 (1996).
  • Pajkrt D, Lerch PG, van der Poll T et al. Differential effects of reconstituted high-density lipoprotein on coagulation, fibrinolysis and platelet activation during human endotoxemia. Thromb. Haemost.77, 303–307 (1997).

>Patent

  • Dassuec J-L, Sekul R, Bitner K, Cornut I, Metz G, Dufourcq J. WO09916459 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.