174
Views
36
CrossRef citations to date
0
Altmetric
Review

Molecular mechanisms of HIV-1 proviral latency

, , &
Pages 805-814 | Published online: 10 Jan 2014

References

  • Zhang Z, Schuler T, Zupancic M et al. Sexual transmission and propagation of SIV and HIV in resting and activated CD4+ T cells. Science 286(5443), 1353–1357 (1999).
  • Tisdale M, Kemp SD, Parry NR, Larder BA. Rapid in vitro selection of human immunodeficiency virus type 1 resistant to 3´-thiacytidine inhibitors due to a mutation in the YMDD region of reverse transcriptase. Proc. Natl Acad. Sci. USA 90(12), 5653–5656 (1993).
  • Palella FJ Jr, Delaney KM, Moorman AC et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N. Engl. J. Med. 338(13), 853–860 (1998).
  • Gulick RM, Meibohm A, Havlir D et al. Six-year follow-up of HIV-1-infected adults in a clinical trial of antiretroviral therapy with indinavir, zidovudine, and lamivudine. AIDS 17(16), 2345–2349 (2003).
  • Ho DD, Neumann AU, Perelson AS et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373(6510), 123–126 (1995).
  • Wei X, Ghosh SK, Taylor ME et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373(6510), 117–122 (1995).
  • Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271(5255), 1582–1586 (1996).
  • Perelson AS, Essunger P, Cao Y et al. Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387(6629), 188–191 (1997).
  • Cohen OJ, Fauci AS. Current strategies in the treatment of HIV infection. Adv. Intern. Med. 46, 207–246 (2001).
  • Davey RT Jr, Bhat N, Yoder C et al. HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression. Proc. Natl Acad. Sci. USA 96(26), 15109–15114 (1999).
  • Chun TW, Finzi D, Margolick J et al. In vivo fate of HIV-1-infected T cells: quantitative analysis of the transition to stable latency. Nature Med. 1(12), 1284–1290 (1995).
  • Chun TW, Stuyver L, Mizell SB et al. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc. Natl Acad. Sci. USA 94(24), 13193–13197 (1997).
  • Siliciano JD, Kajdas J, Finzi D et al. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nature Med. 9(6), 727–728 (2003).
  • Pereira LA, Bentley K, Peeters A, Churchill MJ, Deacon NJ. A compilation of cellular transcription factor interactions with the HIV-1 LTR promoter. Nucleic Acids Res. 28(3), 663–668 (2000).
  • Sheridan PL, Sheline CT, Cannon K et al. Activation of the HIV-1 enhancer by the LEF-1 HMG protein on nucleosome-assembled DNA in vitro. Genes Dev. 9(17), 2090–2104 (1995).
  • Rohr O, Marban C, Aunis D, Schaeffer E. Regulation of HIV-1 gene transcription: from lymphocytes to microglial cells. J. Leukoc. Biol. 74(5), 736–749 (2003).
  • Van Lint C, Amella CA, Emiliani S et al. Transcription factor binding sites downstream of the human immunodeficiency virus type 1 transcription start site are important for virus infectivity. J. Virol. 71(8), 6113–6127 (1997).
  • Chen LF, Greene WC. Shaping the nuclear action of NF-κB. Nat. Rev. Mol. Cell. Biol. 5(5), 392–401 (2004).
  • Ping YH, Rana TM. DSIF and NELF interact with RNA polymerase II elongation complex and HIV-1 Tat stimulates P-TEFb-mediated phosphorylation of RNA polymerase II and DSIF during transcription elongation. J. Biol. Chem. 276(16), 12951–12958 (2001).
  • Yamaguchi Y, Takagi T, Wada T et al. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97(1), 41–51 (1999).
  • Alonso A, Derse D, Peterlin BM. Human chromosome 12 is required for optimal interactions between Tat and TAR of human immunodeficiency virus type 1 in rodent cells. J. Virol. 66(7), 4617–4621 (1992).
  • Hart CE, Ou CY, Galphin JC et al. Human chromosome 12 is required for elevated HIV-1 expression in human–hamster hybrid cells. Science 246(4929), 488–491 (1989).
  • Herrmann CH, Rice AP. Lentivirus Tat proteins specifically associate with a cellular protein kinase, TAK, that hyperphosphorylates the carboxyl-terminal domain of the large subunit of RNA polymerase II: candidate for a Tat cofactor. J. Virol. 69(3), 1612–1620 (1995).
  • Wei P, Garber ME, Fang SM, Fischer WH, Jones KA. A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 92(4), 451–462 (1998).
  • Fujinaga K, Irwin D, Huang Y et al. Dynamics of human immunodeficiency virus transcription: P-TEFb phosphorylates RD and dissociates negative effectors from the transactivation response element. Mol. Cell. Biol. 24(2), 787–795 (2004).
  • Bourgeois CF, Kim YK, Churcher MJ, West MJ, Karn J. Spt5 cooperates with human immunodeficiency virus type 1 Tat by preventing premature RNA release at terminator sequences. Mol. Cell. Biol. 22(4), 1079–1093 (2002).
