264
Views
41
CrossRef citations to date
0
Altmetric
Reviews

Evaluating Chagas disease progression and cure through blood-derived biomarkers: a systematic review

, , , , , , & show all
Pages 957-976 | Published online: 10 Jan 2014

References

  • WHO. (Chagas Disease) American Tripanosomiasis. Fact Sheet. Nº 340. World Health Organization, (2010).
  • WHO. Reporte Sobre La Enfermedad De CHAGAS. World Health Organization, Bueno Aires, (2007).
  • WHO. Control and prevention of Chagas disease in Europe. Report of a WHO Informal Consultation (Jointly Organized By WHO Headquarters and The WHO Regional Office for Europe) Geneva, Switzerland, WHO/HTM/NTD/IDM/2010.1. World Health Organizatoin, Geneva, (2010).
  • Rassi A Jr, Rassi A, Marin-Neto JA. Chagas disease. Lancet 375(9723), 1388–1402 (2010).
  • Rassi A Jr, Rassi A, Rassi SG. Predictors of mortality in chronic Chagas disease: a systematic review of observational studies. Circulation 115(9), 1101–1108 (2007).
  • Dias JC. The indeterminate form of human chronic Chagas’ disease A clinical epidemiological review. Rev. Soc. Bras. Med. Trop. 22(3), 147–156 (1989).
  • Ribeiro ALP, Rocha MOdC. Indeterminate form of Chagas’ disease: considerations on diagnosis and prognosis. Rev. Soc. Bras. Med. Trop. 31(3), 301–314 (1998).
  • Garcia-Alvarez A, Sitges M, Pinazo MJ et al. Chagas cardiomyopathy: the potential of diastolic dysfunction and brain natriuretic peptide in the early identification of cardiac damage. PLoS Negl. Trop. Dis. 4(9) (2010).
  • Cassarotti DJ, Giuseppin FF, Toledo MJdO, Gomes ML, Araujo SMd. Alterations in ecoDopplercadiogram in Chagas’ disease patients with normal ECG: preliminary data. Rev. Soc. Bras. Med. Trop. 41(Suppl. III), 194–196 (2008).
  • Luengas CA, Chaves AM, Villamizar MC. Color M flow velocity propagation is a sensible diastolic dysfunction marker in Chagas cardiomyopathy. [Spanish]. Rev. Colombiana Cardiol. 15(6), 282–288 (2008).
  • Perez-Ayala A, Perez-Molina JA, Norman F, Monge-Maillo B, Faro MV, Lopez-Velez R. Gastro-intestinal Chagas disease in migrants to Spain: prevalence and methods for early diagnosis. Ann. Trop. Med. Parasitol. 105(1), 25–29 (2011).
  • Andrade ZA. The indeterminate form of Chagas disease in times of Triatoma infestans control. Rev. Patol. Trop. 34(2), 105–111 (2005).
  • Carrasco HA, Alarcon M, Olmos L et al. Biochemical characterization of myocardial damage in chronic Chagas’ disease. Clin. Cardiol. 20(10), 865–869 (1997).
  • Bestetti RB, Freitas OC, Muccillo G, Oliveira JS. Clinical and morphological characteristics associated with sudden cardiac death in patients with Chagas’ disease. Eur. Heart J. 14(12), 1610–1614 (1993).
  • Cianciulli TF, Lax JA, Saccheri MC et al. Early detection of left ventricular diastolic dysfunction in Chagas’ disease. Cardiovasc. Ultrasound 4, 18 (2006).
  • Pazin-Filho A, Romano MM, Gomes Furtado R et al. Left ventricular global performance and diastolic function in indeterminate and cardiac forms of Chagas’ disease. J. Am. Soc. Echocardiogr. 20(12), 1338–1343 (2007).
  • Murcia L, Carrilero B, Munoz MJ, Iborra MA, Segovia M. Usefulness of PCR for monitoring benznidazole response in patients with chronic Chagas’ disease: a prospective study in a non-disease-endemic country. J. Antimicrob. Chemother. 65(8), 1759–1764 (2010).
  • Gutierrez FR, Guedes PM, Gazzinelli RT, Silva JS. The role of parasite persistence in pathogenesis of Chagas heart disease. Parasite Immunol. 31(11), 673–685 (2009).
  • Higuchi Mde L, Benvenuti LA, Martins Reis M, Metzger M. Pathophysiology of the heart in Chagas’ disease: current status and new developments. Cardiovasc. Res. 60(1), 96–107 (2003).
  • Dutra WO, Rocha MO, Teixeira MM. The clinical immunology of human Chagas disease. Trends Parasito. 21(12), 581–587 (2005).
  • Zacks MA, Wen JJ, Vyatkina G, Bhatia V, Garg N. An overview of chagasic cardiomyopathy: pathogenic importance of oxidative stress. An. Acad. Bras. Cienc. 77(4), 695–715 (2005).
