47
Views
44
CrossRef citations to date
0
Altmetric
Review

The next generation of HIV/AIDS drugs: novel and developmental antiHIV drugs and targets

Pages 97-128 | Published online: 10 Jan 2014

References

  • Law MG, Li Y, McDonald AM, Cooper DA, Kaldor JM. Estimating the population impact in Australia of improved antiretroviral treatment for HIV infection. AIDS14(2), 197–201 (2000).
  • Mocroft A, Vella S, Benfield TL, etal. Changing patterns of mortality across Europe in patients infected with HIV-1. EuroSIDA Study Group. Lancet 352(9142), 1725–1730 (1998).
  • Palella FJ Jr, Delaney KM, Moorman AC, et al Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Out-patient Study Investigators. N Eng1.J Med. 338(13), 853–860 (1998).
  • King JT Jr, Justice AC, Roberts MS, Chang CC, Fusco JS. Long-term HIV/AIDS survival estimation in the highly active antiretroviral therapy era. Med. Decis. Making23(1), 9–20 (2003).
  • Kaufmann GR, Smith D, Bucher HC, etal. Potential benefit and limitations of a broad access to potent antiretroviral therapy in developing countries. Expert Opin. Investig. Drugs11(9), 1303–1313 (2002).
  • ••Review summarizing the economic inpact of HAART therapy in developed and under-developed countries.
  • Mwau M, McMichael AJ. A review of vaccines for HIV prevention. I Gene Med. 5(1), 3–10 (2003).
  • Fanales-Belasio E, Cafaro A, Cara A, etal. HIV-1 Tat-based vaccines: from basic science to clinical trials. DNA Cell Biol. 21(9), 599–610 (2002).
  • Hone DM, DeVico AL, Fouts TR, etal. Development of vaccination strategies that elicit broadly neutralizing antibodies against human immunodeficiency virus Type 1 in both the mucosal and systemic immune compartments. j Hum. Viral 5(1), 17–23 (2002).
  • Mauck C, Doncel, G. An update on vaginal microbicides. CU17: Infect. Dis. Rep. 3(6), 561–568 (2001).
  • Turpin JA. Considerations and development of topical microbicides to inhibit the sexual transmission of HIV. Expert Opin. Investig. Drugsll (8), 1077–1097 (2002).
  • Phillips DM, Maguire RA. The development of microbicides for clinical use to prevent sexually transmitted diseases. CUI7: Infect. Dis. Rep. 4(2), 135–140 (2002).
  • Kelleher AD, Carr A, Zaunders J, Cooper DA. Alterations in the immune response of human immunodeficiency virus (HIV)-infected subjects treated with an HIV-specific protease inhibitor, ritonavir.j Infect. Dis. 173(2), 321–329 (1996).
  • Komanduri KV, Viswanathan MN, Wieder ED, etal Restoration of cytomegalovirus-specific CD4+ T-lymphocyte responses after ganciclovir and highly active antiretroviral therapy in individuals infected with HIV-1. Nature Med 4(8), 953–956 (1998).
  • Schneider MM, Borleffs JC, Stolk RP, Jaspers CA, Hoepelman Al. Discontinuation of prophylaxis for Pneumocystis car/nil pneumonia in HIV-1-infected patients treated with highly active antiretroviral therapy. Lancet 353(9148), 201–203 (1999).
  • Gulick RM, Mellors JW, Havlir D, etal Treatment with indinavir, zidovudine and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy. N Engl I Merl 337(11), 734–739 (1997).
  • Hammer SM, Squires KE, Hughes MD, etal A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. AIDS Clinical Trials Group 320 Study Team. N Engl I Merl 337(11), 725–733 (1997).
  • Perelson AS, Essunger P, Cao Y, et al Decay characteristics of HIV 1-infected compartments during combination therapy. Nattily 387(6629), 188–191 (1997).
  • Zhang H, Dornadula G, Beumont M, etal. Human immunodeficiency virus Type 1 in the semen of men receiving highly active antiretroviral therapy. N Engl. I Merl 339(25), 1803–1809 (1998).
  • Ledergerber B, Egger M, Opravil M, etal. Clinical progression and virological failure51 on highly active antiretroviral therapy in HIV-1 patients: a prospective cohort study. Swiss HIV Cohort Study. Lancet 353(9156), 863–868 (1999).
  • Khanna N, Klimkait T, Schiffer V, etal Salvage therapy with abacavir plus a non-nucleoside reverse transcriptase inhibitor and a protease inhibitor in heavily pre-treated HIV-1 infected patients. Swiss HIV Cohort Study. AIDS14 (7), 791–799 (2000).
  • Gulick RM, Hu XJ, Fiscus SA, etal. Randomized study of saquinavir with ritonavir or nelfinavir together with delavirdine, adefovir, or both in human immunodeficiency virus-infected adults with virologic failure on indinavir: AIDS Clinical Trials Group Study 359.1 Infect. Dis. 182(5), 1375–1384 (2000).
  • Gu Z, Wainberg MA, Nguyen-Ba P, etal AntiHIV-1 activities of 1,3 dioxolane guanine and 2,6-diaminopurine dioxolane. Nucleosides Nuc1eotimdes18(4–5), 891–892 (1999).
  • Rosenberg ES, Billingsley JM, Caliendo AM, etal. Vigorous HIV-1 specific CD4+ T-cell responses associated with control of viremia. Science 278(5344 1447–1450 (1997).
  • Weissman D, Montaner U. Immune reconstitution. Clin. Lab. Merl 22(3), 719–740 (2002).
  • Fischer M, Hafner R, Schneider C, etal HIV RNA in plasma rebounds within clays during structured treatment interruptions. A/DS17(2), 195–199 (2003).
  • Finzi D, Blankson J, Siliciano JD, etal Latent infection of CD4+ T-cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nature Med 5(5), 512–517 (1999).
  • Chun TW, Stuyver L, Mizell SB, et al Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc. Natl Acad Sci. USA 94(24), 13193–13197 (1997).
  • Chun, TW, Carruth, L, Finzi, D, etal Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387(6629), 183–188 (1997).
  • Finzi D, Hermankova M, Pierson T, etal Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278(5341), 1295–1300 (1997).
  • Persaud D, Pierson T, Ruff C, et al A stable latent reservoir for HIV 1 in resting CD4(+) T-lymphocytes in infected children.j Gun. Invest. 105 (7), 995–1003 (2000).
  • Pierson T, McArthur J, Siliciano RE Reservoirs for HIV-1: mechanisms for viral persistence in the presence of antiviral immune responses and antiretroviral therapy. Ann. Rev. Immunol 18,665–708 (2000).
  • Sonza S, Mutimer HP, Oelrichs R, etal Monocytes harbour replication-competent, non-latent HIV-1 in patients on highly active antiretroviral therapy. AIDS15(1), 17–22 (2001).
  • Herbein G, Coaquette A, Perez-Bercoff D, Pancino, G. Macrophage activation and HIV infection: can the Trojan horse turn into a fortress? Curl: Mal Merl 2(8), 723–738 (2002).
  • Aquaro S, Bagnarelli P, Guenci T, etal Long-term survival and virus production in human primary macrophages infected by human immunodeficiency virus. J. Merl Viral 68(4), 479–488 (2002).
  • Aquaro S, Calio R, Balzarini J, etal Macrophages and HIV infection: therapeutical approaches toward this strategic virus reservoir. Antiviral Res. 55(2), 209–225 (2002).
  • Havlir DV, Bassett R, Levitan D, etal Prevalence and predictive value of intermittent viremia with combination HIV therapy. JAIVIA 286(2), 171–179 (2001).
  • Hermankova M, Ray SC, Ruff C, etal HIV-1 drug resistance profiles in children and adults with viral load of copiesiml receiving combination therapy. JAMA 286(2), 196–207 (2001).
  • Dornadula G, Zhang H, VanUitert B, etal Residual HIV-1 RNA in blood plasma of patients taking suppressive highly active antiretroviral therapy. JAIVIA 282 (17), 1627–1632 (1999).
  • Furtado MR, Callaway DS, Phair JP, etal
  • Ramratnam B, Mittler JE, Zhang L, et al antiretroviral therapy. Nature Med. 61
  • Zhang L, Ramratnam B, Tenner-RaczK, et al. Quantifying residual HIV-1 replication in patients receiving combination antiretroviral therapy. N Engl. J. Med. 340(21), 1605–1613 (1999). 53Persistence of HIV-1 transcription in peripheral-blood mononuclear cells in patients receiving potent antiretroviral therapy. N Engl. J. Merl 340(21), 1614–1622 (1999).
  • Ruff CT, Ray SC, Kwon P, etal. Persistence of wild type virus and lack of temporal structure in the latent reservoir for human immunodeficiency virus Type 1 in pediatric patients with extensive antiretroviral exposure. J. Viral 76(18), 9481–9492 (2002).
  • Ji JP, Loeb LA. Fidelity of HIV-1 reverse transcriptase copying RNA in vitro. Biochemistry31 (4), 954–958 (1992).
  • ji J, Loeb LA. Fidelity of HIV-1 reverse transcriptase copying a hypervariable region of the HIV-1 env gene. Virology199 (2), 323–330 (1994).
  • Drosopoulos WC, Rezende LF, Wainberg MA, Prasad VR. Virtues of being faithful: can we limit the genetic variation in human immunodeficiency virus? J. Mal Merl 76(9), 604–612 (1998).
  • Hocken RD, Kilby JM, Derdeyn CA, etal Constant mean viral copy number per infected cell in tissues regardless of high, low, or undetectable plasma HIV RNA. J. Exp. Merl 189(10), 1545–1554 (1999).
  • Lewin, SR, Vesanen, M, Kostrikis, L, etal. Use of real-time PCR and molecular beacons to detect virus replication in human immunodeficiency virus Type 1-infected individuals on prolonged effective antiretroviral therapy. J. Viral. 73(7), 6099–6103 (1999).
  • Sharkey ME, Teo I, Greenough T, et al Persistence of episomal HIV-1 infection intermediates in patients on highly active antiretroviral therapy. Nature Med.6 (1), 76–81 (2000).
  • Pillay D, Taylor S, Richman, DD. Incidence and impact of resistance against approved antiretroviral drugs. Rev Med. Viral. 10(4), 231–253 (2000).
  • Henry K, Melroe H, Huebsch J, et al Severe premature coronary artery disease with protease inhibitors. Lancet 351(9112), 1328 (1998)
  • Hirsch II II, Battegay M. Lipodystrophy syndrome by HAART in HIV infected patients: manifestation, mechanisms and management. Infection 30(5), 293–298 (2002).
  • Smith KY. Selected metabolic and morphologic complications associated with highly active antiretroviral therapy. J. Infect. Dis.185\(Suppl. 2) S123—S127 (2002).
  • Addy CL, Gavrila A, Tsiodras S, etal Hypoadiponectinemia is associated with insulin resistance, hypertriglyceridemia and fat redistribution in human immunodeficiency virus-infected patients treated with highly active antiretroviral therapy. J. Clin. Endocrinol Metab. 88(2), 627–636 (2003).
