963
Views
103
CrossRef citations to date
0
Altmetric
Reviews

Combination therapy for carbapenem-resistant Gram-negative bacteria

, &
Pages 1333-1353 | Published online: 10 Jan 2014

References

  • Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA. Carbapenems: past, present, and future. Antimicrob. Agents Chemother. 55(11), 4943–4960 (2011).
  • Zavascki AP, Carvalhaes CG, Picao RC, Gales AC. Multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii: resistance mechanisms and implications for therapy. Expert Rev. Anti Infect. Ther. 8(1), 71–93 (2010).
  • Livermore DM, Woodford N. Carbapenemases: a problem in waiting? Curr. Opin. Microbiol. 3(5), 489–495 (2000).
  • Clatworthy AE, Pierson E, Hung DT. Targeting virulence: a new paradigm for antimicrobial therapy. Nat. Chem. Biol. 3(9), 541–548 (2007).
  • Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin. Microbiol. Rev. 20(3), 440–458 (2007).
  • Canton R, Akova M, Carmeli Y et al. Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin. Microbiol. Infect. 18(5), 413–431 (2012).
  • Moellering RC Jr. NDM-1--a cause for worldwide concern. N. Med. 363(25), 2377–2379 (2010).
  • Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin. Microbiol. Rev. 25(4), 682–707 (2012).
  • Nordmann P, Naas T, Poirel L. Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 17(10), 1791–1798 (2011).
  • Walsh TR. Emerging carbapenemases: a global perspective. Int. J. Antimicrob. Agents 36( Suppl. 36), S8–S14 (2010).
  • Cornaglia G, Giamarellou H, Rossolini GM. Metallo-beta-lactamases: a last frontier for beta-lactams? Lancet Infect. Dis. 11(5), 381–393 (2011).
  • Boucher HW, Talbot GH, Benjamin DK Jr. et al. 10 x ‘20 progress--development of new drugs active against gram-negative bacilli: an update from the infectious diseases society of america. Clin. Infect. Dis. 56(12), 1685–1694 (2013).
  • Bergen PJ, Landersdorfer CB, Lee HJ, Li J, Nation RL. ‘Old’ antibiotics for emerging multidrug-resistant bacteria. Curr. Opin. Infect Dis. 25(6), 626–633 (2012).
  • Zavascki AP, Goldani LZ, Li J, Nation RL. Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. J. Antimicrob. Chemother. 60(6), 1206–1215 (2007).
  • Zavascki AP, Li J. Intravenous colistimethate for multidrug-resistant Gram-negative bacteria. Lancet Infect. Dis. 8(7), 403–405 (2008).
  • Chen LF, Kaye D. Current use for old antibacterial agents: polymyxins, rifamycins, and aminoglycosides. Med. Clin. N. Am. 95(4), 819–842, viii–ix (2011).
  • Michalopoulos AS, Livaditis IG, Gougoutas V. The revival of fosfomycin. Int. J. Infect. Dis. 15(11), e732–e739 (2011).
  • Munoz-Price LS, Poirel L, Bonomo RA et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect. Dis. 13(9), 785–796 (2013).
  • Talbot GH. What is in the pipeline for Gram-negative pathogens? Expert Rev. Anti Infect. Ther. 6(1), 39–49 (2008).
  • Talbot GH. The antibiotic development pipeline for multidrug-resistant gram-negative bacilli: current and future landscapes. Infect. Control Hosp. Epidemiol. 31( Suppl. 31), S55–S58 (2010).
  • Abbott IJ, Slavin MA, Turnidge JD, Thursky KA, Worth LJ. Stenotrophomonas maltophilia: emerging disease patterns and challenges for treatment. Expert Rev Anti Infect Ther, 9(4), 471–488 (2011).
  • Magiorakos AP, Srinivasan A, Carey RB et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18(3), 268–281 (2012).
  • Durante-Mangoni E, Signoriello G, Andini R et al. Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant acinetobacter baumannii: a multicenter, randomized clinical trial. Clin. Infect. Dis. 57(3), 349–358 (2013).
  • Aydemir H, Akduman D, Piskin N et al. Colistin vs. the combination of colistin and rifampicin for the treatment of carbapenem-resistant Acinetobacter baumannii ventilator-associated pneumonia. Epidemiol. Infect. 141(6), 1214–1222 (2013).
  • Vardakas KZ, Tansarli GS, Bliziotis IA, Falagas ME. beta-Lactam plus aminoglycoside or fluoroquinolone combination versus beta-lactam monotherapy for Pseudomonas aeruginosa infections: a meta-analysis. Int. J. Antimicrob. Agents 41(4), 301–310 (2013).
  • Marcus R, Paul M, Elphick H, Leibovici L. Clinical implications of beta-lactam-aminoglycoside synergism: systematic review of randomised trials. Int. J. Antimicrob. Agents 37(6), 491–503 (2011).
  • Pena C, Suarez C, Ocampo-Sosa A et al. Effect of Adequate Single-Drug vs Combination Antimicrobial Therapy on Mortality in Pseudomonas aeruginosa Bloodstream Infections: A Post Hoc Analysis of a Prospective Cohort. Clin. Infect. Dis. (2013).
  • Paul M, Leibovici L. Combination Therapy for Pseudomonas aeruginosa Bacteremia: Where Do We Stand? Clin. Infect. Dis. (2013).
  • Hermes DM, Pormann C, Lutz L et al. Evaluation of heteroresistance to Polymyxin B among carbapenem-susceptible and -resistant Pseudomonas aeruginosa. J. Med. Microbiol. 62(Pt 8), 1184–1189 (2013).
  • Meletis G, Tzampaz E, Sianou E, Tzavaras I, Sofianou D. Colistin heteroresistance in carbapenemase-producing Klebsiella pneumoniae. J. Antimicrob. Chemother. 66(4), 946–947 (2011).
  • Yau W, Owen RJ, Poudyal A et al. Colistin hetero-resistance in multidrug-resistant Acinetobacter baumannii clinical isolates from the Western Pacific region in the SENTRY antimicrobial surveillance programme. J. Infect. 58(2), 138–144 (2009).
  • Lesho E, Yoon EJ, McGann P et al. Emergence of colistin-resistance in extremely drug-resistant acinetobacter baumannii containing a novel pmrcab operon during colistin therapy of wound infections. J. Infect. Dis. 208(7), 1142–1151 (2013).
  • Barclay ML, Begg EJ. Aminoglycoside adaptive resistance: importance for effective dosage regimens. Drugs 61(6), 713–721 (2001).
  • Barclay ML, Begg EJ, Chambers ST, Thornley PE, Pattemore PK, Grimwood K. Adaptive resistance to tobramycin in Pseudomonas aeruginosa lung infection in cystic fibrosis. J. Antimicrob. Chemother. 37(6), 1155–1164 (1996).