  • Munoz-Saravia SG, Haberland A, Wallukat G, Schimke I. Chronic Chagas’ heart disease: a disease on its way to becoming a worldwide health problem: epidemiology, etiopathology, treatment, pathogenesis and laboratory medicine. Heart Fail. Rev. 17(1), 45–64 (2012).
  • Cunha-Neto E, Nogueira LG, Teixeira PC et al. Immunological and non-immunological effects of cytokines and chemokines in the pathogenesis of chronic Chagas disease cardiomyopathy. Mem. Inst. Oswaldo. Cruz. 104(Suppl. 1), 252–258 (2009).
  • Cunha-Neto E, Bilate AM, Hyland KV, Fonseca SG, Kalil J, Engman DM. Induction of cardiac autoimmunity in Chagas heart disease: a case for molecular mimicry. Autoimmunity 39(1), 41–54 (2006).
  • Bustamante JM, Bixby LM, Tarleton RL. Drug-induced cure drives conversion to a stable and protective CD8+ T central memory response in chronic Chagas disease. Nat. Med. 14(5), 542–550 (2008).
  • Vitelli-Avelar DM, Sathler-Avelar R, Teixeira-Carvalho A et al. Strategy to assess the overall cytokine profile of circulating leukocytes and its association with distinct clinical forms of human Chagas disease. Scand. J. Immunol. 68(5), 516–525 (2008).
  • Levine B, Kalman J, Mayer L, Fillit HM, Packer M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N. Engl. J. Med. 323(4), 236–241 (1990).
  • Torre-Amione G, Kapadia S, Lee J et al. Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation 93(4), 704–711 (1996).
  • Feldman AM, Combes A, Wagner D et al. The role of tumor necrosis factor in the pathophysiology of heart failure. J. Am. Coll. Cardiol. 35(3), 537–544 (2000).
  • Talvani A, Rocha MO, Barcelos LS, Gomes YM, Ribeiro AL, Teixeira MM. Elevated concentrations of CCL2 and tumor necrosis factor-alpha in chagasic cardiomyopathy. Clin. Infect. Dis. 38(7), 943–950 (2004).
  • Ferreira RC, Ianni BM, Abel LC et al. Increased plasma levels of tumor necrosis factor-alpha in asymptomatic/“indeterminate” and Chagas disease cardiomyopathy patients. Mem. Inst. Oswaldo. Cruz. 98(3), 407–411 (2003).
  • Lula JF, Rocha MO, Nunes Mdo C et al. Plasma concentrations of tumour necrosis factor-alpha, tumour necrosis factor-related apoptosis-inducing ligand, and FasLigand/CD95L in patients with Chagas cardiomyopathy correlate with left ventricular dysfunction. Eur. J. Heart Fail. 11(9), 825–831 (2009).
  • Moretti E, Basso B, Cervetta L, Brigada A, Barbieri G. Patterns of cytokines and soluble cellular receptors in the sera of children with acute Chagas’ disease. Clin. Diagn. Lab. Immunol. 9(6), 1324–1327 (2002).
  • Gomes JA, Bahia-Oliveira LM, Rocha MO, Martins-Filho OA, Gazzinelli G, Correa-Oliveira R. Evidence that development of severe cardiomyopathy in human Chagas’ disease is due to a Th1-specific immune response. Infect. Immun. 71(3), 1185–1193 (2003).
  • Laucella SA, Mazliah DP, Bertocchi G et al. Changes in Trypanosoma cruzi-specific immune responses after treatment: surrogate markers of treatment efficacy. Clin. Infect. Dis. 49(11), 1675–1684 (2009).
  • Hunt SA, Abraham WT, Chin MH et al. 2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation 119(14), e391–479 (2009).
  • Wang Y, Moreira Mda C, Heringer-Walther S et al. Amino-terminal fragment of C-type natriuretic peptide precursor and C-type natriuretic peptide do not correlate in patients with Chagas disease: role for neutral endopeptidase. J. Cardiovasc. Pharmacol. 55(1), 62–66 (2010).
  • Ribeiro AL, dos Reis AM, Barros MV et al. Brain natriuretic peptide and left ventricular dysfunction in Chagas’ disease. Lancet, 360(9331), 461–462 (2002).
  • Talvani A, Rocha MO, Cogan J et al. Brain natriuretic peptide and left ventricular dysfunction in chagasic cardiomyopathy. Mem. Inst. Oswaldo. Cruz. 99(6), 645–649 (2004).
  • Barbosa MM, Nunes Mdo C, Ribeiro AL, Barral MM, Rocha MO. N-terminal proBNP levels in patients with Chagas disease: a marker of systolic and diastolic dysfunction of the left ventricle. Eur. J. Echocardiogr. 8(3), 204–212 (2007).
  • Heringer-Walther S, Moreira MC, Wessel N et al. Brain natriuretic peptide predicts survival in Chagas’ disease more effectively than atrial natriuretic peptide. Heart 91(3), 385–387 (2005).
  • Melo RB, Parente GB, Victor EG. [Measurement of human brain natriuretic peptide in patients with Chagas’ disease]. Arq. Bras. Cardiol. 84(2), 137–140 (2005).