  • Levy JA. Pathogenesis of human immunodeficiency virus infection. Mcrobiol Rev 57(1), 183–289 (1993).
  • Antoni BA, Stein SB, Rabson AB. Regulation of human immunodeficiency virus infection: implications for pathogenesis. Adv. Virus Res. 43 53–145 (1994).
  • Greene WC, Peterlin, BM. Charting HIV's remarkable voyage through the cell: basic science as a passport to future therapy. Nature Med. 8(7), 673–680 (2002).
  • ••Excellent review of HIV replication cycleand recent advances in HIV biology.
  • Doms RW, Trono D. The plasma membrane as a combat zone in the HIV battlefield. Genes Dev. 14 (21), 2677–2688 (2000).
  • •In-depth review of HIV entry
  • Buckheit WV. Non-nucleoside reverse transcriptase inhibitors: perspectives on novel therapeutic compounds and strategies for the treatment of HR/ infection. Expert Opin. Investig Drugs10(8), 1423–1442 (2001).
  • De Clercq E. Strategies in the design of antiviral drugs. Nature Rev Drug Discov. 1(1), 13–25 (2002).
  • Temesgen Z. Current status of antiretroviral therapies. Expert Opin. Pharmacother. 2 (8), 1239–1246 (2001).
  • Kaufmann GR, Cooper DA. Antiretroviral therapy of HIV-1 infection: established treatment strategies and new therapeutic options. CUI7: Opin. Nlicrobiol. 3(5), 508–514 (2000).
  • Leigh Brown AJ, Frost SD, Mathews WC, etal Transmission fitness of drug-resistant human immunodeficiency virus and the prevalence of resistance in the antiretroviral-treated population. j Infect. Dis. 187(4), 683–686 (2003).
  • •Addresses viral fitness as part of the resistance process.
  • Perno CF, Ceccherini-Silberstein F, De Luca A, etal Virologic correlates of adherence to antiretroviral medications and therapeutic failure. j Acquir. Immune Defic. Syndr. 31\(Suppl. 3) S118—S122 (2002).
  • Soriano V, de Mendoza C. Genetic mechanisms of resistance to NRTI and NNRTI. HIV Clin. Trials 3(3), 237–248 (2002).
  • Soriano V, de Mendoza C. Genetic mechanisms of resistance to protease inhibitors and entry inhibitors. HIV Clin. Blab 3(3), 249–257 (2002).
  • King JR, Kimberlin DW, Aldrovandi GM, Acosta ER Antiretroviral pharmacokinetics in the paediatric population: a review. Gun. Pharmacokinet. 41(14), 1115–1133 (2002).
  • Smith PF, DiCenzo R, Morse GD. Clinical Pharmacokinetics of non-nucleoside reverse transcriptase inhibitors. Gun. Pharmacokinet. 40(12), 893–905 (2001).
  • Sommadossi JR Pharmacological considerations in antiretroviral therapy. 3(Suppl. 4) 9–12 (1998).
  • Young SD, Britcher SF, Tran LO, etal. L-743, 726 (DMP-266): a novel, highly potent nonnucleoside inhibitor of the human immunodeficiency virus Type 1 reverse transcriptase. Antimicrob. Agents Chemother. 39(12), 2602–2605 (1995).
  • ••First report of efavirenz anddocumentation of its in Wry potency.
  • Ren J, Milton J, Weaver KL, etal Structural basis for the resilience of efavirenz (DMP-266) to drug resistance mutations in HIV-1 reverse transcriptase. Structure Fold Des. 8(10), 1089–1094 (2000).
  • Antinori A, Zaccarelli M, Cingolani A, et al Cross-resistance among nonnucleoside reverse transcriptase inhibitors limits recycling efavirenz after nevirapine failure. AIDS Res. Hum. Retroviruses 18(12), 835–838 (2002).
  • Keiser P, Nassar N, White C, Koen G, Moreno S. Comparison of nevirapine-and efavirenz-containing antiretroviral regimens in antiretroviral-naive patients: a cohort study. HIV Clin. Trials 3(4), 296 303 (2002).
  • Corbett AH, Lim ML, Kashuba AD. Kaletra (lopinavir/ritonavir). Ann. Pharmacother. 36 (7–8), 1193–1203 (2002)
  • De Clercq E. Highlights in the development of new antiviral agents. Mini Rev Med. Chem. 2(2), 163–175 (2002).
  • •2002 Summary by De Clercq of the status of current HIV antiviral therapy.
  • De Clercq, E. New developments in antiHIV chemotherapy. Biochim. Biophys. Acta 1587(2–3), 258–275 (2002).
  • •First report of efavirenz and documentation of its in Wry potency.
  • De Clercq E. New developments in antiHIV chemotherapy. CUI7: Med. Chem. 8(13), 1543–1572 (2001).
  • De Clercq E. Novel compounds in Preclinical/early clinical development for the treatment of HIV infections. Rev Med. Viral 10(4), 255–277 (2000).
  • Moore JP, Stevenson M. New targets for inhibitors of HIV-1 replication. Nature Rev Mal Cell. Biol. 1(1), 40–49 (2000).
  • ••Excellent review on this topic.
  • De Clercq E. Current lead natural products for the chemotherapy of human immunodeficiency virus (HIV) infection. Med. Res. Rev 20(5), 323–349 (2000).
  • •Summarizes the many natural products with antiHIV activity
  • Field AK. Oligonucleotides as inhibitors ofhuman immunodeficiency virus. CUI7: Opin. Mal Ther. 1(3), 323–331 (1999).
  • Dropulic B, Jeang KT Gene therapy for human immunodeficiency virus infection: genetic antiviral strategies and targets for intervention. Hum. Gene Ther. 5(8), 927–939 (1994).
  • Duzgunes N, Simoes S, Konopka K, Rossi JJ, Pedroso de Lima MC. Delivery of novel macromolecular drugs against HIV-1. Expert Opin. Bid Ther1(6), 949–970 (2001).
  • Alkhatib G, Combadiere C, Broder CC, etal. CC CKR5: a RANTES, MIP la, MIP-113 receptor as a fusion co-factor for macrophage-tropic HIV-1. Science 272(5270), 1955–1958 (1996).
  • •• Identifies CCR5 (R5) as the HIV coreceptor for non-syncytiurn-inducing (NSI) monocyte-tropic
  • Feng Y, Broder CC, Kennedy PE, Berge EA. HIV-1 entry co-factor: functional cDNA cloning of a seven-transmembrane, G-protein coupled receptor. Science 272(5263), 872–877 (1996).
  • ••Identifies what will become the CXCR4 orX4 coreceptor.
  • Berger EA, Doms RVV, Fenyo EM, etal A new classification for HIV-1. Nature (6664), 240 (1998).
  • •Created the current nomenclature of chemokines and their receptors.
  • Chan DC, Foss D, Berger JM, Kim PS. Core structure of gp41 from the HIV envelope glycoprotein. Celi89(2), 263–273 (1997).
  • ••Helped define the helical structure of gp41that lead to understanding the mechanism of action of T–20.
  • Weissenhorn W, Dessen A, Harrison SC, Skehel JJ, Wiley DC. Atomic structure of the ectodomain from HIV-1 gp41. Nature 387(6631), 426–430 (1997).
  • #x2022;•Helped define the helical structure of gp41that lead to understanding the mechanism of action of T–20.
  • Schwarz MK, Wells TN. New therapeutics that modulate chemokine networks. Nature Rev Drug Discov. 1(5), 347–358 (2002).
  • Matthias LJ, Yam PT, Jiang XM, etal Disulfide exchange in domain 2 of CD4 is required for entry of HIV-1. Nature Immunol 3(8), 727–732 (2002).
  • Gallina A, Hanley TM, Mandel R, etal Inhibitors of protein-disulfide isomerase prevent cleavage of disulfide bonds in receptor-bound glycoprotein 120 and prevent HIV-1 entry. j Biol. Chem. 277(52), 50579–50588 (2002).
  • Kolchinsky P, Mirzabekov T, Farzan M, etal. Adaptation of a CCR5 using, primary human immunodeficiency virus Type 1 isolate for CD4 independent replication. J. Viral. 73(10), 8120–8126 (1999).
  • LaBranche CC, Hoffman 'IL, Romano J, etal Determinants of CD4 independence for a human immunodeficiency virus Type 1 variant map outside regions required for coreceptor specificity. J. Vim!. 73(12), 10310–10319 (1999).
  • Borsetti A, Parolin C, Ridolfi B, etal. CD4-independent infection of two CD4(-) /CCR5(-)/CXCR4(+) pre-T-cell lines by human and simian immunodeficiency viruses. Vim!. 74(14), 6689–6694 (2000).
  • Cullen BR. A new entry route for HIV. Nature Med. 7(1), 20–21 (2001).
  • Saha K, Zhang J, Gupta A, etal Isolation of primary HIV-1 that target CD8+ T-lymphocytes using CD8 as a receptor. Nature Med. 7(1), 65 72 (2001).
  • •Raises the possibility of X4 and R5 coreceptor independent HIV entry adaptations.
  • Patel M, Yanagishita M, Roderiquez G, etal Cell-surface heparan sulfate proteoglycan mediates HIV-1 infection of T-cell lines. AIDS Res. Hum. Retroviruses 9(2), 167–174 (1993).
  • Roderiquez G, Oravecz T, Yanagishita M, etal Mediation of human immunodeficiency virus Type 1 binding by interaction of cell surface heparan sulfate proteoglycans with the V3 region of envelope gp120 gp41. j Vim!. 69 (4), 2233–2239 (1995).
  • Mondor I, Ugolini S, Sattentau QJ. Human immunodeficiency virus Type 1 attachment to HeLa CD4 cells is CD4 independent and gp120 dependent and requires cell surface heparans. j Vim!. 72(5), 3623 3634 (1998).
  • Moulard M, Lortat-Jacob H, Mondor I, etal Selective interactions of polyanions with basic surfaces on human immunodeficiency virus Type 1 gp120. I Vim!. 74(4), 1948–1960 (2000).
  • Geijtenbeek TB, Kwon DS, Torensma R, etal DC-SIGN, a dendritic cell specific HIV-1-binding protein that enhances trans-infection of T-cells. Ce//100(5), 587–597 (2000).
  • •Identification of DC-SIGN (ICAM-3) as a HIV cell-association factor.
  • Liao Z, Roos JW, Hildreth JE. Increased infectivity of HIV Type 1 particles bound to cell surface and solid-phase ICAM-1 and VCAM-1 through acquired adhesion molecules LFA-1 and VLA-4. AIDS Res. Hum. Retroviruses16(4), 355–366 (2000).
  • Ugolini S, Mondor I, Sattentau QJ. HIV-1 attachment: another look. 7rends1Vlicmbiol. 7(4), 144–149 (1999).
  • Delezay O, Hammache D, Fantini J, Yahi N. SPC3, a V3 loop derived synthetic peptide inhibitor of HIV-1 infection, binds to cell surface glycosphingolipids. Biochemistry35(49), 15663–15671 (1996).
  • Doms RW. Beyond receptor expression: the influence of receptor conformation, density and affinity in HIV-1 infection. Virology 276(2), 229–237 (2000).