  • Bergen PJ, Landersdorfer CB, Zhang J et al. Pharmacokinetics and pharmacodynamics of ‘old’ polymyxins: what is new? Diagn. Microbiol. Infect. Dis. 74(3), 213–223 (2012).
  • Sandri AM, Landersdorfer CB, Jacob J et al. Population pharmacokinetics of intravenous polymyxin b in critically ill patients: implications for selection of dosage regimens. Clin. Infect. Dis. 57(4), 524–531 (2013).
  • Rigatto MH, Ribeiro VB, Konzen D, Zavascki AP. Comparison of polymyxin B with other antimicrobials in the treatment of ventilator-associated pneumonia and tracheobronchitis caused by Pseudomonas aeruginosa or Acinetobacter baumannii. Infection 41(2), 321–328 (2013).
  • Kvitko CH, Rigatto MH, Moro AL, Zavascki AP. Polymyxin B versus other antimicrobials for the treatment of pseudomonas aeruginosa bacteraemia. J. Antimicrob. Chemother. 66(1), 175–179 (2011).
  • Oliveira MS, Prado GV, Costa SF, Grinbaum RS, Levin AS. Ampicillin/sulbactam compared with polymyxins for the treatment of infections caused by carbapenem-resistant Acinetobacter spp. J. Antimicrob. Chemother. 61(6), 1369–1375 (2008).
  • Paul M, Bishara J, Levcovich A et al. Effectiveness and safety of colistin: prospective comparative cohort study. J. Antimicrob. Chemother. 65(5), 1019–1027 (2010).
  • Falagas ME, Rafailidis PI, Kasiakou SK, Hatzopoulou P, Michalopoulos A. Effectiveness and nephrotoxicity of colistin monotherapy vs. colistin-meropenem combination therapy for multidrug-resistant Gram-negative bacterial infections. Clin. Microbiol. Infect. 12(12), 1227–1230 (2006).
  • Falagas ME, Rafailidis PI, Ioannidou E et al. Colistin therapy for microbiologically documented multidrug-resistant Gram-negative bacterial infections: a retrospective cohort study of 258 patients. Int. J. Antimicrob. Agents 35(2), 194–199 (2010).
  • Zarkotou O, Pournaras S, Tselioti P et al. Predictors of mortality in patients with bloodstream infections caused by KPC-producing Klebsiella pneumoniae and impact of appropriate antimicrobial treatment. Clin. Microbiol. Infect. 17(12), 1798–1803 (2011).
  • Tumbarello M, Viale P, Viscoli C et al. Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: importance of combination therapy. Clin. Infect. Dis. 55(7), 943–950 (2012).
  • 45 Qureshi ZA, Paterson DL, Potoski BA et al. Treatment outcome of bacteremia due to KPC-producing Klebsiella pneumoniae: superiority of combination antimicrobial regimens. Antimicrob. Agents Chemother. 56(4), 2108–2113 (2012).
  • 46 Hirsch EB, Tam VH. Detection and treatment options for Klebsiella pneumoniae carbapenemases (KPCs): an emerging cause of multidrug-resistant infection. J. Antimicrob. Chemother. 65(6), 1119–1125 (2010).
  • Daikos GL, Markogiannakis A, Souli M, Tzouvelekis LS. Bloodstream infections caused by carbapenemase-producing Klebsiella pneumoniae: a clinical perspective. Expert Rev. Anti Infect. Ther. 10(12), 1393–1404 (2012).
  • Lee GC, Burgess DS. Treatment of Klebsiella pneumoniae carbapenemase (KPC) infections: a review of published case series and case reports. Ann. Clin. Microbiol. Antimicrob. 11, 32 (2012).
  • Bergen PJ, Forrest A, Bulitta JB et al. Clinically relevant plasma concentrations of colistin in combination with imipenem enhance pharmacodynamic activity against multidrug-resistant Pseudomonas aeruginosa at multiple inocula. Antimicrob. Agents Chemother. 55(11), 5134–5142 (2011).
  • Bergen PJ, Tsuji BT, Bulitta JB et al. Synergistic killing of multidrug-resistant Pseudomonas aeruginosa at multiple inocula by colistin combined with doripenem in an in vitro pharmacokinetic/pharmacodynamic model. Antimicrob. Agents Chemother. 55(12), 5685–5695 (2011).
  • Lee HJ, Ku C, Tsuji B et al. Efficacy of colistin combination therapy against multidrug-resistant Gram-negative bacteria in mouse lung and thigh infection models. P2064. Presented at: 22nd European Congress of Clinical Microbiology and Infectious Diseases (ECCMID). London, UK, 31 March–2 April, 2012.
  • Ly NS, Kelchlin PA, Holden PN et al. The Combination of Colistin and Doripenem is Synergistic Against High Inoculum Pseudomonas aeruginosa in an In Vitro Hollow Fiber Infection Model. Presented at: 51th Interscience Conference on Antimicrobial Agents and Chemotherapy. Chicago, IL, USA, 17–20 September 2011.
  • Urban C, Mariano N, Rahal JJ. In vitro double and triple bactericidal activities of doripenem, polymyxin B, and rifampin against multidrug-resistant Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli. Antimicrob. Agents Chemother. 54(6), 2732–2734 (2010).
  • Lim TP, Lee W, Tan TY et al. Effective antibiotics in combination against extreme drug-resistant Pseudomonas aeruginosa with decreased susceptibility to polymyxin B. PLoS One. 6(12), e28177 (2011).
  • Louie A, Grasso C, Bahniuk N et al. The combination of meropenem and levofloxacin is synergistic with respect to both Pseudomonas aeruginosa kill rate and resistance suppression. Antimicrob. Agents Chemother. 54(6), 2646–2654 (2010).
  • Drusano GL, Liu W, Fregeau C, Kulawy R, Louie A. Differing effects of combination chemotherapy with meropenem and tobramycin on cell kill and suppression of resistance of wild-type Pseudomonas aeruginosa PAO1 and its isogenic MexAB efflux pump-overexpressed mutant. Antimicrob. Agents Chemother. 53(6), 2266–2273 (2009).
  • Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, Nishino T. Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-oprM efflux pumps in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 44(12), 3322–3327 (2000).
  • Lister PD, Wolter DJ, Wickman PA, Reisbig MD. Levofloxacin/imipenem prevents the emergence of high-level resistance among Pseudomonas aeruginosa strains already lacking susceptibility to one or both drugs. J. Antimicrob. Chemother. 57(5), 999–1003 (2006).
  • Lister PD, Wolter DJ. Levofloxacin-imipenem combination prevents the emergence of resistance among clinical isolates of Pseudomonas aeruginosa. Clin. Infect. Dis. 40( Suppl. 40), S105–S114 (2005).
