828
Views
29
CrossRef citations to date
0
Altmetric
Review

Role of infection and antimicrobial therapy in acute exacerbations of chronic obstructive pulmonary disease

, , &
Pages 101-124 | Published online: 10 Jan 2014

References

  • Mannino DM. Chronic obstructive pulmonary disease: definition and epidemiology. Respir. Care 48, 1185–1191 (2003).
  • Soriano JB, Davis KJ, Coleman B, Visick G, Mannino D, Pride NB. The proportional Venn diagram of obstructive lung disease: two approximations from the United States and the United Kingdom. Chest 124, 474–481 (2003).
  • Sethi S. Infectious exacerbations of chronic bronchitis: diagnosis and management. J. Antimicrob. Chemother. 43(Suppl. A), 97–105 (1999).
  • Gonzales R, Malone DC, Maselli JH, Sande MA. Excessive antibiotic use for acute respiratory infections in the United States. Clin. Infect. Dis. 33, 757–762 (2001).
  • Niederman MS, McCombs JS, Unger AN, Kumar A, Popovian R. Treatment cost of acute exacerbations of chronic bronchitis. Clin. Ther. 21, 576–591 (1999).
  • Pauwels R, Calverley P, Buist AS et al. COPD exacerbations: the importance of a standard definition. Respir. Med. 98, 99–107 (2004).
  • Rodrigues-Roisin R. Toward a consensus definition for COPD exacerbations. Chest 117, 398S–401S (2000).
  • Schmier JK, Halpern MT, Higashi MK, Bakst A. The quality of life impact of acute exacerbations of chronic bronchitis (AECB): a literature review. Qual. Life Res. 14, 329–347 (2005).
  • Doll H, Miravitlles M. Health-related QOL in acute exacerbations of chronic bronchitis and chronic obstructive pulmonary disease. A review of the literature. Pharmacoeconomics 23, 345–363 (2005).
  • Spencer S, Jones PW, for the GLOBE Study Group. Time course of recovery of health status following an infective exacerbation of chronic bronchitis. Thorax 58, 589–593 (2003).
  • Miravitlles M, Ferrer M, Pont A et al., for the IMPAC Study Group. Effect of exacerbations on quality of life in patients with chronic obstructive pulmonary diseasee: a 2 year follow-up study. Thorax 59, 387–395 (2004).
  • Seemungal TAR, Donaldson GC, Bhowmik A, Jeffries DJ, Wedzicha JA. Time course and recovery of exacerbations in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 161, 1608–1613 (2000).
  • Parker CM, Voduc N, Aaron SD, Webb KA, O’Donnell DE. Physiological changes during symptom recovery from moderate exacerbations of COPD. Eur. Respir. J. 26, 420–428 (2005).
  • Kanner RE, Anthonisen NR, Connett JE. Lower respiratory illnesses promote FEV1 decline in current smokers but not ex-smokers with mild chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 164, 358–364 (2001).
  • Donaldson GC, Seemungal TA, Bhowmik A, Wedzicha JA. Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax 57, 847–852 (2002).
  • Needham M, Stockley RA. Exacerbations in alpha1-antitrypsin deficiency. Eur. Respir. J. 25, 992–1000 (2005).
  • Halpern MT, Stanford RH, Borker R. The burden of COPD in the USA: results from the Confronting COPD survey. Respir. Med. 97(Suppl. C), S81–S89 (2003).
  • Miravitlles M, Murio C, Guerrero T. Factors associated with relapse after ambulatory treatment of acute exacerbations of chronic bronchitis. DAFNE Study Group. Eur. Respir. J. 17, 928–933 (2001).
  • Miravitlles M, Murio C, Guerrero T, Gisbert R, on behalf of the DAFNE Study Group. Costs of chronic bronchitis and COPD. A 1-year follow-up study. Chest 123, 784–791 (2003).
  • Shapiro SD. COPD unwound. N. Engl. J. Med. 352, 2016–2019 (2005).
  • Traves SL, Donnelly LE. Chemokines and their receptors as targets for the treatment of COPD. Curr. Respir. Med. Rev. 1, 15–32 (2005).
  • Hogg JC, Chu F, Utokaparch S et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N. Engl. J. Med. 350, 2645–2653 (2004).
  • Ito K, Ito M, Elliott WM et al. Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N. Engl. J. Med. 352, 1967–1976 (2005).
  • Wedzicha JA. Exacerbations. Etiology and pathophysiologic mechanisms. Chest 121, 136S–141S (2002).
  • Pietila MP, Thomas CF. Inflammation and infection in exacerbations of chronic obstructive pulmonary disease. Semin. Respir. Infect. 18, 9–16 (2003).
  • Sethi S, Wrona C, Grant BJB, Murphy TF. Strain-specific immune response to Haemophilus influenzae in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 169, 448053 (2004).