  • Allaway GP, Davis-Bruno KL, Beaudry GA, etal Expression and characterization of CD4-IgG2, a novel heterotetramer that neutralizes primary HIV Type 1 isolates. AIDS Res. Hum. Retrovirusesll (5), 533–539 (1995).
  • •First report of PR0542.
  • Mukhtar M, Parveen Z, Pomerantz RJ. Technology evaluation: PRO 542, Progenics Pharmaceuticals Inc. Cud: Opin. Mal Ther. 2(6), 697–702 (2000).
  • Ito M, Baba M, Sato A, etal Inhibitory effect of dextran sulfate and heparin on the replication of human immunodeficiency virus (HIV) in vitro Antiviral Res. 7(6), 361–367 (1987).
  • Baba M, Pauwels R, Balzarini J, et al Mechanism of inhibitory effect of dextran sulfate and heparin on replication of human immunodeficiency virus in vitro. Proc. Natl Acad. Sci. USA 85(16), 6132–6136 (1988).
  • Halliday SM, Lackman-Smith C, Bader JP, etal Inhibition of human immunodeficiency virus replication by the sulfonated stilbene dye resobene. Antiviral Res. 33(1), 41–53 (1996).
  • Zhang JL, Choe H, Dezube BJ, etal The bis-azo compound FP-21399 inhibits HIV-1 replication by preventing viral entry. Virology 244 (2), 530–541 (1998)
  • Dezube BJ, Dahl TA, Wong TK, et al. A fusion inhibitor (FP-21399) for the treatment of human immunodeficiency virus infection: a Phase I study. I Infect. Dis. 182(2), 607–610 (2000).
  • Boyd MR, Gustafson KR, McMahon JB, etal Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: potential applications to microbicide development. Antimicrob. Agents Chemother. 41(7), 1521–1530 (1997).
  • •First paper reporting the discovery of Cyanovirin-N.
  • Mori T, Boyd MR. Cyanovirin-N, a potent human immunodeficiency virus-inactivating protein, blocks both CD4-dependent and CD4 independent binding of soluble gp120 (sgp120) to target cells, inhibits sCD4-induced binding of sgp120 to cell-associated CXCR4 and dissociates bound sgp120 from target cells. Antimicrob. Agents Chemother. 45 (3), 664–672 (2001)
  • Ojwang JO, Buckheit RVV, Pommier Y, etal. T30177, an oligonucleotide stabilized by an intramolecular guanosine octet, is a potent inhibitor of laboratory strains and clinical isolates of human immunodeficiency virus Type 1. Antimicrob. Agents Chemother. 39(11), 2426–2435 (1995).
  • •First report showing that zintevir is an entry inhibitor.
  • Mazumder A, Neamati N, Ojwang JO, etal Inhibition of the human immunodeficiency virus Type 1 integrase by guanosine quartet structures. Biochemistry 35 (43), 13762–13771 (1996).
  • Este JA, Cabrera C, Schots D, etal Human immunodeficiency virus glycoprotein gp120 as the primary target for the antiviral action of AR177 (Zintevir). Mal Pharmacol 53(2), 340–345 (1998).
  • Wallace TL, Bazemore SA, Kornbrust DJ, Cossum PA. Repeat dose toxicity and pharmacokinetics of a partial phosphorothioate anti HIV oligonucleotide (AR177) after bolus intravenous administration to cynomolgus monkeys. Pharmacol Exp. Ther. 278(3), 1313–1317 (1996).
  • Wallace TL, Bazemore SA, Holm K, etal. Pharmacokinetics and distribution of a 33P-labeled antihuman immunodeficiency virus oligonucleotide (AR177) after single-and multiple-dose intravenous administration to rats. J. Pharmacol Exp. Ther. 280(3), 1480–1488 (1997).
  • Berger EA, Murphy PM, Farber JM. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism and disease. Ann. Rev. Immunol 17 657–700 (1999).
  • Davenport MP, Zaunders JJ, Hazenberg MD, Schuitemaker H, van Rij RP. Cell turnover and cell tropism in HIV-1 infection. Trends Mcrobiol 10(6), 275–278 (2002).
  • Carter PH. Chemokine receptor antagonism as an approach to anti inflammatory therapy: 'just right' or plain wrong? Cud: Opin. Chem. Biol. 6(4), 510–525 (2002).
  • ••Very timely review of all current chemokine receptor inhibitors in the context of chemokine receptor and ligand redundancy
  • Atchison RE, Gosling J, Monteclaro FS, etal Multiple extracellular elements of CCR5 and HIV-1 entry: dissociation from response to chemokines. Science 274 (5294), 1924–1926 (1996).
  • Farzan M, Mirzabekov T, Kolchinsky P, etal Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Ce1196(5), 667–676 (1999).
  • Simmons G, Clapham PR, Picard L, et al Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science 276(5310), 276–279 (1997).
  • Mosier DE, Picchio GR, Gulizia RJ, etal Highly potent RANTES analogues either prevent CCR5-using human immunodeficiency virus Type 1 infection in Ova or rapidly select for CXCR4-using variants. Vim'. 73(5), 3544–3550 (1999).
  • ••Demonstrated that coreceptor switchingwas possible and raised the possibility the X4 inhibitors could increase disease pathogenesis by selection of syncytiurn-inducing virus phenotypes.
  • Mack M, Luckow B, Nelson PJ, etal Aminooxypentane-RANTES induces CCR5 internalization but inhibits recycling: a novel inhibitory mechanism of HIV infectivity. I Exp. Med. 187(8), 1215–1224 (1998).
  • Ylisastigui L, Vizzavona J, Drakopoulou E, etal Synthetic full-length and truncated RANTES inhibit HIV-1 infection of primary macrophages. AIDS12(9), 977–984 (1998).
  • Poppe SM, Slade DE, Chong KT, etal. Antiviral activity of the dihydropyrone PNU-140690, a new nonpeptidic human immunodeficiency virus protease inhibitor. Antimicrob. Agents Chemother 41 (5), 1058–1063 (1997).
  • Heveker N, Montes M, Germeroth L, etal Dissociation of the signalling and antiviral properties of SDF-1-derived small peptides. Cm: Biol. 8(7), 369–376 (1998).
  • Nakashima H, Masuda M, Murakami T, etal Antihuman immunodeficiency virus activity of a novel synthetic peptide, T22 ([Tyr-5,12, Lys-71polyphemusin II): a possible inhibitor of virus-cell fusion. Antimicrob. Agents Chemother 36 (6), 1249–1255 (1992).
  • Murakami T, Nakajima T, Koyanagi Y, etal A small molecule CXCR4 inhibitor that blocks T-cell line-tropic HIV-1 infection. Exp. Med. 186(8), 1389–1393 (1997).
  • Arakaki R, Tamamura H, Premanathan M, etal T134, a small molecule CXCR4 inhibitor, has no cross-drug resistance with AMD3100, a CXCR4 antagonist with a different structure. j Vim!. 73(2), 1719–1723 (1999).
  • Tamamura H, Xu Y, Hattori T, etal A low-molecular-weight inhibitor against the chemokine receptor CXCR4: a strong antiHIV peptide T140. Biochem. Biophys. Res. Commun. 253(3), 877–882 (1998).
  • Doranz BJ, Grovit-Ferbas K, Sharron MP, etal A small-molecule inhibitor directed against the chemokine receptor CXCR4 prevents its use as an HIV-1 coreceptor. Exp. Med. 186(8), 1395–1400 (1997).
  • Doranz BJ, Filion LG, Diaz-Mitoma F, etal Safe use of the CXCR4 inhibitor ALX40-4C in humans. AIDS Res. Hum. Retroviruses 17(6), 475–486 (2001).
  • De Clercq E. Inhibition of HIV infection by bicyclams, highly potent and specific CXCR4 antagonists. Mol. Phatmacol. 57(5), 833–839 (2000).
  • •Good summary of the properties of AMD3100 and the bicyclam class of inhibitors.
  • Datema R, Rabin L, Hincenbergs M, etal. Antiviral efficacy in vivo of the antihuman immunodeficiency virus bicyclam SDZ SID 791 UM 3100), an inhibitor of infectious cell entry. Antimicrob. Agents Chemother. 40(3), 750–754 (1996).
  • Este JA, Cabrera C, Blanco J, etal Shift of clinical human immunodeficiency virus Type 1 isolates from X4 to R5 and prevention of emergence of the syncytium-inducing phenotype by blockade of CXCR4." Vim!. 73(7), 5577–5585 (1999).
  • •Suggests that X4 inhibitors will select for less cytopathic R5 viruses.
  • Hendrix CW, Flexner C, MacFarland RT, etal. Pharmacokinetics and safety of AMD-3100, a novel antagonist of the CXCR-4 chemokine receptor, in human volunteers. Antimiavb. Agents Chemother. 44(6), 1667–1673 (2000).
  • Baba M, Nishimura O, Kanzaki N, etal A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective antiHIV-1 activity. Proc. Natl Acad. Sci USA 96(10), 5698–5703 (1999).
  • ••First report of TAK-779 and of a R5coreceptor inhibitor.
  • Shiraishi M, Aramaki Y, Seto M, etal Discovery of novel, potent and selective small-molecule CCR5 antagonists as antiHIV-1 agents: synthesis and biological evaluation of anilide derivatives with a quaternary ammonium moiety. j Med. Chem 43(10), 2049–2063 (2000).
  • Dragic T, Trkola A, Thompson DA, et al. A binding pocket for a small molecule inhibitor of HIV-1 entry within the transmembrane helices of CCR5. Proc. Natl Acad. Sci. USA 97(10), 5639–5644 (2000).
  • Este JA. TAK-779 (Takeda). Cutr Opin. Investig. Drugs 2 (3), 354–356 (2001)
  • Este JA. Sch-351125 and Sch-350634. Schering-Plough. Cutr Opin. Investig. DITIF 3(3), 379–383 (2002).
  • •Summarizes the in vitro and in vivo properties of the Schering-Plough CCR5 coreceptor inhibitors.
  • Strizki JM, Xu S, Wagner NE, etal SCH-C (SCH-351125), an orally bioavailable, small molecule antagonist of the chemokine receptor CCR5, is a potent inhibitor of HIV-1 infection in vitro and in vivo. Proc. Natl Acad. Sci. USA 98(22), 12718–12723 (2001).
  • Tagat JR, Steensma RVV, McCombie SW, etal Piperazine-based CCR5 antagonists as HIV-1 inhibitors. II. Discovery of 1-[(2,4-dimethy1-3 pyridinyOcarbony11-4-methyl-4-[3 (S)-methy1-4-[1 (S)-[4 (trifluoromethyl)phenyllethy11-1-piperazi nyll-piperidine N1-oxide (SCH-350634), an orally bioavailable, potent CCR5 antagonist. I Med. Chem 44(21), 3343–3346 (2001).
  • Clanton DJ, Buckheit RW Jr, Terpening SJ, etal Novel sulfonated and phosphonated analogs of distamycin which inhibit the replication of HIV. Anti vim! Res. 27(4), 335–354 (1995).