  • Yamashiro Y, Ogake N, Takahata M, Minami S. [In vitro interaction of piperacillin and imipenem/cilastatin combined with aminoglycosides against Pseudomonas aeruginosa]. Jpn J. Antibiot. 53(4), 194–200 (2000).
  • Bantar C, Di Chiara M, Nicola F, Relloso S, Smayevsky J. Comparative in vitro bactericidal activity between cefepime and ceftazidime, alone and associated with amikacin, against carbapenem-resistant Pseudomonas aeruginosa strains. Diagn. Microbiol. Infect. Dis. 37(1), 41–44 (2000).
  • Giamarellos-Bourboulis EJ, Grecka P, Giamarellou H. In-vitro interactions of DX-8739, a new carbapenem, meropenem and imipenem with amikacin against multiresistant Pseudomonas aeruginosa. J. Antimicrob. Chemother. 38(2), 287–291 (1996).
  • McGrath BJ, Lamp KC, Rybak MJ. Pharmacodynamic effects of extended dosing intervals of imipenem alone and in combination with amikacin against Pseudomonas aeruginosa in an in vitro model. Antimicrob. Agents Chemother. 37(9), 1931–1937 (1993).
  • Fujita J, Negayama K, Takigawa K et al. In-vitro activity of imipenem and amikacin combinations against resistant Pseudomonas aeruginosa. J. Antimicrob. Chemother. 31(6), 1007–1009 (1993).
  • Ferrara A, Grassi G, Grassi FA, Piccioni PD, Gialdroni Grassi G. Bactericidal activity of meropenem and interactions with other antibiotics. J. Antimicrob. Chemother. 24 Suppl A, 239–250 (1989).
  • Bustamante CI, Drusano GL, Wharton RC, Wade JC. Synergism of the combinations of imipenem plus ciprofloxacin and imipenem plus amikacin against Pseudomonas aeruginosa and other bacterial pathogens. Antimicrob. Agents Chemother. 31(4), 632–634 (1987).
  • Meyer RD, Pasiecznik K. In vitro activity of newer beta-lactam agents in combination with amikacin against Pseudomonas aeruginosa, Klebsiella pneumoniae, and Serratia marcescens. Diagn. Microbiol. Infect. Dis. 1(4), 287–293 (1983).
  • Liang W, Liu XF, Huang J, Zhu DM, Li J, Zhang J. Activities of colistin- and minocycline-based combinations against extensive drug resistant Acinetobacter baumannii isolates from intensive care unit patients. BMC Infect. Dis. 11, 109 (2011).
  • Pongpech P, Amornnopparattanakul S, Panapakdee S et al. Antibacterial activity of carbapenem-based combinations againts multidrug-resistant Acinetobacter baumannii. J. Med. Assoc. Thai. 93(2), 161–171 (2010).
  • Pachon-Ibanez ME, Docobo-Perez F, Lopez-Rojas R et al. Efficacy of rifampin and its combinations with imipenem, sulbactam, and colistin in experimental models of infection caused by imipenem-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 54(3), 1165–1172 (2010).
  • Montero A, Ariza J, Corbella X et al. Antibiotic combinations for serious infections caused by carbapenem-resistant Acinetobacter baumannii in a mouse pneumonia model. J. Antimicrob. Chemother. 54(6), 1085–1091 (2004).
  • Tripodi MF, Durante-Mangoni E, Fortunato R, Utili R, Zarrilli R. Comparative activities of colistin, rifampicin, imipenem and sulbactam/ampicillin alone or in combination against epidemic multidrug-resistant Acinetobacter baumannii isolates producing OXA-58 carbapenemases. Int. J. Antimicrob. Agents 30(6), 537–540 (2007).
  • Poudyal A, Yu HH, Davis K et al. Colistin and doripenem combinations demonstrate synergy and suppression of resistance against acinetobacter baumannii at multiple inocula in an in vitro PK/PD Model. Presented at: 21st European Congress of Clinical Microbiology and. Infectious Diseases (ECCMID) / 27th ICC. Milan, Italy, 2011.
  • Tsuji BT, Holden PN, Kelchlin PA et al. Synergy and suppression of resistance over 10 days by colistin combinations with rifampin or doripenem against acinetobacter baumannii at high bacterial density. Presented at: 51th Interscience Conference on Antimicrobial Agents and Chemotherapy Chicago, IL, USA, 2011.
  • Bulitta JB, Bergen PJ, Forrest A et al. Synergy of colistin and rifampicin against acinetobacter baumannii assessed via translational, mechanism-based models across three different In Vitro systems. (A2–1171). Presented at: 51th Interscience Conference on Antimicrobial Agents and Chemotherapy. Chicago, IL, USA 17–20 September 2011.
  • Kiffer CR, Sampaio JL, Sinto S et al. In vitro synergy test of meropenem and sulbactam against clinical isolates of Acinetobacter baumannii. Diagn. Microbiol. Infect. Dis.52(4), 317–322 (2005).
  • Choi JY, Park YS, Cho CH et al. Synergic in-vitro activity of imipenem and sulbactam against Acinetobacter baumannii. Clin. Microbiol. Infect. 10(12), 1098–1101 (2004).
  • Ko WC, Lee HC, Chiang SR et al. In Vitro and in vivo activity of meropenem and sulbactam against a multidrug-resistant Acinetobacter baumannii strain. J. Antimicrob. Chemother. 53(2), 393–395 (2004).
  • Pachon-Ibanez ME, Fernandez-Cuenca F, Docobo-Perez F, Pachon J, Pascual A. Prevention of rifampicin resistance in Acinetobacter baumannii in an experimental pneumonia murine model, using rifampicin associated with imipenem or sulbactam. J. Antimicrob. Chemother. 58(3), 689–692 (2006).
  • Sheng WH, Wang JT, Li SY et al. Comparative In Vitro antimicrobial susceptibilities and synergistic activities of antimicrobial combinations against carbapenem-resistant Acinetobacter species: Acinetobacter baumannii versus Acinetobacter genospecies 3 and 13TU. Diagn. Microbiol. Infect. Dis. 70(3), 380–386 (2011).
  • Lim TP, Tan TY, Lee W et al. In Vitro activity of various combinations of antimicrobials against carbapenem-resistant Acinetobacter species in Singapore. J. Antibiot (Tokyo), 62(12), 675–679 (2009).
  • Tan TY, Ng LS, Tan E, Huang G. In Vitro effect of minocycline and colistin combinations on imipenem-resistant Acinetobacter baumannii clinical isolates. J. Antimicrob. Chemother. 60(2), 421–423 (2007).