  • Mady C, Fernandes F, Arteaga E et al. Serum NT pro-BNP: relation to systolic and diastolic function in cardiomyopathies and pericardiopathies. Arq. Bras. Cardiol. 91(1), 46–54 (2008).
  • Talvani A, Rocha MO, Cogan J et al. Brain natriuretic peptide measurement in Chagas heart disease: marker of ventricular dysfunction and arrhythmia. Int. J. Cardiol. 100(3), 503–504 (2005).
  • Ribeiro AL, Teixeira MM, Reis AM et al. Brain natriuretic peptide based strategy to detect left ventricular dysfunction in Chagas disease: a comparison with the conventional approach. Int. J. Cardiol. 109(1), 34–40 (2006).
  • Moreira Mda C, Heringer-Walther S, Wessel N et al. Prognostic value of natriuretic peptides in Chagas’ disease: a 3-year follow-up investigation. Cardiology 110(4), 217–225 (2008).
  • Lima-Costa MF, Cesar CC, Peixoto SV, Ribeiro AL. Plasma B-type natriuretic peptide as a predictor of mortality in community-dwelling older adults with Chagas disease: 10-year follow-up of the Bambui Cohort Study of Aging. Am. J. Epidemiol. 172(2), 190–196 (2010).
  • Moreira Mda C, Wang Y, Heringer-Walther S, Wessel N, Walther T. Prognostic value of natriuretic peptides in Chagas’ disease: a head-to-head comparison of the 3 natriuretic peptides. Congest. Heart Fail. 15(2), 75–81 (2009).
  • Puyo AM, Scaglione J, Auger S et al. Atrial natriuretic factor as marker of myocardial compromise in Chagas’ disease. Regul. Pept. 105(2), 139–143 (2002).
  • Puyo AM, Scaglione J, Auger S, Cavallero S, Postan M, Fernandez BE. Natriuretic peptides as prognostic and diagnostic markers in Chagas’ disease. Regul. Pept. 128(3), 203–210 (2005).
  • Mocelin AO, Issa VS, Bacal F, Guimaraes GV, Cunha E, Bocchi EA. The influence of aetiology on inflammatory and neurohumoral activation in patients with severe heart failure: a prospective study comparing Chagas’ heart disease and idiopathic dilated cardiomyopathy. Eur. J. Heart Fail. 7(5), 869–873 (2005).
  • La Vecchia L, Mezzena G, Zanolla L et al. Cardiac troponin I as diagnostic and prognostic marker in severe heart failure. J. Heart Lung. Transplant. 19(7), 644–652 (2000).
  • Saravia SG, Knebel F, Schroeckh S et al. Cardiac troponin T release and inflammation demonstrated in marathon runners. Clin. Lab. 56(1–2), 51–58 (2010).
  • Arias R, Bastos C, Mota G et al. Troponin in Chagas disease. Braz. J. Infect. Dis. 7(6), 358–359 (2003).
  • Saravia SG, Haberland A, Bartel S et al. Cardiac troponin T measured with a highly sensitive assay for diagnosis and monitoring of heart injury in chronic Chagas disease. Arch. Pathol. Lab. Med. 135(2), 243–248 (2011).
  • Basquiera AL, Capra R, Omelianiuk M, Amuchastegui M, Madoery RJ, Salomone OA. [Serum troponin T in patients with chronic Chagas disease]. Rev. Esp. Cardiol. 56(7), 742–744 (2003).
  • Epelman S, Tang WH, Chen SY, Van Lente F, Francis GS, Sen S. Detection of soluble angiotensin-converting enzyme 2 in heart failure: insights into the endogenous counter-regulatory pathway of the renin-angiotensin-aldosterone system. J Am Coll Cardiol, 52(9), 750–754 (2008).
  • Wang Y, Moreira Mda C, Heringer-Walther S et al. Plasma ACE2 activity is an independent prognostic marker in Chagas’ disease and equally potent as BNP. J. Card. Fail. 16(2), 157–163 (2010).
  • de Oliveira TB, Pedrosa RC, Filho DW. Oxidative stress in chronic cardiopathy associated with Chagas disease. Int. J. Cardiol. 116(3), 357–363 (2007).
  • Gupta S, Wen JJ, Garg NJ. Oxidative Stress in Chagas Disease. Interdiscip. Perspect. Infect. Dis. 2009, 190354 (2009).
  • Macao LB, Wilhelm Filho D, Pedrosa RC et al. Antioxidant therapy attenuates oxidative stress in chronic cardiopathy associated with Chagas’ disease. Int. J. Cardiol. 123(1), 43–49 (2007).
  • Cardenas ME, Torres D, Mujica AM, Sanabria JS. The L-Arginine-Nitric oxide-Peroxynitrite pathway (LANOP pathway): does it protect or worsen the course of Chagas disease? Colombia Medica 41(4), 388–395 (2010).
  • Perez-Fuentes R, Torres-Rasgado E, Salgado-Rosas H, Zamora-Ginez I, Sanchez-Guillen MC. The anti-oxidant defence response in individuals with the indeterminate form of Chagas disease (American trypanosomiasis). Ann. Trop. Med. Parasitol. 102(3), 189–197 (2008).