  • Ivanov D, Kwak YT, Guo J, Gaynor RB. Domains in the SPT5 protein that modulate its transcriptional regulatory properties. Mol. Cell. Biol. 20(9), 2970–2983 (2000).
  • Fong YW, Zhou Q. Relief of two built-in autoinhibitory mechanisms in P-TEFb is required for assembly of a multicomponent transcription elongation complex at the human immunodeficiency virus type 1 promoter. Mol. Cell. Biol. 20(16), 5897–5907 (2000).
  • Garber ME, Mayall TP, Suess EM et al. CDK9 autophosphorylation regulates high-affinity binding of the human immunodeficiency virus type 1 tat-P-TEFb complex to TAR RNA. Mol. Cell. Biol. 20(18), 6958–6969 (2000).
  • Yang Z, Zhu Q, Luo K, Zhou Q. The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature 414(6861), 317–322 (2001).
  • Nguyen VT, Kiss T, Michels AA, Bensaude O. 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature 414(6861), 322–325 (2001).
  • Ghose R, Liou LY, Herrmann CH, Rice AP. Induction of TAK (cyclin T1/P-TEFb) in purified resting CD4(+) T lymphocytes by combination of cytokines. J. Virol. 75(23), 11336–11343 (2001).
  • Finch JT, Noll M, Kornberg RD. Electron microscopy of defined lengths of chromatin. Proc. Natl Acad. Sci. USA 72(9), 3320–3322 (1975).
  • Kornberg RD. Chromatin structure: a repeating unit of histones and DNA. Science 184(139), 868–871 (1974).
  • Thomas JO, Kornberg RD. An octamer of histones in chromatin and free in solution. Proc. Natl Acad. Sci. USA 72(7), 2626–2630 (1975).
  • Strahl BD, Allis CD. The language of covalent histone modifications. Nature 403(6765), 41–45 (2000).
  • Owen-Hughes T, Workman JL. Experimental analysis of chromatin function in transcription control. Crit. Rev. Eukaryot. Gene Expr. 4(4), 403–441 (1994).
  • Knezetic JA, Luse DS. The presence of nucleosomes on a DNA template prevents initiation by RNA polymerase II in vitro. Cell 45(1), 95–104 (1986).
  • Steger DJ, Eberharter A, John S, Grant PA, Workman JL. Purified histone acetyltransferase complexes stimulate HIV-1 transcription from preassembled nucleosomal arrays. Proc. Natl Acad. Sci. USA 95(22), 12924–12929 (1998).
  • Verdin E, Paras P Jr, Van Lint C. Chromatin disruption in the promoter of human immunodeficiency virus type 1 during transcriptional activation. Embo. J. 12(8), 3249–3259 (1993).
  • Steger DJ, Workman JL. Stable co-occupancy of transcription factors and histones at the HIV-1 enhancer. Embo. J. 16(9), 2463–2472 (1997).
  • Demarchi F, D'Agaro P, Falaschi A, Giacca M. In vivo footprinting analysis of constitutive and inducible protein-DNA interactions at the long terminal repeat of human immunodeficiency virus type 1. J. Virol. 67(12), 7450–7460 (1993).
  • Lusic M, Marcello A, Cereseto A, Giacca M. Regulation of HIV-1 gene expression by histone acetylation and factor recruitment at the LTR promoter. Embo. J. 22(24), 6550–6561 (2003).
  • Henderson A, Holloway A, Reeves R, Tremethick DJ. Recruitment of SWI/SNF to the human immunodeficiency virus type 1 promoter. Mol. Cell. Biol. 24(1), 389–397 (2004).
  • Kiernan RE, Vanhulle C, Schiltz L et al. HIV-1 tat transcriptional activity is regulated by acetylation. Embo. J. 18(21), 6106–6118 (1999).
  • Ott M, Schnolzer M, Garnica J et al. Acetylation of the HIV-1 Tat protein by p300 is important for its transcriptional activity. Curr. Biol. 9(24), 1489–1492 (1999).
  • Kaehlcke K, Dorr A, Hetzer-Egger C et al. Acetylation of Tat defines a cyclinT1-independent step in HIV transactivation. Mol. Cell. 12(1), 167–176 (2003).
  • Pagans S, Pedal A, North BJ et al. SIRT1 regulates HIV transcription via Tat deacetylation. PLoS Biol. 3(2), E41 (2005).
  • Pomerantz RJ, Trono D, Feinberg MB, Baltimore D. Cells nonproductively infected with HIV-1 exhibit an aberrant pattern of viral RNA expression: a molecular model for latency. Cell 61(7), 1271–1276 (1990).
  • Emiliani S, Van Lint C, Fischle F et al. A point mutation in the HIV-1 Tat responsive element is associated with postintegration latency. Proc. Natl Acad. Sci. USA 93(13), 6377–6381 (1996).
  • Emiliani S, Fischle W, Ott M et al. Mutations in the tat gene are responsible for human immunodeficiency virus type 1 postintegration latency in the U1 cell line. J. Virol. 72(2), 1666–1670 (1998).