  • Lee GC, Burgess DS. Polymyxins and Doripenem Combination Against KPC-P roducing Klebsiella pneumoniae. J. Clin. Med. Res. 5(2), 97–100 (2013).
  • Deris ZZ, Yu HH, Davis K et al. The combination of colistin and doripenem is synergistic against Klebsiella pneumoniae at multiple inocula and suppresses colistin resistance in an In Vitro pharmacokinetic/pharmacodynamic model. Antimicrob. Agents Chemother. 56(10), 5103–5112 (2012).
  • Hong JH, Clancy CJ, Cheng S et al. Characterization of porin expression in Klebsiella pneumoniae Carbapenemase (KPC)-producing K. pneumoniae identifies isolates most susceptible to the combination of colistin and carbapenems. Antimicrob. Agents Chemother. 57(5), 2147–2153 (2013).
  • Petrosillo N, Ioannidou E, Falagas ME. Colistin monotherapy vs. combination therapy: evidence from microbiological, animal and clinical studies. Clin. Microbiol. Infect. 14(9), 816–827 (2008).
  • Souli M, Rekatsina PD, Chryssouli Z, Galani I, Giamarellou H, Kanellakopoulou K. Does the activity of the combination of imipenem and colistin In Vitro exceed the problem of resistance in metallo-beta-lactamase-producing Klebsiella pneumoniae isolates? Antimicrob. Agents Chemother. 53(5), 2133–2135 (2009).
  • Souli M, Galani I, Boukovalas S et al. In Vitro interactions of antimicrobial combinations with fosfomycin against KPC-2-producing Klebsiella pneumoniae and protection of resistance development. Antimicrob. Agents Chemother. 55(5), 2395–2397 (2011).
  • Tascini C, Tagliaferri E, Giani T et al. Synergistic Activity of Colistin plus Rifampin against Colistin-Resistant KPC -producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. (2013).
  • Bulitta JB, Landersdorfer CB, Forrest A et al. Relevance of pharmacokinetic and pharmacodynamic modeling to clinical care of critically ill patients. Curr. Pharm. Biotechnol. 12(12), 2044–2061 (2011).
  • Landersdorfer CB, Ly NS, Xu H, Tsuji BT, Bulitta JB. Quantifying subpopulation synergy for antibiotic combinations via mechanism-based modeling and a sequential dosing design. Antimicrob. Agents Chemother. 57(5), 2343–2351 (2013).
  • Capone A, Giannella M, Fortini D et al. High rate of colistin resistance among patients with carbapenem-resistant Klebsiella pneumoniae infection accounts for an excess of mortality. Clin. Microbiol. Infect. 19(1), E23–30 (2013).
  • Mammina C, Bonura C, Di Bernardo F et al. Ongoing spread of colistin-resistant Klebsiella pneumoniae in different wards of an acute general hospital, Italy, June to December 2011. Euro. Surveill. 17(33) (2012).
  • Cai Y, Chai D, Wang R, Liang B, Bai N. Colistin resistance of Acinetobacter baumannii: clinical reports, mechanisms and antimicrobial strategies. J. Antimicrob. Chemother. 67(7), 1607–1615 (2012).
  • Chen S, Hu F, Zhang X et al. Independent emergence of colistin-resistant Enterobacteriaceae clinical isolates without colistin treatment. J. Clin. Microbiol. 49(11), 4022–4023 (2011).
  • Bogdanovich T, Adams-Haduch JM, Tian GB et al. Colistin-resistant, Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae belonging to the international epidemic clone ST258. Clin. Infect. Dis. 53(4), 373–376 (2011).
  • Gales AC, Jones RN, Sader HS. Contemporary activity of colistin and polymyxin B against a worldwide collection of Gram-negative pathogens: results from the SENTRY Antimicrobial Surveillance Program (2006–09). J. Antimicrob. Chemother. 66(9), 2070–2074 (2011).
  • Landman D, Georgescu C, Martin DA, Quale J. Polymyxins revisited. Clin. Microbiol. Rev. 21(3), 449–465 (2008).
  • Li J, Nation RL, Turnidge JD et al. Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. Lancet Infect. Dis. 6(9), 589–601 (2006).
  • Couet W, Gregoire N, Marchand S, Mimoz O. Colistin pharmacokinetics: the fog is lifting. Clin. Microbiol. Infect. 18(1), 30–39 (2012).
  • Mohamed AF, Karaiskos I, Plachouras D et al. Application of a loading dose of colistin methanesulfonate in critically ill patients: population pharmacokinetics, protein binding, and prediction of bacterial kill. Antimicrob. Agents Chemother. 56(8), 4241–4249 (2012).
  • Garonzik SM, Li J, Thamlikitkul V et al. Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob. Agents Chemother. 55(7), 3284–3294 (2011).
  • Zavascki AP, Goldani LZ, Cao G et al. Pharmacokinetics of intravenous polymyxin B in critically ill patients. Clin. Infect. Dis. 47(10), 1298–1304 (2008).
  • Kwa AL, Lim TP, Low JG et al. Pharmacokinetics of polymyxin B1 in patients with multidrug-resistant Gram–negative bacterial infections. Diagn. Microbiol. Infect. Dis. 60(2), 163–167 (2008).
  • Kwa AL, Abdelraouf K, Low JG, Tam VH. Pharmacokinetics of polymyxin B in a patient with renal insufficiency: a case report. Clin. Infect. Dis. 52(10), 1280–1281 (2011).
  • Sandri AM, Landersdorfer CB, Jacob J et al. Pharmacokinetics of polymyxin B in patients on continuous venovenous haemodialysis. J. Antimicrob. Chemother. 68(3), 674–677 (2013).
  • Plachouras D, Karvanen M, Friberg LE et al. Population pharmacokinetic analysis of colistin methanesulfonate and colistin after intravenous administration in critically ill patients with infections caused by gram-negative bacteria. Antimicrob. Agents Chemother. 53(8), 3430–3436 (2009).
  • Couet W, Gregoire N, Gobin P et al. Pharmacokinetics of colistin and colistimethate sodium after a single 80-mg intravenous dose of CMS in young healthy volunteers. Clin. Pharmacol. Ther. 89(6), 875–879 (2011).
  • Markou N, Fousteri M, Markantonis SL et al. Colistin pharmacokinetics in intensive care unit patients on continuous venovenous haemodiafiltration: an observational study. J. Antimicrob. Chemother. 67(10), 2459–2462 (2012).
  • Karnik ND, Sridharan K, Jadhav SP et al. Pharmacokinetics of colistin in critically ill patients with multidrug-resistant Gram-negative bacilli infection. Eur. J. Clin. Pharmacol. 69(7), 1429–1436 (2013).
  • Kwa A, Kasiakou SK, Tam VH, Falagas ME. Polymyxin B: similarities to and differences from colistin (polymyxin E). Expert Rev. Anti. Infect. Ther. 5(5), 811–821 (2007).