  • Perez-Fuentes R, Guegan JF, Barnabe C et al. Severity of chronic Chagas disease is associated with cytokine/antioxidant imbalance in chronically infected individuals. Int. J. Parasitol. 33(3), 293–299 (2003).
  • Dhiman M, Estrada-Franco JG, Pando JM et al. Increased myeloperoxidase activity and protein nitration are indicators of inflammation in patients with Chagas’ disease. Clin. Vaccine Immunol. 16(5), 660–666 (2009).
  • Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J. Clin. Invest. 111(12), 1805–1812 (2003).
  • Aparecida da Silva C, Fattori A, Sousa AL et al. Determining the C-reactive protein level in patients with different clinical forms of chagas disease. Rev. Esp. Cardiol. 63(9), 1096–1099 (2010).
  • Lopez L, Arai K, Gimenez E et al. [C-reactive protein and interleukin-6 serum levels increase as Chagas disease progresses towards cardiac failure]. Rev. Esp. Cardiol. 59(1), 50–56 (2006).
  • Garcia-Alvarez A, Sitges M, Heras M et al. [Endothelial function and high-sensitivity C-reactive protein levels in patients with Chagas disease living in a nonendemic area]. Rev. Esp. Cardiol. 64(10), 891–896 (2011).
  • Cunha-Neto E, Kalil J. Autoimmunity in Chagas’ heart disease. Sao. Paulo. Med. J. 113(2), 757–766 (1995).
  • Kierszenbaum F. Where do we stand on the autoimmunity hypothesis of Chagas disease? Trends. Parasitol. 21(11), 513–516 (2005).
  • Cossio PM, Laguens RP, Diez C, Szarfman A, Segal A, Arana RM. Chagasic cardiopathy. Antibodies reacting with plasma membrane of striated muscle and endothelial cells. Circulation 50(6), 1252–1259 (1974).
  • Cossio PM, Diez C, Szarfman A, Kreutzer E, Candiolo B, Arana RM. Chagasic cardiopathy. Demonstration of a serum gamma globulin factor which reacts with endocardium and vascular structures. Circulation 49(1), 13–21 (1974).
  • Khoury EL, Diez C, Cossio PM, Arana RM. Heterophil nature of EVI antibody in Trypanosoma cruzi infection. Clin. Immunol. Immunopathol. 27(2), 283–288 (1983).
  • Santos-Buch CA, Acosta AM, Zweerink HJ et al. Primary muscle disease: definition of a 25-kDa polypeptide myopathic specific chagas antigen. Clin. Immunol. Immunopathol. 37(3), 334–350 (1985).
  • Rose NR, Hill SL. Autoimmune myocarditis. Int. J. Cardiol. 54(2), 171–175 (1996).
  • Cunningham MW. Autoimmunity and molecular mimicry in the pathogenesis of post-streptococcal heart disease. Front. Biosci. 8, s533–543 (2003).
  • Rizzo LV, Cunha-Neto E, Teixeira AR. Autoimmunity in Chagas’ disease: specific inhibition of reactivity of CD4+ T cells against myosin in mice chronically infected with Trypanosoma cruzi. Infect. Immun. 57(9), 2640–2644 (1989).
  • Leon JS, Wang K, Engman DM. Myosin autoimmunity is not essential for cardiac inflammation in acute Chagas’ disease. J Immunol, 171(8), 4271–4277 (2003).
  • Tibbetts RS, McCormick TS, Rowland EC, Miller SD, Engman DM. Cardiac antigen-specific autoantibody production is associated with cardiomyopathy in Trypanosoma cruzi-infected mice. J. Immunol. 152(3), 1493–1499 (1994).
  • Iwai LK, Juliano MA, Juliano L, Kalil J, Cunha-Neto E. T-cell molecular mimicry in Chagas disease: identification and partial structural analysis of multiple cross-reactive epitopes between Trypanosoma cruzi B13 and cardiac myosin heavy chain. J. Autoimmun. 24(2), 111–117 (2005).
  • Cunha-Neto E, Duranti M, Gruber A et al. Autoimmunity in Chagas disease cardiopathy: biological relevance of a cardiac myosin-specific epitope crossreactive to an immunodominant Trypanosoma. cruzi antigen. Proc. Natl. Acad. Sci. USA. 92(8), 3541–3545 (1995).
  • Laguens RP, Argel MI, Chambo J, Storino R, Cabeza Meckert PM. Presence of antiheart and antiskeletal muscle glycolipid autoantibodies in the sera of patients with chagasic cardiopathy. Can. J. Cardiol. 10(7), 769–776 (1994).
  • de Oliveira SF, Pedrosa RC, Nascimento JH, Campos de Carvalho AC, Masuda MO. Sera from chronic chagasic patients with complex cardiac arrhythmias depress electrogenesis and conduction in isolated rabbit hearts. Circulation 96(6), 2031–2037 (1997).