  • •First report of NSC 651016 as a HIV entry inhibitor.
  • Howard OM, Oppenheim JJ, Hollingshead MG, etal. Inhibition of in vitro and in vivo HIV replication by a distamycin analogue that interferes with chemokine receptor function: a candidate for chemotherapeutic and microbicidal application. I Med. Chem 41 (13), 2184–2193 (1998).
  • ••Report that NSC 651016 is a chemokinecoreceptor inhibitor. NSC 651016 is the only reported inhibitor of both the X4 and R5 coreceptor.
  • Howard OM, Korte T, Tarasova NI, etal Small molecule inhibitor of HIV-1 cell fusion blocks chemokine receptor-mediated function. Leukoc. Biol. 64(1), 6–13 (1998).
  • Howard OM, Shirakawa AK, Turpin JA, etal. Naturally occurring CCR5 extracellular and transmembrane domain variants affect HIV-1 Co. receptor and ligand binding function. I Biol. Chem. 274(23), 16228–16234 (1999).
  • Maeda K, Yoshimura K, Shibayama S, et al. Novel low molecular weight spirodiketopiperazine derivatives potently inhibit R5 HIV-1 infection through their antagonistic effects onC CR5. . 1. Biol. Chem. 276 (37), 35194–35200 (2001).
  • Finke PE, Meurer LC, Oates B, etal. Antagonists of the human CCR5 receptor as antiHIV-1 agents. Part 2: structure-activity relationships for substituted 2-Aryl-1-[N-(methyl)-N-(phenylsulfonyl) amino]-4 (pipe ri din-1-yl) butanes. Bioorg. Med Chem. Lett. 11(2), 265–270 (2001).
  • Finke PE, Meurer LC, Oates B, etal. Antagonists of the human CCR5 receptor as antiHIV-1 agents. Part 3: a proposed pharmacophore model for 1-[N-(methyl)-N-(phenylsulfonyl)aminol-2-(phenyl)-4-[4 (substituted)piperi din-l-yll butanes. Bioorg. Med Chem. Lett. 11 (18), 2469–2473 (2001).
  • Lynch CL, Gentry AL, Hale JJ, et al. CCR5 antagonists: bicyclic isoxazolidines as conformationally constrained N-1-s ubstituted pyrrolidines. Bioorg. Med. Chem. Lett. 12(4), 677–679 (2002).
  • Hale JJ, Budhu RJ, Holson EB, etal. 1,3,4-Trisubstituted pyrrolidine CCR5 receptor antagonists. Part 2: lead optimization affording selective, orally bioavailable compounds with potent antiHIV activity. Bioorg. Med. Chem. Lett. 11(20), 2741–2745 (2001).
  • Kim D, Wang L, Caldwell CG, etal. Design, synthesis and SAR of heterocycle-containing antagonists of the human CCR5 receptor for the treatment of HIV-1 infection. Bioorg. Med Chem. Lett. 11 (24), 3103–3106 (2001).
  • Sodroski JG. HIV-1 entry inhibitors in the side pocket. Cell 99(3), 243–246 (1999).
  • Chan DC, Chutkowski CT, Kim PS. Evidence that a prominent cavity in the coiled coil of HIV Type 1 gp41 is an attractive drug target. Proc. Natl Acad. Sci. USA 95(26), 15613–15617 (1998).
  • •Study outlining the proposed binding pocket used by most pharmaceutical companies to design R5 inhibitors.
  • Wild CT, Shugars DC, Greenwell TK, McDanal CB, Matthews TJ. Peptides corresponding to a predictive a-helical domain of human immunodeficiency virus Type 1 gp41 are potent inhibitors of virus infection. Proc. Natl Acad. Sci. USA 91(21), 9770–9774 (1994).
  • •First report of T-20.
  • Kilby JM, Hopkins S, Venetta TM, et al Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nature Med 4(11), 1302–1307 (1998).
  • Chen RY, Kilby JM, Snag MS. Enfuvirtide. Expert Opin. Investig Drugs11(12), 1837–1843 (2002).
  • Rimsky LT, Shugars DC, Matthews TJ. Determinants of human immunodeficiency virus Type 1 resistance to gp41-derived inhibitory peptides. j Vim!. 72(2), 986–993 (1998).
  • Wei X, Decker JM, Liu H, etal Emergence of resistant human immunodeficiency virus Type 1 in patients receiving fusion inhibitor (T 20) monotherapy. Antimicrob. Agents Chemother. 46(6), 1896–1905 (2002).
  • •• Identifies specific antiretroviral resistance to T-20 after monotherapy.
  • Constantine KL, Friedrichs MS, Detlefsen D, etal High-resolution solution structure of siamycin II: novel amphipathic character of a 21 residue peptide that inhibits HIV fusion. 1 Biomol NMR 5 (3), 271–286 (1995).
  • Chokekijchai S, Kojima E, Anderson S, etal NP-06: a novel anti human immunodeficiency virus polypeptide produced by a Streptomyces species. Antimicrob. Agents Chemother. 39 (10), 2345–2347 (1995).
  • Labrosse B, Treboute C, Alizon M. Sensitivity to a nonpeptidic compound (RPR103611) blocking human immunodeficiency virus Type 1 Env-mediated fusion depends on sequence and accessibility of the gp41 loop region. J. Viral 74(5), 2142–2150 (2000).
  • Labrosse B, Pleskoff O, Sol N, et al Resistance to a drug blocking human immunodeficiency virus Type 1 entry (RPR103611) is conferred by mutations in gp41. I Viral 71(11), 8230–8236 (1997).
  • Debnath AK, Radigan L, Jiang, S. Structure-based identification of small molecule antiviral compounds targeted to the gp41 core structure of the human immunodeficiency virus Type 1.1 Med Chem 42(17), 3203–3209 (1999).
  • Ferrer M, Kapoor TM, Strassmaier T, etal Selection of gp41 mediated HIV-1 cell entry inhibitors from biased combinatorial libraries of non-natural binding elements. Nattily Struct. Biol. 6(10), 953–960 (1999).
  • Craigie R. HIV integrase, a brief overview from chemistry to therapeutics. Chem. 276(26), 23213–23216 (2001).
  • Asante-Appiah E, Skalka, AM. HIV-1 integrase: structural organization, conformational changes and catalysis. Adv. Virus Res. 52,351–369 (1999).
  • Bushman FD, Fujiwara T, Craigie R. Retroviral DNA integration directed by HIV integration protein in vitro. Science 249(4976), 1555–1558 (1990).
  • Bushman FD, Craigie R Activities of human immunodeficiency virus (HIV) integration protein in vitro specific cleavage and integration of HIV DNA. Proc. Natl Acad. Sci. USA 88(4), 1339–1343 (1991).
  • Craigie R, Mizuuchi K, Bushman FD, Engelman A. A rapid in vitro assay for HIV DNA integration. Nucleic Acid s Res. 19(10), 2729–2734 (1991).
  • •The biochemical assay used to assess inhibition of integrase.
  • Neamati N. Patented small molecule inhibitors of HIV-1 integrase: a 10-year saga. Expert Opin. Ther. Patents 12 (5), 709–724 (2002).
  • ••A very good summary of the developmentof integrase inhibitors. This review identifies compounds which inhibit integrase in only biochemical assays.
  • Goldgur Y, Craigie R, Cohen GH, etal. Structure of the HIV-1 integrase catalytic domain complexed with an inhibitor: a platform for antiviral drug design. Pox. Natl Acad. Sci USA 96(23), 13040–13043 (1999).
  • Robinson WE Jr, Reinecke MG, Abdel-Malek S, Jia Q, Chow SA. Inhibitors of HIV-1 replication [corrected; erratum to be published] that inhibit HIV integrase. Pox. Nat/Acad. Sci USA 93(13), 6326–6331 (1996).
  • Robinson WE Jr, Cordeiro M, Abdel-Malek S, etal Dicaffeoylquinic acid inhibitors of human immunodeficiency virus integrase: inhibition of the core catalytic domain of human immunodeficiency virus integrase. Mol Pharmacol 50(4), 846–855 (1996).
  • •First report of L-chicoric acid as an integrase inhibitor.
  • King PJ, Robinson WE Jr. Resistance to the antihuman immunodeficiency virus Type 1 compound L-chicoric acid results from a single mutation at amino acid 140 of integrase. I Vito/. 72(10), 8420–8424 (1998).
  • Lin Z, Neamati N, Zhao H, etal. Chicoric acid analogues as HIV-1 integrase inhibitors. Med Chem 42 (8), 1401–1414 (1999)
  • Pluymers W, Neamati N, Pannecouque C, etal Viral entry as the primary target for the antiHIV activity of chicoric acid and its tetra acetyl esters. Mol Pharmacol 58(3), 641–648 (2000).
  • ••In-depth analysis of L-chicoric acid inhibition of HIV and identification of virus entry as the compounds primary antiviral mechanism of action.
  • Hazuda DJ, Felock P, Witmer M, etal. Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science 287 (5453), 646–650 (2000).
  • ••First report of the 13-diketo acids and theuse of the unique biochemical assay used to identify them.
  • Grobler JA, Stillmock K, Hu B, et al Diketo acid inhibitor mechanism and HIV-1 integrase: implications for metal binding in the active site of phosphotransferase enzymes. Proc. Natl Acad. Sc]. USA 99(10), 6661–6666 (2002).
  • Espeseth AS, Felock P, Wolfe A, etal. HIV-1 integrase inhibitors that compete with the target DNA substrate define a unique strand transfer conformation for integrase. Proc. Natl Acad. Sc]. USA 97(21), 11244–11249 (2000).
  • Vi JS, Egbertson MS, Payne LS, etal. 4-Aryl-2,4-dioxobutanoic acid inhibitors of HIV-1 integrase and viral replication in cells.J Merl Chem 43(26), 4923–4926 (2000).
  • Marchand C, Zhang X, Pais GC, etal Structural determinants for HIV 1 integrase inhibition by P-diketo acids. J. Biol. Chem. 277(15), 12596–12603 (2002).
  • Stephenson J. Researchers explore new antiHIV agents. JAIVIA 287 (13), 1635–1637 (2002).
  • Henderson LE, Copeland TD, Sowder RC, Smythers GW, Oroszlan, S. Primary structure of the low molecular weight nucleic acid-binding proteins of murine leukemia viruses. J. Biol. Chem. 256(16), 8400–8406 (1981).
  • ••The discovery of the NCp7 nucleocapsidprotein and its conserved Zn fingers.
  • South TL, Blake PR, Sowder RC 3rd, etal. The nucleocapsid protein isolated from HIV-1 particles binds zinc and forms retroviral-type zinc fingers. Biochemistry 29(34), 7786–7789 (1990).
  • Turner BG, Summers MF. Structural biology of HIV. J. Mal Biol. 285(1), 1–32 (1999).
  • Covey SN. Amino acid sequence homology in gag region of reverse transcribing elements and the coat protein gene of cauliflower mosaic virus. Nucleic Acids Res. 14(2), 623–633 (1986).