  • Tam VH, Schilling AN, Vo G et al. Pharmacodynamics of polymyxin B against Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 49(9), 3624–3630 (2005).
  • Bergen PJ, Bulitta JB, Forrest A, Tsuji BT, Li J, Nation RL. Pharmacokinetic/pharmacodynamic investigation of colistin against Pseudomonas aeruginosa using an In Vitro model. Antimicrob. Agents Chemother. 54(9), 3783–3789 (2010).
  • Dudhani RV, Turnidge JD, Coulthard K et al. Elucidation of the pharmacokinetic/pharmacodynamic determinant of colistin activity against Pseudomonas aeruginosa in murine thigh and lung infection models. Antimicrob. Agents Chemother. 54(3), 1117–1124 (2010).
  • Dudhani RV, Turnidge JD, Nation RL, Li J. fAUC/MIC is the most predictive pharmacokinetic/pharmacodynamic index of colistin against Acinetobacter baumannii in murine thigh and lung infection models. J. Antimicrob. Chemother. 65(9), 1984–1990 (2010).
  • Elias LS, Konzen D, Krebs JM, Zavascki AP. The impact of polymyxin B dosage on in-hospital mortality of patients treated with this antibiotic. J. Antimicrob. Chemother. 65(10), 2231–2237 (2010).
  • Bergen PJ, Li J, Rayner CR, Nation RL. Colistin methanesulfonate is an inactive prodrug of colistin against Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 50(6), 1953–1958 (2006).
  • Marchand S, Frat JP, Petitpas F et al. Removal of colistin during intermittent haemodialysis in two critically ill patients. J. Antimicrob. Chemother. 65(8), 1836–1837 (2010).
  • Karvanen M, Plachouras D, Friberg LE et al. Colistin methanesulfonate and colistin pharmacokinetics in critically ill patients receiving continuous venovenous hemodiafiltration. Antimicrob. Agents Chemother. 57(1), 668–671 (2013).
  • He H, Li JC, Nation RL et al. Pharmacokinetics of four different brands of colistimethate and formed colistin in rats. J. Antimicrob. Chemother. 68(10), 2311–2317 (2013).
  • Satlin MJ, Kubin CJ, Blumenthal JS et al. Comparative effectiveness of aminoglycosides, polymyxin B, and tigecycline for clearance of carbapenem-resistant Klebsiella pneumoniae from urine. Antimicrob. Agents Chemother. 55(12), 5893–5899 (2011).
  • Pea F, Viale P, Cojutti P, Furlanut M. Dosing nomograms for attaining optimum concentrations of meropenem by continuous infusion in critically ill patients with severe gram-negative infections: a pharmacokinetics/pharmacodynamics-based approach. Antimicrob. Agents Chemother. 56(12), 6343–6348 (2012).
  • Roberts JA, Kirkpatrick CM, Roberts MS, Robertson TA, Dalley AJ, Lipman J. Meropenem dosing in critically ill patients with sepsis and without renal dysfunction: intermittent bolus versus continuous administration? Monte Carlo dosing simulations and subcutaneous tissue distribution. J. Antimicrob. Chemother. 64(1), 142–150 (2009).
  • Langgartner J, Vasold A, Gluck T, Reng M, Kees F. Pharmacokinetics of meropenem during intermittent and continuous intravenous application in patients treated by continuous renal replacement therapy. Intensive Care Med. 34(6), 1091–1096 (2008).
  • Lorente L, Lorenzo L, Martin MM, Jimenez A, Mora ML. Meropenem by continuous versus intermittent infusion in ventilator-associated pneumonia due to gram-negative bacilli. Ann. Pharmacother 40(2), 219–223 (2006).
  • Kiratisin P, Keel RA, Nicolau DP. Pharmacodynamic profiling of doripenem, imipenem and meropenem against prevalent Gram-negative organisms in the Asia-Pacific region. Int. J. Antimicrob. Agents 41(1), 47–51 (2013).
  • Daikos GL, Markogiannakis A. Carbapenemase-producing Klebsiella pneumoniae: (when) might we still consider treating with carbapenems? Clin. Microbiol. Infect. 17(8), 1135–1141 (2011).
  • Bulik CC, Nicolau DP. Double-carbapenem therapy for carbapenemase-producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 55(6), 3002–3004 (2011).
  • Wiskirchen DE, Crandon JL, Nicolau DP. Impact of various conditions on the efficacy of dual carbapenem therapy against KPC-producing Klebsiella pneumoniae. Int. J. Antimicrob. Agents 41(6), 582–585 (2013).
  • Giamarellou H, Galani L, Baziaka F, Karaiskos I. Effectiveness of a double-carbapenem regimen for infections in humans due to carbapenemase-producing pandrug-resistant Klebsiella pneumoniae. Antimicrob. Agents Chemother. 57(5), 2388–2390 (2013).
  • Ceccarelli G, Falcone M, Giordano A et al. Successful ertapenem-doripenem combination treatment of bacteremic ventilator-associated pneumonia due to colistin-resistant KPC-producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 57(6), 2900–2901 (2013).
  • Hagihara M, Crandon JL, Urban C, Nicolau DP. Efficacy of doripenem and ertapenem against KPC-2-producing and non-KPC-producing Klebsiella pneumoniae with similar MICs. J. Antimicrob. Chemother. 68(7), 1616–1618 (2013).
  • Wiskirchen DE, Nordmann P, Crandon JL, Nicolau DP. Efficacy of humanized carbapenem exposures against New Delhi metallo-beta-lactamase (NDM-1) producing enterobacteriaceae in a murine infection model. Antimicrob. Agents Chemother. ( doi:10.1128/AAC.00708-13) (2013) ( Epub ahead of print).
  • Rose WE, Rybak MJ. Tigecycline: first of a new class of antimicrobial agents. Pharmacotherapy 26(8), 1099–1110 (2006).
  • Guner R, Hasanoglu I, Keske S, Kalem AK, Tasyaran MA. Outcomes in patients infected with carbapenem-resistant Acinetobacter baumannii and treated with tigecycline alone or in combination therapy. Infection 39(6), 515–518 (2011).
  • Lee YT, Tsao SM, Hsueh PR. Clinical outcomes of tigecycline alone or in combination with other antimicrobial agents for the treatment of patients with healthcare-associated multidrug-resistant Acinetobacter baumannii infections. Eur. J. Clin. Microbiol. Infect Dis. 32(9), 1211–1220 (2013).
  • Sader HS, Flamm RK, Jones RN. Tigecycline activity tested against antimicrobial resistant surveillance subsets of clinical bacteria collected worldwide (2011). Diagn. Microbiol. Infect. Dis. 76(2), 217–221 (2013).