  • Arce-Fonseca M, Ballinas-Verdugo MA, Reyes PA, Aranda-Fraustro A, Monteon VM. Autoantibodies to human heart conduction system in Chagas’ disease. Vector Borne Zoonotic Dis. 5(3), 233–236 (2005).
  • Wallukat G, Nissen E, Morwinski R, Muller J. Autoantibodies against the beta- and muscarinic receptors in cardiomyopathy. Herz 25(3), 261–266 (2000).
  • Wallukat G, Saravia SGM, Haberland A et al. Distinct patterns of autoantibodies against G-protein-coupled receptors in Chagas’ cardiomyopathy and megacolon: their potential impact for early risk assessment in asymptomatic Chagas’ patients. J. Am. Coll. Cardiol. 55(5), 463–468 (2010).
  • Munoz Saravia SG, Haberland A, Bartel S et al. Distinct patterns of autoantibodies against G-protein-coupled receptors in Chagas’ cardiomyopathy and megacolon: their potential impact for early risk assessment in asymptomatic Chagas’ patients. J. Am. Coll. Cardiol. 56(6), 526–527 (2010).
  • Borda ES, Sterin-Borda L. Antiadrenergic and muscarinic receptor antibodies in Chagas’ cardiomyopathy. Int. J. Cardiol. 54(2), 149–156 (1996).
  • Ribeiro AL, Gimenez LE, Hernandez CC et al. Early occurrence of anti-muscarinic autoantibodies and abnormal vagal modulation in Chagas disease. Int. J. Cardiol. 117(1), 59–63 (2007).
  • Sterin-Borda L, Borda E. Role of neurotransmitter autoantibodies in the pathogenesis of chagasic peripheral dysautonomia. Ann. NY. Acad. Sci. 917, 273–280 (2000).
  • Giordanengo L, Gea S, Barbieri G, Rabinovich GA. Anti-galectin-1 autoantibodies in human Trypanosoma cruzi infection: differential expression of this beta-galactoside-binding protein in cardiac Chagas’ disease. Clin. Exp. Immunol. 124(2), 266–273 (2001).
  • Girones N, Rodriguez CI, Basso B et al. Antibodies to an epitope from the Cha human autoantigen are markers of Chagas’ disease. Clin. Diagn. Lab. Immunol. 8(6), 1039–1043 (2001).
  • da Silveira AB, D’Avila Reis D, de Oliveira EC et al. Neurochemical coding of the enteric nervous system in chagasic patients with megacolon. Dig. Dis. Sci. 52(10), 2877–2883 (2007).
  • Adad SJ, Cançado CG, Etchebehere RM et al. Neuron count reevaluation in the myenteric plexus of chagasic megacolon after morphometric neuron analysis. Virchows Arch. 438(3), 254–258 (2001).
  • da Silveira AB, Lemos EM, Adad SJ, Correa-Oliveira R, Furness JB, D’Avila Reis D. Megacolon in Chagas disease: a study of inflammatory cells, enteric nerves, and glial cells. Hum. Pathol. 38(8), 1256–1264 (2007).
  • Iantorno G, Bassotti G, Kogan Z et al. The enteric nervous system in chagasic and idiopathic megacolon. Am. J. Surg. Pathol. 31(3), 460–468 (2007).
  • Silveira ABMd, Freitas MAR, Oliveira ECd, et al. Neuronal plasticity of the enteric nervous system is correlated with chagasic megacolon development. Parasitology 135(11), 1337–1342 (2008).
  • Cooley G, Etheridge RD, Boehlke C et al. High throughput selection of effective serodiagnostics for Trypanosoma cruzi infection. PLoS Negl. Trop. Dis 2(10), e316 (2008).
  • da Silveira JF, Umezawa ES, Luquetti AO. Chagas disease: recombinant Trypanosoma cruzi antigens for serological diagnosis. Trends Parasitol. 17(6), 286–291 (2001).
  • Betonico GN, Miranda EO, Silva DAO et al. Evaluation of a synthetic tripeptide as antigen for detection of IgM and IgG antibodies to Trypanosoma cruzi in serum samples from patients with Chagas disease or viral diseases. Trans. R. Soc. Trop. Med. Hyg. 93(6), 603–606 (1999).
  • Chang CD, Cheng KY, Jiang LX et al. Evaluation of a prototype Trypanosoma cruzi antibody assay with recombinant antigens on a fully automated chemiluminescence analyzer for blood donor screening. Transfusion 46(10), 1737–1744 (2006).
  • Sasaki AT, Hoshino-Shimizu S, Nakamura PM, Vaz AJ, Camargo ED, da Silva MV. Serodiagnosis of Chagas disease: new reagent for the indirect hemagglutination test (THAI(IAL)). [Portuguese]. Rev. Soc. Bras. Med. Trop. 29(2), 137–144 (1996).
  • Caballero ZC, Sousa OE, Marques WP, Saez-Alquezar A, Umezawa ES. Evaluation of serological tests to identify Trypanosoma cruzi infection in humans and determine cross-reactivity with Trypanosoma rangeli and Leishmania spp. Clin. Vaccine Immunol. 14(8), 1045–1049 (2007).