  • Green LM, Berg JM. A retroviral Cys-Xaa2-Cys-Xaa4-His-Xaa4-Cys peptide binds metal ions: spectroscopic studies and a proposed three dimensional structure. Proc. Natl Acad. Sci. USA 86(11), 4047–4051 (1989).
  • Gorelick RJ, Chabot DJ, Rein A, Henderson LE, Arthur, LO. The two zinc fingers in the human immunodeficiency virus Type 1 nucleocapsid protein are not functionally equivalent. J. ViroL 67(7), 4027–4036 (1993).
  • Gorelick RJ, Benveniste RE, Gagliardi TD, et al Nucleocapsid protein zinc-finger mutants of simian immunodeficiency virus strain mne produce virions that are replication defective in vitro and in vivo. Virology 253(2), 259–270 (1999).
  • Gorelick RJ, Gagliardi TD, Bosche WJ, et al Strict conservation of the retroviral nucleocapsid protein zinc finger is strongly influenced by its role in viral infection processes: characterization of HIV-1 particles containing mutant nucleocapsid zinc-co-ordinating sequences. Virology 256(1), 92–104 (1999).
  • Bowles NE, Damay P, Spahr PE Effect of rearrangements and duplications of the Cys-His motifs of Rous sarcoma virus nucleocapsid protein. j Viral 67(2), 623–631 (1993).
  • De Guzman RN, Wu ZR, Stalling CC, etal. Structure of the HIV-1 nucleocapsid protein bound to the 5L3 psi-RNA recognition element. Science 279(5349), 384–388 (1998).
  • Lapadat-Tapolsky M, De Rocquigny H, Van Gent D, etal Interactions between HIV-1 nucleocapsid protein and viral DNA may have important functions in the viral life cycle. Nucleic Acids Res. 21 (4), 831–839 (1993).
  • Darlix JL, Vincent A, Gabus C, de Rocquigny H, Rogues B. Trans activation of the 5-to 3-viral DNA strand transfer by nucleocapsid protein during reverse transcription of HIV1 RNA. C R Acad. Sc]. 111316(8), 763–771 (1993).
  • Rodriguez-Rodriguez L, Tsuchihashi Z, Fuentes GM, Bambara RA, Fay PJ. Influence of human immunodeficiency virus nucleocapsid protein on synthesis and strand transfer by the reverse transcriptase in vitra J. Biol. Chem. 270(25), 15005–15011 (1995).
  • You JC, McHenry CS. Human immunodeficiency virus nucleocapsid Protein accelerates strand transfer of the terminally redundant sequences involved in reverse transcription. J. Biol. Chem. 269(50), 31491–31495 (1994).
  • Guo J, Wu T, Anderson J, etal Zinc finger structures in the human immunodeficiency virus Type 1 nucleocapsid protein facilitate efficient minus-and plus-strand transfer. J. Viral 74(19), 8980–8988 (2000).
  • Li X, Quan Y, Arts EJ, et al Human immunodeficiency virus Type 1 nucleocapsid protein (NCp7) directs specific initiation of minus-strand DNA synthesis primed by human tRNA(Lys3) in Win studies of viral RNA molecules mutated in regions that flank the primer binding site. J. Vim/. 70(8), 4996–5004 (1996).
  • •Comprehensive look at the effect of NCp7 on reverse transcription.
  • Carteau S, Batson SC, Poljak L, etal Human immunodeficiency virus Type 1 nucleocapsid protein specifically stimulates Mg2+-dependent DNA integration in vitm. J. Viral 71(8), 6225–6229 (1997).
  • Carteau S, Gorelick RJ, Bushman FD. Coupled integration of human immunodeficiency virus Type 1 cDNA ends by purified integrase in vitro stimulation by the viral nucleocapsid protein.J Viral 73(8), 6670–6679 (1999).
  • Buckman JS, Bosche WJ, Gorelick RJ. Human immunodeficiency virus Type 1 nucleocapsid zn(2+) fingers are required for efficient reverse transcription, initial integration processes and protection of newly synthesized viral DNA. J. Viral 77(2), 1469–1480 (2003).
  • Zhang JL, Sharma PL, Crumpacker CS. Enhancement of the basal level activity of HIV-1 long-terminal repeat by HIV-1 nucleocapsid protein. Virology 268 (2), 251–263 (2000).
  • •Role for HIV-1 in promoting early HIV transcription.
  • Zhang J, Crumpacker CS. Human immunodeficiency virus Type 1 nucleocapsid protein nuclear localization mediates early viral mRNA expression. J. ViroL 76 (20), 10444–10454 (2002).
  • Krausslich HG. Human immunodeficiency virus proteinase dimer as component of the viral polyprotein prevents particle assembly and viral infectivity. Proc. Natl Acad. Sc]. USA 88(8), 3213–3217 (1991).
  • Zybarth G, Carter C. Domains upstream of the protease (PR) in human immunodeficiency virus Type 1 Gag-Pol influence PR autoprocessing. j Vim!. 69(6), 3878–3884 (1995).
  • •The Zn fingers while still in the uncleaved pr160gag-pol are important for autocatalysis and release of active protease enzyme.
  • Rice WG, Schaeffer CA, Graham L, et al The site of antiviral action of 3-nitrosobenzamide on the infectivity process of human immunodeficiency virus in human lymphocytes. Proc. Natl Acad. Sci. USA 90(20), 9721–9724 (1993).
  • ••First report of the ability to target thenuclecapsid zinc finger in HIV.
  • Rice WG, Schaeffer CA, Harten B, etal. Inhibition of HIV-1 infectivity by zinc-ejecting aromatic C-nitroso compounds. Nature 361(6411), 473–475 (1993).
  • Rice WG, Supko JG, Malspeis L, etal Inhibitors of HIV nucleocapsid protein zinc fingers as candidates for the treatment of AIDS. Science 270(5239), 1194–1197 (1995).
  • Prasad JV, Loo JA, Boyer FE, etal. 2,2'-Dithiobisbenzamides derived from a-, 0-and y-amino acids possessing antiHIV activities: synthesis and structure-activity relationship. Bioorg.. 114ed. Chem. 6(10), 1707–1730 (1998).
  • Domagala JM, Gogliotti R, Sanchez JP, etal 2,2"-Dithiobisbenzamides and 2-benzisothiazolones, two new classes of antiretroviral agents: SAR and mechanistic considerations. Drug-Des. Discov. 15 (1), 49–61 (1997).
  • Domagala JM, Bader JP, Gogliotti RD, etal. A new class of antiHIV-1 agents targeted toward the nucleocapsid protein NCp7: the 2,2' dithiobisbenzamides. Bioorg Wed. Chem. 5(3), 569–579 (1997).
  • Tummino PJ, Harvey PJ, McQuade T, etal. The human immunodeficiency virus Type 1 (HIV-1) nucleocapsid protein zinc ejection activity of disulfide benzamides and benzisothiazolones: correlation with antiHIV and virucidal activities. Antimicrob. Agents Chemother. 41(2), 394–400 (1997).
  • Tummino PJ, Scholten JD, Harvey PJ, etal. The in vitro ejection of zinc from human immunodeficiency virus (HIV) Type 1 nucleocapsid protein by disulfide benzamides with cellular antiHIV activity. Proc. Natl Acad. Sci. USA 93(3), 969–973 (1996).
  • Turpin JA, Schaeffer CA, Terpening SJ, etal. Reverse transcription of human immunodeficiency virus Type 1 is blocked by retroviral zinc finger inhibitors. Antiviral Chem. Chemother. 8(1), 60–69 (1997).
  • Turpin JA, Terpening SJ, Schaeffer CA, etal Inhibitors of human immunodeficiency virus Type 1 zinc fingers prevent normal processing of gag precursors nd result in the release of noninfectious virus particles. j Viral 70(9), 6180–6189 (1996).
  • •Catalogs the effects of Zn finger inhibitors on latently and chronically infected cells.
  • Maynard AT, Huang M, Rice WG, Covell DG. Reactivity of the HIV-1 nucleocapsid protein p7 zinc finger domains from the perspective of density-functional theory. Proc. Natl Acad. Sci. USA 95 (20), 11578–11583 (1998).
  • Huang M, Maynard A, Turpin JA, et al AntiHIV agents that selectively target retroviral nucleocapsid protein zinc fingers without affecting cellular zinc finger proteins.j Med. Chem 41(9), 1371–1381 (1998).
  • ••First demonstration that specificity ofinteraction was possible for the retroviral Zn finger versus cellular Zn fingers.
  • Rice WG, Turpin JA, Schaeffer CA, etal Evaluation of selected chemotypes in coupled cellular and molecular target-based screens identifies novel HIV-1 zinc finger inhibitors.j Med Chem. 39(19), 3606–3616 (1996).
  • Witvrouw M, Balzarini J, Pannecouque C, etal SRR-5B3, a disulfide containing macrolide that inhibits a late stage of the replicative cycle of human immunodeficiency virus. Antimicrob. Agents Chemother. 41(2), 262–268 (1997).
  • Rice WG, Baker DC, Schaeffer CA, etal. Inhibition of multiple phases of human immunodeficiency virus Type 1 replication by a dithiane compound that attacks the conserved zinc fingers of retroviral nucleocapsid proteins. Antimicrob. Agents Chemother. 41 (2), 419–426 (1997).
  • Sharmeen L, McQuade T, Heldsinger A, etal Inhibition of the early phase of HIV replication by an isothiazolone, PD 161374. Antiviral Res. 49(2), 101–114 (2001).
  • Turpin JA, Song Y, Inman JK, etal Synthesis and biological properties of novel pyridinioalkanoyl thiolesters (PATE) as antiHIV-1 agents that target the viral nucleocapsid protein zinc fingers. j Med. Chem. 42(1), 67–86 (1999).
  • Song Y, Goel A, Basrur V, etal Synthesis and biological properties of amino acid amide ligand-based pyridinioalkanoyl thioesters as antiHIV agents. Bioorg. Med. Chem. 10(5), 1263–1273 (2002).
  • Goel A, Mazur SJ, Fattah RJ, etal Benzamide-based thiokarbamates: a new class of HIV-1 NCp7 inhibitors. Bioorg. Med. Chem. Lett. 12(5), 767–770 (2002).
  • Schito ML, Kennedy PE, Kowal RE, Berger EA, Sher A. A human immunodeficiency virus-transgenic mouse model for assessing interventions that block microbial-induced proviral expression. j Infect. Dis.183(11), 1592–1600 (2001).
  • Schito ML, Goel A, Song Y, etal In vivo antiviral activity of a novel human immunodeficiency virus-1 nucleocapsid p7 zinc finger inhibitors in a transgenic murine model. AIDS Res. Hum. Retrovir 19(2), 91–102 (2003).
  • ••First study showing that a Zn fingerinhibitor can be delivered orally. Also demonstrates that orally administered Zn finger inhibitors can be virucidal in viva First demonstration that Zn finger inhibitors will have an action in tissues (spleen).
  • Vandevelde M, Witvrouw M, Schmit JC, etal ADA, a potential antiHR/ drug. AIDS Rej. Hum. Retroviruses 12 (7), 567–568 (1996).