  • Sader HS, Farrell DJ, Jones RN. Tigecycline activity tested against multidrug-resistant Enterobacteriaceae and Acinetobacter spp. isolated in US medical centers (2005–2009). Diagn. Microbiol. Infect. Dis. 69(2), 223–227 (2011).
  • Yahav D, Lador A, Paul M, Leibovici L. Efficacy and safety of tigecycline: a systematic review and meta-analysis. J. Antimicrob. Chemother. 66(9), 1963–1971 (2011).
  • Cai Y, Wang R, Liang B, Bai N, Liu Y. Systematic review and meta-analysis of the effectiveness and safety of tigecycline for treatment of infectious disease. Antimicrob. Agents Chemother. 55(3), 1162–1172 (2011).
  • Prasad P, Sun J, Danner RL, Natanson C. Excess deaths associated with tigecycline after approval based on noninferiority trials. Clin. Infect. Dis. 54(12), 1699–1709 (2012).
  • Tasina E, Haidich AB, Kokkali S, Arvanitidou M. Efficacy and safety of tigecycline for the treatment of infectious diseases: a meta-analysis. Lancet Infect. Dis. 11(11), 834–844 (2011).
  • Freire AT, Melnyk V, Kim MJ et al. Comparison of tigecycline with imipenem/cilastatin for the treatment of hospital-acquired pneumonia. Diagn. Microbiol. Infect. Dis. 68(2), 140–151 (2010).
  • Vila J, Pachon J. Therapeutic options for Acinetobacter baumannii infections: an update. Expert Opin. Pharmacother. 13(16), 2319–2336 (2012).
  • Bhavnani SM, Rubino CM, Hammel JP et al. Pharmacological and patient-specific response determinants in patients with hospital-acquired pneumonia treated with tigecycline. Antimicrob. Agents Chemother. 56(2), 1065–1072 (2012).
  • Rubino CM, Forrest A, Bhavnani SM et al. Tigecycline population pharmacokinetics in patients with community- or hospital-acquired pneumonia. Antimicrob. Agents Chemother. 54(12), 5180–5186 (2010).
  • Curcio D. Off-label use of antibiotics in hospitalized patients: focus on tigecycline. J. Antimicrob. Chemother. 64(6), 1344–1346 (2009).
  • Cunha BA. Pharmacokinetic considerations regarding tigecycline for multidrug-resistant (MDR) Klebsiella pneumoniae or MDR Acinetobacter baumannii urosepsis. J. Clin. Microbiol. 47(5), 1613 (2009).
  • Muralidharan G, Micalizzi M, Speth J, Raible D, Troy S. Pharmacokinetics of tigecycline after single and multiple doses in healthy subjects. Antimicrob. Agents Chemother. 49(1), 220–229 (2005).
  • Ramirez J, Dartois N, Gandjini H, Yan JL, Korth-Bradley J, McGovern PC. Randomized phase 2 trial to evaluate the clinical efficacy of two high-dosage tigecycline regimens versus imipenem-cilastatin for treatment of hospital-acquired pneumonia. Antimicrob. Agents Chemother. 57(4), 1756–1762 (2013).
  • Rodvold KA, Gotfried MH, Cwik M, Korth-Bradley JM, Dukart G, Ellis-Grosse EJ. Serum, tissue and body fluid concentrations of tigecycline after a single 100 mg dose. J. Antimicrob. Chemother. 58(6), 1221–1229 (2006).
  • Raz R. Fosfomycin: an old--new antibiotic. Clin. Microbiol. Infect. 18(1), 4–7 (2012).
  • Popovic M, Steinort D, Pillai S, Joukhadar C. Fosfomycin: an old, new friend? Eur J Clin Microbiol Infect Dis, 29(2), 127–142 (2010).
  • Falagas ME, Giannopoulou KP, Kokolakis GN, Rafailidis PI. Fosfomycin: use beyond urinary tract and gastrointestinal infections. Clin. Infect. Dis. 46(7), 1069–1077 (2008).
  • Endimiani A, Patel G, Hujer KM et al. In Vitro activity of fosfomycin against blaKPC-containing Klebsiella pneumoniae isolates, including those nonsusceptible to tigecycline and/or colistin. Antimicrob. Agents Chemother. 54(1), 526–529 (2010).
  • Lu CL, Liu CY, Huang YT et al. Antimicrobial susceptibilities of commonly encountered bacterial isolates to fosfomycin determined by agar dilution and disk diffusion methods. Antimicrob. Agents Chemother. 55(9), 4295–4301 (2011).
  • Livermore DM, Warner M, Mushtaq S, Doumith M, Zhang J, Woodford N. What remains against carbapenem-resistant Enterobacteriaceae? Evaluation of chloramphenicol, ciprofloxacin, colistin, fosfomycin, minocycline, nitrofurantoin, temocillin and tigecycline. Int. J. Antimicrob. Agents 37(5), 415–419 (2011).
  • Samonis G, Maraki S, Rafailidis PI, Kapaskelis A, Kastoris AC, Falagas ME. Antimicrobial susceptibility of Gram-negative nonurinary bacteria to fosfomycin and other antimicrobials. Future Microbiol. 5(6), 961–970 (2010).
  • Falagas ME, Maraki S, Karageorgopoulos DE, Kastoris AC, Mavromanolakis E, Samonis G. Antimicrobial susceptibility of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Enterobacteriaceae isolates to fosfomycin. Int. J. Antimicrob. Agents 35(3), 240–243 (2010).
  • Falagas ME, Kanellopoulou MD, Karageorgopoulos DE et al. Antimicrobial susceptibility of multidrug-resistant Gram negative bacteria to fosfomycin. Eur. J. Clin. Microbiol. Infect. Dis. 27(6), 439–443 (2008).
  • Roussos N, Karageorgopoulos DE, Samonis G, Falagas ME. Clinical significance of the pharmacokinetic and pharmacodynamic characteristics of fosfomycin for the treatment of patients with systemic infections. Int. J. Antimicrob. Agents 34(6), 506–515 (2009).
  • Michalopoulos A, Virtzili S, Rafailidis P, Chalevelakis G, Damala M, Falagas ME. Intravenous fosfomycin for the treatment of nosocomial infections caused by carbapenem-resistant Klebsiella pneumoniae in critically ill patients: a prospective evaluation. Clin. Microbiol. Infect. 16(2), 184–186 (2010).
  • Apisarnthanarak A, Mundy LM. Carbapenem-resistant Pseudomonas aeruginosa pneumonia with intermediate minimum inhibitory concentrations to doripenem: combination therapy with high-dose, 4-h infusion of doripenem plus fosfomycin versus intravenous colistin plus fosfomycin. Int. J. Antimicrob. Agents 39(3), 271–272 (2012).