  • Cançado JR. Long term evaluation of etiological treatment of chagas disease with benznidazole. Rev. Inst. Med. Trop. Sao. Paulo. 44(1), 29–37 (2002).
  • Cançado JR. Criteria of Chagas disease cure. Mem. Inst. Oswaldo Cruz 94(Suppl. 1), 331–335 (1999).
  • Viotti R, Vigliano C, Alvarez MG et al. Impact of aetiological treatment on conventional and multiplex serology in chronic chagas disease. PLoS Negl. Trop. Dis. 5(9), e1314 (2011).
  • Sabino EC, Lee TH, Montalvo L et al. Antibody levels correlate with detection of Trypanosoma cruzi DNA by sensitive polymerase chain reaction assays in seropositive blood donors and possible resolution of infection over time. Transfusion 53(6), 1257–1265 (2013).
  • Zulantay I, Venegas J, Apt W, Solari A, Sanchez G. Lytic antibodies in Trypanosoma cruzi-infected persons with low parasitemia. Am. J. Trop. Med. Hyg. 58(6), 775–779 (1998).
  • Krettli AU. The utility of anti-trypomastigote lytic antibodies for determining cure of Trypanosoma cruzi infections in treated patients: an overview and perspectives. Mem. Inst. Oswaldo Cruz 104(Suppl. 1), 142–151 (2009).
  • Galvao LM, Nunes RM, Cançado JR, Brener Z, Krettli AU. Lytic antibody titre as a means of assessing cure after treatment of Chagas disease: a 10 years follow-up study. Trans. R. Soc. Trop. Med. Hyg. 87(2), 220–223 (1993).
  • Meira WS, Galvao LM, Gontijo ED, Machado-Coelho GL, Norris KA, Chiari E. Use of the Trypanosoma cruzi recombinant complement regulatory protein to evaluate therapeutic efficacy following treatment of chronic chagasic patients. J. Clin. Microbiol. 42(2), 707–712 (2004).
  • Levy AM, Boainain E, Kloetzel JK. In situ indirect fluorescent antibody: a new specific test to detect ongoing chagasic infections. J. Clin. Lab. Anal. 10(2), 98–103 (1996).
  • Altcheh J, Corral R, Biancardi MA, Freilij H. [Anti-F2/3 antibodies as cure marker in children with congenital Trypanosoma cruzi infection]. Medicina (B Aires), 63(1), 37–40 (2003).
  • Andrade AL, Martelli CM, Oliveira RM et al. Short report: benznidazole efficacy among Trypanosoma cruzi-infected adolescents after a six-year follow-up. Am. J. Trop. Med. Hyg. 71(5), 594–597 (2004).
  • Laucella SA, Titto EHd, Segura EL. Epitopes common to Trypanosoma cruzi and mammalian tissues are recognized by sera from Chagas’ disease patients: prognosis value in Chagas disease. Acta. Tropica. 62(3), 151–162 (1996).
  • Fernandez-Villegas A, Pinazo MJ, Maranon C et al. Short-term follow-up of chagasic patients after benznidazole treatment using multiple serological markers. BMC Infect. Dis. 11, 206 (2011).
  • Flechas ID, Cuellar A, Cucunuba ZM et al. Characterising the KMP-11 and HSP-70 recombinant antigens’ humoral immune response profile in chagasic patients. BMC Infect. Dis. 9, 186 (2009).
  • Fabbro DL, Olivera V, Bizai ML et al. Humoral Immune Response against P2{beta} from Trypanosoma cruzi in Persons with Chronic Chagas Disease: Its Relationship with Treatment Against Parasites and Myocardial Damage. Am. J. Trop. Med. Hyg. 84(4), 575–580 (2011).
  • Vercosa AF, Lorena VM, Carvalho CL et al. Chagas’ disease: IgG isotypes against cytoplasmic (CRA) and flagellar (FRA) recombinant repetitive antigens of Trypanosoma cruzi in chronic Chagasic patients. J. Clin. Lab. Anal. 21(5), 271–276 (2007).
  • Vasconcelos RH, Amaral FN, Cavalcanti MG et al. Increased levels of IgA antibodies against CRA and FRA recombinant antigens of Trypanosoma cruzi differentiate digestive forms of Chagas disease. Hum. Immunol. 71(10), 964–967 (2010).
  • Rocha A, de Oliveira LC, Alves RS, Lopes ER. [Pancreatic neuronal loss in chronic Chagas’ disease patients]. Rev. Soc. Bras. Med. Trop. 31(1), 43–49 (1998).
  • dos Santos VM, de Lima MA, Cabrine-Santos M et al. Functional and histopathological study of the pancreas in hamsters (Mesocricetus auratus) infected and reinfected with Trypanosoma cruzi. Parasitol. Res. 94(2), 125–133 (2004).
  • Oliveira LC, Juliano Y, Novo NF, Neves MM. Blood glucose and insulin response to intravenous glucose by patients with chronic Chagas’ disease and alcoholism. Braz. J. Med. Biol. Res. 26(11), 1187–1190 (1993).