  • Rice WG, Turpin JA, Huang, M, etal. Azodicarbonamide inhibits HIV-1 replication by targeting the nucleocapsid protein. Nature Med 3(3), 341–345 (1997).
  • Tassignon J, Ismaili J, Le Moine A, etal Azodicarbonamide inhibits T-cell responses in Oho and in Ova Nature Med. 5 (8), 947–950 (1999).
  • Fagny C, Vandevelde M, Svoboda M, Robberecht P Ribonucleotide reductase and thymidine phosphorylation: two potential targets of azodicarbonamide. Biochem. Pharmacol 64(3), 451–456 (2002).
  • Goebel FD, Hemmer R, Schmit JC, etal Phase Jill dose escalation and randomized withdrawal study with add-on azodicarbonamide in patients failing on current antiretroviral therapy. AIDS15 (1), 33–45 (2001).
  • •Phase UII trial of azodicarbonamide.
  • Schinazi RF, McMillan A, Cannon D, etal Selective inhibition of human immunodeficiency viruses by racemates and enantiomers of cis-5 fluoro-1-[2-(hydroxymethy0-1,3-oxathiolan-5-ylicytosine. Antimicrob. Agents Chemother. 36(11), 2423–2431 (1992).
  • Frick LW, St John L, Taylor LC, etal Pharmacolkinetics, oral bioavailability and metabolic disposition in rats of 0-cis-5-fluoro-112 (hydroxymethy0-1,3-oxathiolan-5-yll cytosine, a nucleoside analog active against human immunodeficiency virus and hepatitis B virus. Antimicmb. Agents Chemother 37(11), 2285–2292 (1993).
  • Gosselin G, Schinazi RF, Sommadossi JP, etal Antihuman immunodeficiency virus activities of the 13-L enantiomer of 2%3' dideoxycytidine and its 5-fluoro derivativein vitro. Antimicrob. Agents Chemother 38(6), 1292–1297 (1994).
  • Anon. Emtricitabine: 524W91, BW524W91, Coviracil®, FTC Drugs RD 4(1), 42–48 (2003).
  • Gu Z, Wainberg MA, Nguyen-Ba N, et al Mechanism of action and in vitm activity of, 3'-dioxolanylpurine nucleoside analogues against sensitive and drug-resistant human immunodeficiency virus Type 1 variants. Antimicrob. Agents Chemother 43 (10), 2376-2382 (1999).
  • Corbett AH, Rublein JC. DAPD (Emory University/Triangle Pharmaceuticals/Abbott Laboratories). Cum Opin. InvestIXT. Drugs 2(3), 348–353 (2001).
  • Pramoolsinsup C. Management of viral hepatitis B.. 1. Gastmenterol Hepatol 17(Suppl.) S125—S145 (2002).
  • De Clercq E. New perspectives for the treatment of HIV infections. Verh. K Acad. Geneeskcl Belg. 60(1), 13–41; discussion 41–15 (1998).
  • Adkins JC, Noble S. Efavirenz. Drugs 56(6), 1055–1064; discussion 1065–1056 (1998).
  • Scott LJ, Perry CM. Delavirdine: a review of its use in HIV infection. Drugs 60(6), 1411–1444 (2000).
  • Bardsley-Elliot A, Perr, CM. Nevirapine: a review of its use in the prevention and treatment of paediatric HIV infection. Paecliatc Drugs 2 (5), 373–407 (2000)
  • Corbett JW, Ko SS, Rodgers JD, etal. Inhibition of clinically relevant mutant variants of HIV-1 by quinazolinone non-nucleoside reverse transcriptase inhibitors. Merl Chem. 43(10), 2019–2030 (2000).
  • Corbett JW, Ko SS, Rodgers JD, etal. Expanded-spectrum nonnucleoside reverse transcriptase inhibitors inhibit clinically relevant mutant variants of human immunodeficiency virus Type 1. Antimicrob. Agents Chemother 43 (12), 2893–2897 (1999).
  • Buckheit RVV Jr, Kinjerski TL, Fliakas-Boltz V, etal Structure-activity and cross-resistance evaluations of a series of human immunodeficiency virus type-1-specific compounds related to oxathiin carboxanilide. Antimicrob. Agents Chemother. 39(12), 2718–2727 (1995).
  • •First report oxathiin carboxanilide NNRTI HIV-1 reverse transcriptase inhibitor UC–781.
  • Barnard J, Borkow G, Parniak MA. The thiocarboxanilide nonnucleoside UC781 is a tight-binding inhibitor of HIV-1 reverse transcriptase. Biochemistry36(25), 7786–7792 (1997).
  • Borkow G, Barnard J, Nguyen TM, etal Chemical barriers to human immunodeficiency virus Type 1 (HIV-1) infection: retrovirucidal activity of UC781, a thiocarboxanilide nonnucleoside inhibitor of HIV-1 reverse transcriptase. j Viral. 71(4), 3023–3030 (1997).
  • Balzarini J, Naesens L, Verbeken E, et al Preclinical studies on thiocarboxanilide UC-781 as a virucidal agent. AIDS12(10), 1129–1138 (1998).
  • •Report that UC-781 has a high on-rate and low off-rate for the RT enzyme, resulting in prolonged inactivation of RT in cell-free virus following short exposures to the compound.
  • Buckheit RW Jr, Hollingshead M, Stinson S, etal. Efficacy, pharmacokinetics and in Om antiviral activity of UC781, a highly potent, orally bioavailable nonnucleoside reverse transcriptase inhibitor of HIV Type 1. AIDS Res. Hurn Retmvimses13(9), 789–796 (1997).
  • Watson K, Kearney M, Walton E, etal. Antiviral Resistance to SJ 3366, a novle dual mechansism of action inhibitor of HIV-1 and HIV-2. Antiviral Res. 50(1), A53 (2001) (Abstract 50).
  • Buckheit RVV Jr, Watson K, Fliakas-Boltz V, etal. SJ-3366, a unique and highly potent nonnucleoside reverse transcriptase inhibitor of human immunodeficiency virus Type 1 (HIV-1) that also inhibits HIV-2. Antimicrob. Agents Chemother. 45(2), 393–400 (2001).
  • •First report of the dual reverse transcriptase and entry inhibitor SJ-3366.
  • Turpin JA, Watson K, Loftus TL, et al Structure-activity relationships of SJ-3366 (2.4(1H, 3H)-pyrimidinediones): inhibition of reverse transcriptase, virus attachment and HIV-1 and HIV-2 replication. Antiviral Res. 50(1), A40 (2001) (Abstract 44)
  • Cushman M, Golebiewski WM, Graham L, et al. Synthesis and biological evaluation of certain alkenyldiarylmethanes as antiHIV-1 agents which act as non-nucleoside reverse transcriptase inhibitors. J. Med Chem39(16), 3217–3227 (1996).
  • Xu G, MickLatcher M, Silvestri MA, etal The biological effects of structural variation at the meta position of the aromatic rings and at the end of the alkenyl chain in the alkenyldiarylmethane series of non-nucleoside reverse transcriptase inhibitors. J. Med.. Chem. 44(24), 4092–4113 (2001).
  • Andreola ML, Soultrait VR, Desjobert C, et al HIV-1 integrase and RNase H activities as therapeutic targets. Expert Opin. Ther. Targets6(4), 433–446 (2002).
  • Klarmann GJ, Hawkins ME, Le Grice SE Uncovering the complexities of retroviral ribonuclease H reveals its potential as a therapeutic target. AIDS Rev 4(4), 183–194 (2002).
  • DeStefano JJ, Buiser RG, Mallaber LM, Fay PJ, Bambara RA. Parameters that influence processive synthesis and site-specific termination by human immunodeficiency virus reverse transcriptase on RNA and DNA templates. Biochim. Biophys. Acta 1131(3), 270–280 (1992).
  • Peliska JA, Benkovic SJ. Mechanism of DNA strand transfer reactions catalyzed by HIV-1 reverse transcriptase. Science 258(5085), 1112–1118 (1992).
  • Schatz O, Mous J, Le Grice SF. HIV-1 RT-associated ribonuclease H displays both endonuclease and 3--5" exonuclease activity. EMI30 9 (4), 1171–1176 (1990).
  • Moelling K, Schulze T, Diringer H. Inhibition of human immunodeficiency virus Type 1 RNase H by sulfated polyanions I Viral. 63 (12), 5489–5491 (1989).
  • Andreola ML, Tharaud D, Litvak S, Tarrago-Litvak L. The ribonuclease H activity of HIV-1 reverse transcriptase: further biochemical characterization and search of inhibitors. Biochimie 75(1 2), 127–134 (1993).
  • Palaniappan C, Fay PJ, Bambara RA. Nevirapine alters the cleavage specificity of ribonuclease H of human immunodeficiency virus 1 reverse transcriptase. j Biol. Chem. 270(9), 4861–4869 (1995).
  • Gerondelis P, Archer RII, Palaniappan C, etal The P236L delavirdine resistant human immunodeficiency virus Type 1 mutant is replication defective and demonstrates alterations in both RNA 5 '-end-and DNA 3"-end-directed RNase H activities.Viral. 73(7), 5803-5813(1999).
  • Archer RII, Dykes C, Gerondelis P, etal Mutants of human immunodeficiency virus Type 1 (HIV-1) reverse transcriptase resistant to nonnucleoside reverse transcriptase inhibitors demonstrate altered rates of RNase H cleavage that correlate with HIV-1 replication fitness in cell culture.j Viral. 74(18), 8390–8401 (2000).
  • Anon D, Sluis-Cremer N, Min KL, etal Mutational analysis of Tyr-501 of HIV-1 reverse transcriptase. Effects on ribonuclease H activity and inhibition of this activity by N-acylhydrazones. j Biol. Chem. 277(2), 1370–1374 (2002).
  • Gabbara S, Davis VVR, Hupe L, Hupe D, Peliska JA. Inhibitors of DNA strand transfer reactions catalyzed by HIV-1 reverse transcriptase. Biochemistry38(40), 13070–13076 (1999).
  • Molla A, Granneman GR, Sun E, Kempf, DJ. Recent developments in HIV protease inhibitor therapy. Antiviral Res. 39(1), 1–23 (1998).
  • Lech WJ, Wang G, Yang YL, et al h7 viva sequence diversity of the protease of human immunodeficiency virus Type 1: presence of protease inhibitor-resistant variants in untreated subjects. J: Vim!. 70(3), 2038–2043 (1996).
  • Robinson BS, Riccardi IKA, Gong YF, etal. BMS-232632, a highly potent human immunodeficiency virus protease inhibitor that can be used in combination with other available antiretroviral agents. Antimicrob. Agents Chemother. 44(8), 2093–2099 (2000).
  • Same I, Piliero, P, Squires K, Thiry A, Schnittman S. Results of a Phase 2 clinical trial at 48 weeks (AI424-007): a dose-ranging, safety and efficacy comparative trial of atazanavir at three doses in combination with didanosine and stavudine in antiretroviral-naive subjects. I Acquit: Immune Dellc. Synth: 32(1), 18–29 (2003).
  • Heotelmans RMW. Tipranavir. Curr. Opin. Anti-infect. Drugsl, 241–245 (1999).