  • Dinh A, Salomon J, Bru JP, Bernard L. Fosfomycin: efficacy against infections caused by multidrug-resistant bacteria. Scand. J. Infect. Dis. 44(3), 182–189 (2012).
  • Falagas ME, Kastoris AC, Karageorgopoulos DE, Rafailidis PI. Fosfomycin for the treatment of infections caused by multidrug-resistant non-fermenting Gram-negative bacilli: a systematic review of microbiological, animal and clinical studies. Int. J. Antimicrob. Agents 34(2), 111–120 (2009).
  • Karageorgopoulos DE, Wang R, Yu XH, Falagas ME. Fosfomycin: evaluation of the published evidence on the emergence of antimicrobial resistance in Gram-negative pathogens. J. Antimicrob. Chemother. 67(2), 255–268 (2012).
  • Rodriguez-Rojas A, Couce A, Blazquez J. Frequency of spontaneous resistance to fosfomycin combined with different antibiotics in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 54(11), 4948–4949 (2010).
  • Rodriguez-Rojas A, Macia MD, Couce A et al. Assessing the emergence of resistance: the absence of biological cost in vivo may compromise fosfomycin treatments for P. aeruginosa infections. PLoS One 5(4), e10193 (2010).
  • Karageorgopoulos DE, Miriagou V, Tzouvelekis LS, Spyridopoulou K, Daikos GL. Emergence of resistance to fosfomycin used as adjunct therapy in KPC Klebsiella pneumoniae bacteraemia: report of three cases. J. Antimicrob. Chemother. 67(11), 2777–2779 (2012).
  • Avent ML, Rogers BA, Cheng AC, Paterson DL. Current use of aminoglycosides: indications, pharmacokinetics and monitoring for toxicity. Intern. Med. J. 41(6), 441–449 (2011).
  • Craig WA. Optimizing aminoglycoside use. Crit. Care Clin. 27(1), 107–121 (2011).
  • Lacy MK, Nicolau DP, Nightingale CH, Quintiliani R. The pharmacodynamics of aminoglycosides. Clin. Infect. Dis. 27(1), 23–27 (1998).
  • Smith PF, Ballow CH, Booker BM, Forrest A, Schentag JJ. Pharmacokinetics and pharmacodynamics of aztreonam and tobramycin in hospitalized patients. Clin. Ther. 23(8), 1231–1244 (2001).
  • Demczar DJ, Nafziger AN, Bertino JS, Jr. Pharmacokinetics of gentamicin at traditional versus high doses: implications for once-daily aminoglycoside dosing. Antimicrob. Agents Chemother. 41(5), 1115–1119 (1997).
  • Lode H, Kemmerich B, Koeppe P. [Comparative clinical pharmacology of gentamicin, sisomicin, and tobramycin]. Antimicrob. Agents Chemother. 8(4), 396–401 (1975).
  • Maller R, Ahrne H, Holmen C, Lausen I, Nilsson LE, Smedjegard J. Once- versus twice-daily amikacin regimen: efficacy and safety in systemic gram-negative infections. Scandinavian Amikacin Once Daily Study Group. J. Antimicrob. Chemother. 31(6), 939–948 (1993).
  • Drusano GL, Ambrose PG, Bhavnani SM, Bertino JS, Nafziger AN, Louie A. Back to the future: using aminoglycosides again and how to dose them optimally. Clin. Infect. Dis. 45(6), 753–760 (2007).
  • Kashuba AD, Nafziger AN, Drusano GL, Bertino JS, Jr. Optimizing aminoglycoside therapy for nosocomial pneumonia caused by gram-negative bacteria. Antimicrob. Agents Chemother. 43(3), 623–629 (1999).
  • Rybak MJ, Abate BJ, Kang SL, Ruffing MJ, Lerner SA, Drusano GL. Prospective evaluation of the effect of an aminoglycoside dosing regimen on rates of observed nephrotoxicity and ototoxicity. Antimicrob. Agents Chemother. 43(7), 1549–1555 (1999).
  • Drusano GL, Louie A. Optimization of aminoglycoside therapy. Antimicrob. Agents Chemother. 55(6), 2528–2531 (2011).
  • Taccone FS, Laterre PF, Spapen H et al. Revisiting the loading dose of amikacin for patients with severe sepsis and septic shock. Crit. Care 14(2), R53 (2010).
  • Hocquet D, Vogne C, El Garch F et al. MexXY-OprM efflux pump is necessary for a adaptive resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob. Agents Chemother. 47(4), 1371–1375 (2003).
  • Deguchi K, Koguchi M, Suzuki Y et al. [Antibacterial activities of combination uses of isepamicin and beta-lactams In Vitro against clinically isolated strains. Part 3. The results against Pseudomonas aeruginosa]. Jpn J. Antibiot. 49(5), 509–516 (1996).
  • Becker B, Cooper MA. Aminoglycoside antibiotics in the 21st century. ACS Chem. Biol. 8(1), 105–115 (2013).
  • Landman D, Babu E, Shah N et al. Activity of a novel aminoglycoside, ACHN-490, against clinical isolates of Escherichia coli and Klebsiella pneumoniae from New York City. J. Antimicrob. Chemother. 65(10), 2123–2127 (2010).
  • Jelliffe R, Schumitzky A, Bayard D et al. The MM-USCPACK Pmetrics research software for nonparametric population PK/PD modeling, and the RightDose clinical software for individualizing maximally precise dosage regimens. Presented at: 21st Annual Meeting of the Population Approach Group in Europe (PAGE)., Venice, Italy 5–8 June 2012
  • Maglio D, Nightingale CH, Nicolau DP. Extended interval aminoglycoside dosing: from concept to clinic. Int. J. Antimicrob. Agents 19(4), 341–348 (2002).
  • Kaye D. Current use for old antibacterial agents: polymyxins, rifampin, and aminoglycosides. Infect. Dis. Clin. N. Am. 18(3), 669–689, x (2004).
  • Song JY, Lee J, Heo JY et al. Colistin and rifampicin combination in the treatment of ventilator-associated pneumonia caused by carbapenem-resistant Acinetobacter baumannii. Int. J. Antimicrob. Agents 32(3), 281–284 (2008).
  • Bassetti M, Repetto E, Righi E et al. Colistin and rifampicin in the treatment of multidrug-resistant Acinetobacter baumannii infections. J. Antimicrob. Chemother. 61(2), 417–420 (2008).
  • Bonnet R, Caron F, Cavallo JD et al. Comité de l’Antibiogramme de la Société Française de Microbiologie – Recommandations 2012. January Edition (2012).