  • Guariento ME, Saad MJ, Muscelli EO, Gontijo JA. Heterogenous insulin response to an oral glucose load by patients with the indeterminate clinical form of Chagas’ disease. Braz. J. Med. Biol. Res. 26(5), 491–495 (1993).
  • dos Santos VM, da Cunha SF, Teixeira Vde P et al. [Frequency of diabetes mellitus and hyperglycemia in chagasic and non-chagasic women]. Rev. Soc. Bras. Med. Trop. 32(5), 489–496 (1999).
  • Combs TP, Nagajyothi, Mukherjee S et al. The adipocyte as an important target cell for Trypanosoma cruzi infection. J. Biol. Chem. 280(25), 24085–24094 (2005).
  • Nagajyothi F, Desruisseaux MS, Thiruvur N et al. Trypanosoma cruzi infection of cultured adipocytes results in an inflammatory phenotype. Obesity (Silver Spring), 16(9), 1992–1997 (2008).
  • Schulze PC, Kratzsch J. Leptin as a new diagnostic tool in chronic heart failure. Clin. Chim. Acta. 362(1–2), 1–11 (2005).
  • Richartz BM, Lotze U, Krack A, Gastmann A, Kuthe F, Figulla HR. [Leptin: a parameter for metabolic changes in heart failure]. Z. Kardiol. 90(4), 280–285 (2001).
  • Fernandes F, Dantas S, Ianni BM et al. Leptin levels in different forms of Chagas’ disease. Braz. J. Med. Biol. Res. 40(12), 1631–1636 (2007).
  • Ndao M, Spithill TW, Caffrey R et al. Identification of novel diagnostic serum biomarkers for Chagas’ disease in asymptomatic subjects by mass spectrometric profiling. J. Clin. Microbiol. 48(4), 1139–1149 (2010).
  • Cano RC, Rubiolo ER, Santamarina NO. Levels of apolipoproteins and cholesterol of low and high density lipoproteins in asymptomatic Chagas disease. Medicina (B Aires), 45(3), 269–272 (1985).
  • Rivera MT, de Souza AP, Moreno AH et al. Progressive Chagas’ cardiomyopathy is associated with low selenium levels. Am. J. Trop. Med. Hyg. 66(6), 706–712 (2002).
  • Jelicks LA, de Souza AP, Araujo-Jorge TC, Tanowitz HB. Would selenium supplementation aid in therapy for Chagas disease? Trends Parasitol. 27(3), 102–105 (2011).
  • Neve J. Selenium as a risk factor for cardiovascular diseases. J. Cardiovasc. Risk 3(1), 42–47 (1996).
  • Xu GL, Wang SC, Gu BQ et al. Further investigation on the role of selenium deficiency in the aetiology and pathogenesis of Keshan disease. Biomed. Environ. Sci. 10(2–3), 316–326 (1997).
  • Vanderpas JB, Contempre B, Duale NL et al. Iodine and selenium deficiency associated with cretinism in northern Zaire. Am. J. Clin. Nutr. 52(6), 1087–1093 (1990).
  • Gomez RM, Solana ME, Levander OA. Host selenium deficiency increases the severity of chronic inflammatory myopathy in Trypanosoma cruzi-inoculated mice. J. Parasitol. 88(3), 541–547 (2002).
  • Souza AP, Jelicks LA, Tanowitz HB et al. The benefits of using selenium in the treatment of Chagas disease: prevention of right ventricle chamber dilatation and reversion of Trypanosoma cruzi-induced acute and chronic cardiomyopathy in mice. Mem. Inst. Oswaldo Cruz 105(6), 746–751 (2010).
  • de Souza AP, de Oliveira GM, Vanderpas J, de Castro SL, Rivera MT, Araujo-Jorge TC. Selenium supplementation at low doses contributes to the decrease in heart damage in experimental Trypanosoma cruzi infection. Parasitol. Res. 91(1), 51–54 (2003).
  • de Souza AP, Sieberg R, Li H et al. The role of selenium in intestinal motility and morphology in a murine model of Typanosoma cruzi infection. Parasitol. Res. 106(6), 1293–1298 (2010).
  • Davis CD, Brooks L, Calisi C, Bennett BJ, McElroy DM. Beneficial effect of selenium supplementation during murine infection with Trypanosoma cruzi. J. Parasitol. 84(6), 1274–1277 (1998).
  • Fernandes F, Barbosa-Ferreira JM, Mady C. New diagnostic serum biomarkers for Chagas disease. Expert Opin. Med. Diagn. 5(3), 203–211 (2011).
  • Salomone OA. Chagas’ cardiomyopathy and thrombosis: the beginning and the end of a dangerous affair. Rev. Esp. Cardiol. 56(4), 333–334 (2003).
  • Carod-Artal FJ, Gascon J. Chagas disease and stroke. Lancet Neurol. 9(5), 533–542 (2010).