  • Setterfield G, Hall R, Bladon T, Little J, Kaplan JG. Changes in structure and composition of lymphocyte nuclei during mitogenic stimulation. J. Ultrastruct. Res. 82(3), 264–282 (1983).
  • Brown KE, Baxter J, Graf D, Merkenschlager M, Fisher AG. Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Mol. Cell. 3(2), 207–217 (1999).
  • Jordan A, Defechereux P, Verdin E. The site of HIV-1 integration in the human genome determines basal transcriptional activity and response to Tat transactivation. Embo. J. 20(7), 1726–1738 (2001).
  • Jordan A, Bisgrove D, Verdin E. HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. Embo. J. 22(8), 1868–1877 (2003).
  • Craig JM. Heterochromatin – many flavours, common themes. Bioessays 27(1), 17–28 (2005).
  • Han Y, Lassen K, Monie D et al. Resting CD4+ T cells from human immunodeficiency virus type 1 (HIV-1)-infected individuals carry integrated HIV-1 genomes within actively transcribed host genes. J. Virol. 78(12), 6122–6133 (2004).
  • Chun TW, Carruth L, Finzi D et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387(6629), 183–188 (1997).
  • Lewinski MK, Bisgrove D, Shinn P et al. Genome-wide analysis of chromosomal features repressing human immunodeficiency virus transcription. J. Virol. 79(11), 6610–6619 (2005).
  • Schroder AR, Shinn P, Chen H et al. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110(4), 521–529 (2002).
  • Wu X, Li Y, Crise B, Burgess SM Transcription start regions in the human genome are favored targets for MLV integration. Science 300(5626), 1749–1751 (2003).
  • Greger IH, Demarchi F, Giacca M, Proudfoot NJ. Transcriptional interference perturbs the binding of Sp1 to the HIV-1 promoter. Nucleic Acids Res. 26(5), 1294–1301 (1998).
  • Schramke V, Allshire R. Hairpin RNAs and retrotransposon LTRs effect RNAi and chromatin-based gene silencing. Science 301(5636), 1069–1074 (2003).
  • Ramratnam B, Mittler JE, Zhang L et al. The decay of the latent reservoir of replication-competent HIV-1 is inversely correlated with the extent of residual viral replication during prolonged anti-retroviral therapy. Nature Med. 6(1), 82–85 (2000).
  • Dornadula G, Zhang H, VanUitert B et al. Residual HIV-1 RNA in blood plasma of patients taking suppressive highly active antiretroviral therapy. J. Am. Med. Assoc. 282(17), 1627–1632 (1999).
  • Ramratnam B, Ribeiro R, He T et al. Intensification of antiretroviral therapy accelerates the decay of the HIV-1 latent reservoir and decreases, but does not eliminate, ongoing virus replication. J. Acquir. Immune Defic. Syndr. 35(1), 33–37 (2004).
  • Blankson JN, Persaud D, Siliciano RF. The challenge of viral reservoirs in HIV-1 infection. Ann. Rev. Med. 53, 557–593 (2002).
  • Smithgall MD, Wong JG, Critchett KE, Haffar OK. IL-7 up-regulates HIV-1 replication in naturally infected peripheral blood mononuclear cells. J. Immunol. 156(6), 2324–2330 (1996).
  • Scripture-Adams DD, Brooks DG, Korin YD, Zack JA. Interleukin-7 induces expression of latent human immunodeficiency virus type 1 with minimal effects on T-cell phenotype. J. Virol. 76(24), 13077–13082 (2002).
  • Gustafson KR, Cardellina JH II, McMahon JB et al. A nonpromoting phorbol from the samoan medicinal plant Homalanthus nutans inhibits cell killing by HIV-1. J. Med. Chem. 35(11), 1978–1986 (1992).
  • Korin YD, Brooks DG, Brown S, Korotzer A, Zack JA. Effects of prostratin on T-cell activation and human immunodeficiency virus latency. J. Virol. 76(16), 8118–8123 (2002).
  • Kulkosky J, Culnan DM, Roman J et al. Prostratin: activation of latent HIV-1 expression suggests a potential inductive adjuvant therapy for HAART. Blood 98(10), 3006–3015 (2001).
  • Quivy V, Adam E, Collette Y et al. Synergistic activation of human immunodeficiency virus type 1 promoter activity by NF-κB and inhibitors of deacetylases: potential perspectives for the development of therapeutic strategies. J. Virol. 76(21), 11091–11103 (2002).
  • Van Lint C, Emiliani S, Ott M, Verdin E. Transcriptional activation and chromatin remodeling of the HIV-1 promoter in response to histone acetylation. Embo. J. 15(5), 1112–1120 (1996).
  • Ylisastigui L, Archin NM, Lehrman G, Bosch RJ, Margolis DM. Coaxing HIV-1 from resting CD4 T cells: histone deacetylase inhibition allows latent viral expression. AIDS 18(8), 1101–1108 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.