  • Gumbo T, Louie A, Deziel MR et al. Concentration-dependent Mycobacterium tuberculosis killing and prevention of resistance by rifampin. Antimicrob. Agents Chemother. 51(11), 3781–3788 (2007).
  • Jayaram R, Gaonkar S, Kaur P et al. Pharmacokinetics-pharmacodynamics of rifampin in an aerosol infection model of tuberculosis. Antimicrob. Agents Chemother. 47(7), 2118–2124 (2003).
  • Ruslami R, Nijland HM, Alisjahbana B, Parwati I, van Crevel R, Aarnoutse RE. Pharmacokinetics and tolerability of a higher rifampin dose versus the standard dose in pulmonary tuberculosis patients. Antimicrob. Agents Chemother. 51(7), 2546–2551 (2007).
  • Lepe JA, Garcia-Cabrera E, Gil-Navarro MV, Aznar J. Rifampin breakpoint for Acinetobacter baumannii based on pharmacokinetic-pharmacodynamic models with Monte Carlo simulation. Rev Esp. Quimioter. 25(2), 134–138 (2012).
  • Korvick JA, Peacock JE Jr, Muder RR, Wheeler RR, Yu VL. Addition of rifampin to combination antibiotic therapy for Pseudomonas aeruginosa bacteremia: prospective trial using the Zelen protocol. Antimicrob. Agents Chemother. 36(3), 620–625 (1992).
  • Levin AS. Multiresistant Acinetobacter infections: a role for sulbactam combinations in overcoming an emerging worldwide problem. Clin. Microbiol. Infect. 8(3), 144–153 (2002).
  • Levin AS, Levy CE, Manrique AE, Medeiros EA, Costa SF. Severe nosocomial infections with imipenem-resistant Acinetobacter baumannii treated with ampicillin/sulbactam. Int. J. Antimicrob. Agents 21(1), 58–62 (2003).
  • Chu H, Zhao L, Wang M, Liu Y, Gui T, Zhang J. Sulbactam-based therapy for Acinetobacter baumannii infection: a systematic review and meta-analysis. Braz. J. Infect. Dis. 17(4), 389–394 (2013).
  • Rodriguez-Hernandez MJ, Cuberos L, Pichardo C et al. Sulbactam efficacy in experimental models caused by susceptible and intermediate Acinetobacter baumannii strains. J. Antimicrob. Chemother. 47(4), 479–482 (2001).
  • Housman ST, Hagihara M, Nicolau DP, Kuti JL. In Vitro pharmacodynamics of human-simulated exposures of ampicillin/sulbactam, doripenem and tigecycline alone and in combination against multidrug-resistant Acinetobacter baumannii. J. Antimicrob. Chemother. 68(10), 2296–2304 (2013).
  • Jaruratanasirikul S, Wongpoowarak W, Aeinlang N, Jullangkoon M. Pharmacodynamics modeling to optimize dosage regimens of sulbactam. Antimicrob. Agents Chemother. 57(7), 3441–3444 (2013).
  • Wildfeuer A, Rader K. Stability of beta-lactamase inhibitors and beta-lactam antibiotics in parenteral dosage forms and in body fluids and tissue homogenates: a comparative study of sulbactam, clavulanic acid, ampicillin and amoxycillin. Int. J. Antimicrob. Agents (6 Suppl.) S31–S34 (1996).
  • Johnson DH, Cunha BA. Aztreonam. Med. Clin. N Am. 79(4), 733–743 (1995).
  • Araoka H, Baba M, Tateda K et al. In Vitro combination effects of aztreonam and aminoglycoside against multidrug-resistant Pseudomonas aeruginosa in Japan. Jpn J. Infect. Dis. 65(1), 84–87 (2012).
  • Jacoby GA. AmpC beta-lactamases. Clin. Microbiol. Rev. 22(1), 161–182, (2009).
  • Andrews R, Fasoli R, Scoggins WG et al. Combined aztreonam and gentamicin therapy for pseudomonal lower respiratory tract infections. Clin. Ther. 16(2), 236–252 (1994).
  • Bjornson HS, Ramirez-Ronda C, Saavedra S, Rivera-Vazquez CR, Liu C, Hinthorn DR. Comparison of empiric aztreonam and aminoglycoside regimens in the treatment of serious gram-negative lower respiratory infections. Clin. Ther. 15(1), 65–78 (1993).
  • Crandon JL, Nicolau DP. Human simulated studies of aztreonam and aztreonam-avibactam to evaluate activity against challenging gram-negative organisms, including metallo-beta-lactamase producers. Antimicrob. Agents Chemother. 57(7), 3299–3306 (2013).
  • Dhar R, Anwar GA, Bourke SC et al. Efficacy of nebulised colomycin in patients with non-cystic fibrosis bronchiectasis colonised with Pseudomonas aeruginosa. Thorax 65(6), 553 (2010).
  • Michalopoulos A, Kasiakou SK, Mastora Z, Rellos K, Kapaskelis AM, Falagas ME. Aerosolized colistin for the treatment of nosocomial pneumonia due to multidrug-resistant Gram-negative bacteria in patients without cystic fibrosis. Crit. Care 9(1), R53–R59 (2005).
  • Czosnowski QA, Wood GC, Magnotti LJ et al. Adjunctive aerosolized antibiotics for treatment of ventilator-associated pneumonia. Pharmacotherapy 29(9), 1054–1060 (2009).
  • Kofteridis DP, Alexopoulou C, Valachis A et al. Aerosolized plus intravenous colistin versus intravenous colistin alone for the treatment of ventilator-associated pneumonia: a matched case-control study. Clin. Infect. Dis. 51(11), 1238–1244 (2010).
  • Rattanaumpawan P, Lorsutthitham J, Ungprasert P, Angkasekwinai N, Thamlikitkul V. Randomized controlled trial of nebulized colistimethate sodium as adjunctive therapy of ventilator-associated pneumonia caused by Gram-negative bacteria. J. Antimicrob. Chemother. 65(12), 2645–2649 (2010).
  • Korbila IP, Michalopoulos A, Rafailidis PI, Nikita D, Samonis G, Falagas ME. Inhaled colistin as adjunctive therapy to intravenous colistin for the treatment of microbiologically documented ventilator-associated pneumonia: a comparative cohort study. Clin. Microbiol. Infect. 16(8), 1230–1236 (2010).
  • Yousef JM, Chen G, Hill PA, Nation RL, Li J. Melatonin attenuates colistin-induced nephrotoxicity in rats. Antimicrob. Agents Chemother. 55(9), 4044–4049 (2011).
  • Nicolau DP, Freeman CD, Belliveau PP, Nightingale CH, Ross JW, Quintiliani R. Experience with a once-daily aminoglycoside program administered to 2,184 adult patients. Antimicrob. Agents Chemother, 39(3), 650–655 (1995).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.