  • Larder BA, Hertogs K, Bloor S, etal Tipranavir inhibits broadly protease inhibitor-resistant HIV-1 clinical samples. A/DS14(13), 1943-1948 (2000).
  • •One of two reports that the nonpeptidometic protease inhibitor Tipranavir inhibits the replication of viruses resistant to peptidometic PI inhibitors.
  • Rusconi S, La Seta Catamancio S, Citterio P, etal. Susceptibility to PNU-140690 (Tipranavir) of human immunodeficiency virus Type 1 isolates derived from patients with multidrug resistance to other protease inhibitors. Antimicrob. Agents Chemother. 44(5), 1328–1332 (2000).
  • •One of two reports that the nonpeptidometic protease inhibitor tipranavir inhibits the replication of viruses resistant to peptidometic PI inhibitors.
  • Back NK, van Wijk A, Remmerswaal D, etal In vitro tipranavir susceptibility of HIV-1 isolates with reduced susceptibility to other protease inhibitors. AIDS14(1), 101–102 (2000).
  • Erickson-Viitanen S, Klabe RM, Cawood PG, O'Neal PL, Meek JL. Potency and selectivity of inhibition of human immunodeficiency virus protease by a smallnonpeptide cyclic urea, DMP 323. Antimicrob. Agents Chemother. 38 (7), 1628-1634 (1994).
  • Rodgers JD, Lam PY, Johnson BL, et al. Design and selection of DMP 850 and DMP 851: the next generation of cyclic urea HIV protease inhibitors. Chem. Biol. 5(10), 597–608 (1998).
  • Nillroth U, Vrang L, Markgren PO, et al. Human immunodeficiency virus Type 1 proteinase resistance to symmetric cyclic urea inhibitor analogs. Antimicrob. Agents Chemother. 41(11), 2383–2388 (1997).
  • Ptak RG. HIV-1 regulatory proteins: targets for novel drug development. Expert Opin. Investig. Drugsll (8), 1099–1115 (2002).
  • •• Recent review containing excellant tabular summaries of literature reported Tat and Rev inhibitors. Also summaries of protein—protein interactions reported for both Tat and Rev.
  • Karn J. Tackling Tat. J. Mol Biol. 293(2), 235–254 (1999).
  • Xiao H, Neuveut C, Tiffany HL, etal. Selective CXCR4 antagonism by Tat: implications for in vivo expansion of coreceptor use by HIV-1. Proc. Natl Acad. Sci. USA 97(21), 11466–11471 (2000).
  • Kelly GD, Ensoli B, Gunthel CJ, Offermann MK. Purified Tat induces inflammatory response genes in Kaposi's sarcoma cells. AIDS12 (14), 1753–1761 (1998).
  • Taube R, Fujinaga K, Wimmer J, BarboricM, Peterlin BM. Tat transactivation: a model for the regulation of eukaryotic transcriptional elongation. Virology264(2), 245–253 (1999).
  • Cupelli LA, Hsu MC. The human immunodeficiency virus Type 1 Tat antagonist, Ro 5–3335, predominantly inhibits transcription initiation from the viral promoter. J. Viral 69(4), 2640–2643 (1995).
  • •First reported Tat inhibitor.
  • Hsu MC, Schutt AD, Holly M, et al Inhibition of HIV replication in acute and chronic infections in vitro by a Tat antagonist. Science 254 (5039), 1799–1802 (1991).
  • Daelemans D, Schols D, Witvrouw M, etal. A second target for the peptoid Tat/transactivation response element inhibitor CGP64222: inhibition of human immunodeficiency virus replication by blocking CXC chemokine receptor 4-mediated virus entry. Mol Pharmacol 57(1), 116–124 (2000).
  • Hamy F, Felder ER, Heizmann G, et al An inhibitor of the Tat/TAR RNA interaction that effectively suppresses HIV-1 replication. Proc. Natl Acad. Sci. USA 94(8), 3548–3553 (1997).
  • Litovchick A, Lapidot A, Eisenstein M, Kalinkovich A, Borkow G. Neomycin B-arginine conjugate, a novel HIV-1 Tat antagonist: synthesis and antiHIV activities. Biochemistry 40 (51), 15612–15623 (2001).
  • Baba M, Okamoto M, Makino M, etal Potent and selective inhibition of human immunodeficiency virus Type 1 transcription by piperazinyloxoquinoline derivatives. Antimicrob. Agents Chemother. 41(6), 1250–1255 (1997).
  • Witvrouw M, Daelemans D, Pannecouque C, etal Broad spectrum antiviral activity and mechanism of antiviral action of the fluoroquinolone derivative K-12. Antivir. Chem. Chemother. 9(5), 403–411 (1998).
  • Yamataka K, Wang X, Baba M. Long-term culture of HIV-1-infected cells with the transcription inhibitor K-37. Anti vim! Res. 56(1), 85–92 (2002).
  • Takeuchi H, Asai N, Tanabe K, etal EM2487, a novel antiHIV-1 antibiotic, produced by Streptomyces sp. Mer-2487: taxonomy, fermentation, biological properties, isolation and structure elucidation. J. Antibiot. (Tokyo) 52(11), 971–982 (1999).
  • Baba M, Okamoto M, Takeuchi H. Inhibition of human immunodeficiency virus Type 1 replication in acutely and chronically infected cells by EM2487, a novel substance produced by a Streptomyces species. Antimicrob. Agents Chemother. 43(10), 2350 2355 (1999).
  • Pollard VW, Malim MH. The HIV-1 Rev protein. Ann. Rev Mcrobiol 52,491–532 (1998).
  • Cullen BR Retroviruses as model systems for the study of nuclear RNA export pathways. Vimlogy249(2), 203–210 (1998).
  • Reddy TR, Xu W, Mau JK, etal Inhibition of HIV replication by dominant negative mutants of Sam68, a functional homolog of HIV-1 Rev Nature Med 5(6), 635–642 (1999).
  • Hamm TE, Rekosh D, Hammarskjold ML. Selection and characterization of human immunodeficiency virus Type 1 mutants that are resistant to inhibition by the transdominant negative RevM10 protein. Viral 73(7), 5741–5747 (1999).
  • Wolff B, Sanglier JJ, VVang Y. Leptomycin B is an inhibitor of nuclear export: inhibition of nucleo-cytoplasmic translocation of the humanimmunodeficiency virus Type 1 (HIV-1) Rev protein and Rev dependent mRNA. Chem. Biol. 4(2), 139–147 (1997).
  • Kudo N, Wolff B, Sekimoto T, etal Leptomycin B inhibition of signal mediated nuclear export by direct binding to CRM1. Exp. Cell Res. 242(2), 540–547 (1998).
  • •Reports that thie Rev inhibitor leptomycin B is targeting a component of the nuclear pore.
  • Kudo N, Matsumori, N, Taoka, H, etal Leptomycin B inactivates CRWIliexportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc. Natl Acad. Sci. USA 96(16), 9112–9117 (1999).
  • Daelemans D, Afonina E, Nilsson J, et al A synthetic HIV-1 Rev inhibitor interfering with the CRM1-mediated nuclear export. Proc. Natl Acad. Sci. USA 99(22), 14440–14445 (2002).
  • Chapman RL, Stanley TB, Hazen R, Garvey ER Small molecule modulators of HIV Rev/Rev response element interaction identified by random screening. Antiviral Res. 54(3), 149–162 (2002).
  • Tok JB, Dunn U. Des Jean RC. Binding of dimeric aminoglycosides to the HIV-1 rev responsive element (RRE) RNA construct. Bioorg. Med Chem. Lett. 11 (9), 1127–1131 (2001).
  • Luedtke NW, Tor Y. A Novel Solid-Phase Assembly for Identifying Potent and Selective RNA Ligands. Angew Chem. Int. Ecl Engl. 39(10), 1788–1790 (2000).
  • Cholody WM, Hernandez L, Hassner L, et al Bisimidazoacridones and related compounds: new antineoplastic agents with high selectivity against colon tumors. J. Med. Chem. 38 (16), 3043–3052 (1995).
  • Hernandez L, Cholody WM, Hudson EA, etal Mechanism of action of bisimidazoacridones, new drugs with potent, selective activity against colon cancer. Cancer Res. 55(11), 2338–2345 (1995).
  • Turpin JA, Buckheit RVV Jr, Derse D, etal. Inhibition of acute-, latent-and chronic-phase human immunodeficiency virus Type 1 (HIV 1) replication by a bistriazoloacridone analog that selectively inhibits HIV-1 transcription. Antimicrob. Agents Chemother. 42(3), 487–494 (1998).
  • •First report of the HIV transcription initiation inhibitor temacrazine.
  • Turpin JA, Pallansch L, Michejda CJ, et al Temacrazine inhibits initiation of HIV-1 transcription. Antiviral Res. 46(1), A45 (2000) (Abstract 33).
  • Turpin JA, Keamet M, Ptak RG, etal. Inhibition of HIV-1 replication by temacrazine is reversed by LTR mutations that increase the basal rate of viral transcript initiation. Resistance Workshop Barcelona, Spain, (2000) (Abstract 50).
  • Wills RV, Craven RC. Form, function and use of retroviral gag proteins. AIDS5(6), 639–654 (1991).
  • von Schwedler UK, Stemmler TL, Klishko VY, etal Proteolytic refolding of the HIV-1 capsid protein amino-terminus facilitates viral core assembly. EM130 17(6), 1555–1568 (1998).
  • Gross I, Hohenberg H, Huckhagel C, Krausslich HG. N-Terminal extension of human immunodeficiency virus capsid protein converts the in vitro assembly phenotype from tubular to spherical particles. J. Vim!. 72 (6), 4798–4810 (1998).
  • Tang S, Murakami T, Agresta BE, etal Human immunodeficiency virus Type 1 N-terminal capsid mutants that exhibit aberrant core morphology and are blocked in initiation of reverse transcription in infected cells. Vim!. 75(19), 9357–9366 (2001).
  • •First identified capsid inhibitor of HIV-1.
  • Reicin AS, Ohagen A, Yin L, Hoglund S, Goff, SR The role of Gag in human immunodeficiency virus Type 1 virion morphogenesis and early steps of the viral life cycle. Vim!. 70(12), 8645–8652 (1996).
  • Forshey BM, von Schwedler U, Sundquist WI and Aiken C. Formation of a human immunodeficiency virus Type 1 core of optimal stability is crucial for viral replication. Viral 76(11), 5667–5677 (2002).
  • Rossmann MG. Antiviral agents targeted to interact with viral capsid proteins and a possible application to human immunodeficiency virus. Proc. Natl Acad. Sci. USA 85(13), 4625–4627 (1988).
  • Tang C, Loeliger E, Kinde I, etal Antiviral inhibition of the HIV-1 capsid protein. J. Mal Biol. 327(5), 1013–1020 (2003).
  • Bieniasz PD, Cullen BR. Multiple blocks to human immunodeficiency virus Type 1 replication in rodent cells. J. Vim!. 74(21), 9868–9877 (2000).