  • Paixao LC, Ribeiro AL, Valacio RA, Teixeira AL. Chagas disease: independent risk factor for stroke. Stroke 40(12), 3691–3694 (2009).
  • Carod-Artal FJ, Vargas AP, Horan TA, Nunes LG. Chagasic cardiomyopathy is independently associated with ischemic stroke in Chagas disease. Stroke 36(5), 965–970 (2005).
  • Carod-Artal FJ. [Chagas’ disease and ischemic stroke]. Neurologia 21(3), 135–149 (2006).
  • Carod-Artal FJ. Chagas cardiomyopathy and ischemic stroke. Expert Rev. Cardiovasc. Ther. 4(1), 119–130 (2006).
  • Carod-Artal FJ. Stroke: a neglected complication of American trypanosomiasis (Chagas’ disease). Trans. R. Soc. Trop. Med. Hyg. 101(11), 1075–1080 (2007).
  • Mohallem SV, Ramos SG, dos Reis MA, Seabra DD, Teixeira Vde P. [Prevalence of renal infarcts in autopsies of chronic Chagas disease patients]. Rev. Soc. Bras. Med. Trop. 29(6), 571–574 (1996).
  • Reverter. Prothrombotic markers in Chagas disease. Enfermedades Emergentes 11(Suppl. 1), 42–47 (2009).
  • Carod-Artal FJ, Vargas AP, Falcao T. Stroke in asymptomatic Trypanosoma cruzi-infected patients. Cerebrovasc. Dis. 31(1), 24–28 (2011).
  • Berra HH, Piaggio E, Revelli SS, Luquita A. Blood viscosity changes in experimentally Trypanosoma cruzi-infected rats. Clin. Hemorheol. Microcirc. 32(3), 175–182 (2005).
  • Tanowitz HB, Burns ER, Sinha AK et al. Enhanced platelet adherence and aggregation in Chagas’ disease: a potential pathogenic mechanism for cardiomyopathy. Am. J. Trop. Med. Hyg. 43(3), 274–281 (1990).
  • Herrera RN, Diaz E, Perez R et al. [The prothrombotic state in early stages of chronic chagas’ disease]. Rev. Esp. Cardiol. 56(4), 377–382 (2003).
  • de Melo LM, Souza GE, Valim LR et al. Study of pro-thrombotic and pro-inflammatory factors in Chagas cardiomyopathy. Arq. Bras. Cardiol. 95(5), 655–662 (2010).
  • Herrera RN, Amaya EI, Perez Aguilar RC et al. Inflammatory and Prothrombotic Activation With Conserved Endothelial Function in Patients With Chronic, Asymptomatic Chagas Disease. Clin. Appl. Thromb. Hemost. 17(5), 502–507 (2011).
  • Herrera RN, Diaz E, Perez Aguilar R, Bianchi J, Berman S, Luciardi HL. [Prothrombotic state in early stages of chronic Chagas’ disease. Its association with thrombotic risk factors]. Arch. Cardiol. Mex. 75 (Suppl. 3), S3–38–48 (2005).
  • Pinazo MJ, Tassies D, Munoz J et al. Hypercoagulability biomarkers in Trypanosoma cruzi-infected patients. Thromb. Haemost. 106(4), 617–623 (2011).
  • George FD. Microparticles in vascular diseases. Thromb. Res. 122(Suppl. 1), S55–59 (2008).
  • Enjeti AK, Lincz LF, Seldon M. Detection and measurement of microparticles: an evolving research tool for vascular biology. Semin. Thromb. Hemost. 33(8), 771–779 (2007).
  • Ashton AW, Mukherjee S, Nagajyothi FN et al. Thromboxane A2 is a key regulator of pathogenesis during Trypanosoma cruzi infection. J. Exp. Med. 204(4), 929–940 (2007).
  • Laucella SA, Segura EL, Riarte A, Sosa ES. Soluble platelet selectin (sP-selectin) and soluble vascular cell adhesion molecule-1 (sVCAM-1) decrease during therapy with benznidazole in children with indeterminate form of Chagas’ disease. Clin. Exp. Immunol. 118(3), 423–427 (1999).
  • Forastiero RR, Martinuzzo ME, Broze GJ. High titers of autoantibodies to tissue factor pathway inhibitor are associated with the antiphospholipid syndrome. J. Thromb. Haemost. 1(4), 718–724 (2003).
  • Brasil PE, De Castro L, Hasslocher-Moreno AM, Sangenis LH, Braga JU. ELISA versus PCR for diagnosis of chronic Chagas disease: systematic review and meta-analysis. BMC Infect. Dis. 10, 337 (2010).
  • Schijman AG, Bisio M, Orellana L et al. International study to evaluate PCR methods for detection of Trypanosoma cruzi DNA in blood samples from Chagas disease patients. PLoS Negl. Trop. Dis. 5(1), e931 (2011).
  • Britto CC. Usefulness of PCR-based assays to assess drug efficacy in Chagas disease chemotherapy: value and limitations. Mem. Inst. Oswaldo Cruz 104(Suppl. 1), 122–135 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.