  • Mariani R, Rutter G, Harris ME, et al A block to human immunodeficiency virus Type 1 assembly in murine cells. J. Vim!. 74(8), 3859–3870 (2000).
  • ••Important study that shows despitesupplying CD4, coreceptors and Cycfin Ti to rodent cells there are still cellular blocks to HIV replication.
  • Mariani R, Rasala BA, Rutter G, et al Mouse-human heterokaryons support efficient human immunodeficiency virus Type 1 assembly. Vim!. 75(7), 3141–3151 (2001).
  • Ott DE. Potential roles of cellular proteins in HIV-1. Rev Med Vim!. 12(6), 359–374 (2002).
  • Luban J. Absconding with the chaperone: essential cyclophilin-Gag interaction in HIV-1 virions. Ce1187 (7), 1157–1159 (1996).
  • Saphire AC, Bobardt MD, Gallay PA. Trans-Complementation rescue of cyclophilin A-deficient viruses reveals that the requirement for cyclophilin A in human immunodeficiency virus Type 1 replication is independent of its isomerase activity. J. Viral 76(5), 2255–2262 (2002).
  • Raulin J. Human immunodeficiency virus and host cell lipids. Interesting pathways in research for a new HIV therapy. Frog: Lipid Res. 41(1), 27–65 (2002).
  • Brown D. Structure and function of membrane rafts. hit. J. Med Microbial (6–7), 433–437 (2002).
  • Liao Z, Cimakasky LM, Hampton R, Nguyen DH, Hildreth JE. Lipid rafts and HIV pathogenesis: host membrane cholesterol is required for infection by HIV Type 1. AIDS Res. Hum. Retmviruses 17(11), 1009 1019 (2001).
  • •Links membrane cholesterol content to virus infectivity by depleting with the cholesterol binding compound fi-cyclo dextran.
  • Popik W, Ake TM, Au WC. Human immunodeficiency virus Type 1 uses lipid raft-colocalized CD4 and chemokine receptors for productive entry into CD4 (+) T-cells. J. Viral. 76(10), 4709–4722 (2002).
  • Zheng YH, Plemenitas A, Linnemann T, Fackler OT, Peterlin BM. Nef increases infectivity of HIV via lipid rafts. CUI7: 11(11), 875 879 (2001).
  • Nguyen DH, Hildreth JE. Evidence for budding of human immunodeficiency virus Type 1 selectively from glycolipid-enriched membrane lipid rafts. J. Virol. 74(7), 3264–3272 (2000).
  • Guyader M, Kiyokawa E, Abrami L, Turelli P, Trono D. Role for human immunodeficiency virus Type 1 membrane cholesterol in viral internalization. J. Viral 76(20), 10356–10364 (2002).
  • Lopez-Berestein G, Bodey GP, Fainstein V, etal. Treatment of systemic fungal infections with liposomal amphotericin B. Arch. Intern. Med 149(11), 2533–2536 (1989).
  • Mehta RT, Hopfer RL, McQueen T, Juliano RL, Lopez-Berestein G. Toxicity and therapeutic effects in mice of liposome-encapsulated nystatin for systemic fungal infections. Antimicrob. Agents Chemother. 31(12), 1901–1903 (1987).
  • Pontani DR, Sun D, Brown JW, etal. Inhibition of HIV replication by liposomal encapsulated amphotericin B. Anti vim! Res. 11(3), 119–125 (1989).
  • Green, ML. Evaluation and management of dyslipidemia in patients with HIV infection. j Genet. Intern. Med. 17(10), 797–810 (2002).
  • McDonald D, Vodicka MA, Lucero G, etal. Visualization of the intracellular behavior of HIV in living cells. Cell. Biol. 159(3), 441–452 (2002).
  • ••A unique study using image analysis totrack PIC as they move along microfilarnents from the cell membrane to the nuclear membrane. The reader is encouraged to view the film loops of this process available at the journals website.
  • Bukrinsky MI, Sharova N, McDonald TL, etal Association of integrase, matrix and reverse transcriptase antigens of human immunodeficiency virus Type 1 with viral nucleic acids following acute infection. Proc. Natl Acad. Sci. USA 90(13), 6125–6129 (1993).
  • de Noronha CM, Sherman MP, Lin HW, etal Dynamic disruptions in nuclear envelope architecture and integrity induced by HIV-1 Vpr. Science 294(5544), 1105–1108 (2001).
  • •Presents evidence that Vpr can 'punch' holes in the nuclear membrane large enough to allow entry of the PIC.
  • Zennou V, Petit C, Guetard D, etal. HIV-1 genome nuclear import is mediated by a central DNA flap. Ce11101(2), 173–185 (2000).
  • Bukrinsky MI, Haggerty S, Dempsey MP, etal. A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 365(6447), 666–669 (1993).
  • Gallay P, Hope T, Chin D, Trono D. HIV-1 infection of nondividing cells through the recognition of integrase by the importin/karyopherin pathway. Proc. Natl Acad. Sci. USA 94(18), 9825–9830 (1997).
  • Bukrinskaya A, Brichacek B, Mann A, Stevenson M. Establishment of a functional human immunodeficiency virus Type 1 (HIV-1) reverse transcription complex involves the cytoskeleton. I Exp.. 114ed. 188(11), 2113–2125 (1998).
  • Turelli P, Doucas V, Craig E, et al Cytoplasmic recruitment of INI1 and PML on incoming HIV preintegration complexes: interference with early steps of viral replication. Mal. Cell 7(6), 1245–1254 (2001).
  • Cole AM, Hong T, Boo LM, et al. Retrocyclin: a primate peptide that protects cells from infection by T-and M-tropic strains of HIV-1. Proc. Natl Acad. Sci. USA 99(4), 1813–1818 (2002).
  • Sheehy AM, Gaddis NC, Choi JD, Malim MH. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418(6898), 646–650 (2002).
  • Cartier C, Sivard P, Tranchat C, etal Identification of three major phosphorylation sites within HIV-1 capsid. Role of phosphorylation during the early steps of infection. j Biol. Chem. 274(27), 19434–19440 (1999).
  • Lu X, Yu H, Liu SH, Brodsky FM, Peterlin BM. Interactions between HIV1 Nef and vacuolar ATPase facilitate the internalization of CD4. Immunity 8(5), 647–656 (1998).
  • Rout MP, Aitchison JD. Pore relations: nuclear pore complexes and nucleocytoplasmic exchange. Essays Biochem. 36,75–88 (2000).
  • Senderowicz AM. Flavopiridol: the first cyclin-dependent kinase inhibitor in human clinical trials. Invest. New Drugs 17(3), 313–320 (1999).
  • Senderowicz AM, Sausville EA. Preclinical and clinical development of cyclin-dependent kinase modulators. Natl Cancer Inst. 92(5), 376–387 (2000).
  • Chao SH, Fujinaga K, Marion JE, et al Flavopiridol inhibits P-TEFb and blocks HIV-1 replication. j Biol. Chem. 275(37), 28345–28348 (2000).
  • Mancebo HS, Lee, G, Flygare J, etal. P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro. Genes Dev. 11(20), 2633–2644 (1997).
  • •Library screening study which identifies several P-TEFb transcription inhibitor chemotypes. This study is note worthy due to its completeness in analyzing the inhibitors and focusing on compound which inhibit P-TEFb functional activity.
  • Wilk T, Gross, I, Gowen BE, etal. Organization of immature human immunodeficiency virus Type 1. j Viral 75(2), 759–771 (2001).
  • Zimmerman C, Klein KC, Kiser PK, et al. Identification of a host protein essential for assembly of immature HIV-1 capsids. Nature 415(6867), 88–92 (2002).
  • Gottlinger HG, Sodroski JG, Haseltine WA. Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus Type 1. Proc. Natl Acad. Sci. USA 86(15), 5781–5785 (1989).
  • Gamier L, Parent LJ, Rovinski B, Cao SX, Wills, JW. Identification of retroviral late domains as determinants of particle size.Vim!. 73(3), 2309–2320 (1999).
  • Yu XF, Matsuda Z, Yu QC, Lee TH, Essex M. Role of the C terminus Gag protein in human immunodeficiency virus Type 1 virion assembly and maturation. j Genet. Virol 76\(Pt 12), 3171–3179 (1995).
  • Pornillos O, Alam SL, Davis, DR, Sundquist WI. Structure of the Tsg101 UEV domain in complex with the PTAP motif of the HIV-1 p6 protein. Nature Struct. Biol. 9(11), 812–817 (2002).
  • Garrus JE, von Schwedler UK, Pornillos OW, etal. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Ce11107(1), 55–65 (2001).
  • •Identification of the vacuolar sorting pathway proteins Tsg101 and Vsp4 and their binding to p6. This paper provides the first solid linkage of HIV budding to this cellular pathway.
  • Orenstein JM, Meltzer MS, Phipps T, Gendelman HE. Cytoplasmic assembly and accumulation of human immunodeficiency virus types 1 and 2 in recombinant human colony-stimulating factor-l-treated human monocytes: an ultrastructural study. j Vim!. 62(8), 2578–2586 (1988).
  • Ott DE, Coren LV, Chertova EN, Gagliardi TD, Schubert, U. Ubiquitination of HIV-1 and MuLV Gag. Virology278(1), 111–121 (2000).
  • Patnaik A, Chau V, Wills JW. Ubiquitin is part of the retrovirus budding machinery. Proc. Natl Acad. Su. USA 97(24), 13069–13074 (2000).
  • Schubert U, Ott DE, Chertova EN, et al. Proteasome inhibition interferes with gag polyprotein processing, release and maturation of HIV-1 and HIV-2. Proc. Natl Acad. Su. USA 97(24), 13057–13062 (2000).
  • Strack B, Calistri A, Accola MA, Palu G, Gottlinger HG. A role for ubiquitin ligase recruitment in retrovirus release. Proc. Natl Acad. Sci. USA 97(24), 13063–13068 (2000).
  • Schwartz O, Marechal V, Friguet B, Arenzana-Seisdedos F, Heard JM. Antiviral activity of the proteasome on incoming human immunodeficiency virus Type 1. J. Viral. 72(5), 3845–3850 (1998).
  • Ventura M, Tarrago-Litvak L, Dolle V, etal Effect of nucleoside analogs and non-nucleoside inhibitors of HIV-1 reverse transcriptase on cell-free virions. Arch. Viral. 144(3), 513–523 (1999).

Websites

  • www.unaids.org/worldaidsday/ 192002/ press/epiupdate.html. Contains the current HIV/AIDS epidemic update (UNAIDS /WHO-2002 AIDS Epidemic Update December 2002), as wellas an outline of the proposed UNAIDS/WHO commitment document.
  • www.cdc.gov/hiv/stats-trends.htm#surv. HIV/AIDS Surveillance Report. September 25,2002.
  • http://hivinsite.ucsf.edu/InSite. HIV knowledge base At University of California San Francisco. The HIV knowledge base is an excellent resource for reviews on all aspects of the HIV/AIDS pandemic.
  • www.hivandhepatitis.com/ A scientific and general knowledge site that summarizes current publications and meeting results. Also provides compendiums of current and investigational antiretrovirals and their status.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.