  • Sethi S, Muscarella K, Evans N, Klingman KL, Grant BJ, Murphy TF. Airway inflammation and etiology of acute exacerbations of chronic bronchitis. Chest 118, 1557–1565 (2000).
  • Gompertz S, O’Brien C, Bayley DL, Hill SL, Stockley RA. Changes in bronchial inflammation during acute exacerbations of chronic bronchitis. Eur. Respir. J. 17, 1112–1119 (2001).
  • White AJ, Gompertz S, Bayley DL et al. Resolution of bronchial inflammation is related to bacterial eradication following treatment of exacerbations of chronic bronchitis. Thorax 58, 680–685 (2003).
  • Hill AT, Bayley D, Stockley RA. The interrelationship of sputum inflammatory markers in patients with chronic bronchitis. Am. J. Respir. Crit. Care Med. 160, 893–898 (1999).
  • Aaron SD, Angel JB, Lunau M et al. Granulocyte inflammatory markers and airway infection during acute exacerbation of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 163, 349–355 (2001).
  • Tsoumakidou M, Tzanakis N, Chrysofakis G, Siafakas NM. Nitrosative stress, heme oxygenase-1 expression and airway inflammation during severe exacerbations of COPD. Chest 127, 1911–1918 (2005).
  • White AJ, Gompertz S, Stockley RA. Chronic obstructive pulmonary disease 6: the etiology of exacerbations of chronic obstructive pulmonary disease. Thorax 58, 73–80 (2003).
  • Roland M, Bhowmik A, Sapsford RJ et al. Sputum and plasma endothelin-1 levels in exacerbations of chronic obstructive pulmonary disease. Thorax 56, 30–35 (2001).
  • Fujimoto K, Yasuo M, Urushibata K, Hanaoka M, Koizumi T, Kubo K. Airway inflammation during stable and acutely exacerbated chronic obstructive pulmonary disease. Eur. Respir. J. 25, 640–646 (2005).
  • Zhu J, Qiu YS, Majumdar S et al. Exacerbations of bronchitis: bronchial eosinophilia and gene expression for interleukin-4, interleukin-5, and eosinophil chemoattractants. Am. J. Respir. Crit. Care Med. 164, 109–116 (2001).
  • Qiu Y, Zhu J, Bandi V et al. Biopsy neutrophilia, neutrophil chemokine and receptor gene expression in severe exacerbations of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 168, 968–975 (2003).
  • Drost EM, Skwarski KM, Sauleda J et al. Oxidative stress and airway inflammation in severe exacerbations of COPD. Thorax 60, 293–300 (2005).
  • Agusti AG. COPD, a multicomponent disease: implications for management. Respir. Med. 99, 670–682 (2005).
  • Dev D, Wallace E, Sankaran R et al. Value of C-reactive protein measurements in exacerbations of chronic obstructive pulmonary disease. Respir. Med. 92, 664–667 (1998).
  • Wedzicha JA. The heterogeneity of chronic obstructive pulmonary disease. Thorax 5, 631–632 (2000).
  • Hurst JR, Perera WR, Wilkinson TMA, Donaldson GC, Wedzicha JA. Systemic, upper and lower airway inflammation at exacerbation of COPD. Am. J. Respir. Crit. Care Med. 173(1), 71–78 (2005).
  • Devalia JL, Rusznak C, Davies RJ. Air pollution in the 1990s – cause of increased respiratory disease? Respir. Med. 88, 241–244 (1994).
  • Ohtoshi T, Takizawa H, Okazaki H et al. Diesel exhaust particles stimulate human airway epithelial cells to produce cytokines relevant to airway inflammation in vitro. J. Allergy Clin. Immunol. 101, 778–785 (1998).
  • Rudell B, Blomberg A, Helleday R et al. Bronchoalveolar inflammation after exposure to diesel exhaust: comparison between unfiltered and particle trap filtered exhaust. Occup. Environ. Med. 56, 527–534 (1999).
  • Sunyer J, Saez M, Murillo C, Castellsague J, Martinez F, Anto JM. Air pollution and emergency room admissions for chronic obstructive pulmonary disease: a 5-year study. Am. J. Epidemiol. 137, 701–705 (1993).
  • Garcia-Aymerich J, Tobias A, Anto JM, Sunyer J. Air pollution and mortality in a cohort of patients with chronic obstructive pulmonary disease: a time series analysis. J. Epidemiol. Community Health 54, 73–74 (2000).
  • Sunyer J, Schwartz J, Tobias A, Macfarlane D, Garcia J, Anto JM. Patients with chronic obstructive pulmonary disease are at increased risk of death associated with urban particle air pollution: a case-crossover analysis. Am. J. Epidemiol. 151, 50–56 (2000).
  • Johnston SL. Overview of virus-induced airway disease. Proc. Am. Thorac. Soc. 2, 150–156 (2005).
  • Wilkinson TMA, Donaldson GC, Hurst JR, Seemungal TA, Wedzicha JA. Early therapy improves outcomes of exacerbations of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 169, 1298–1303 (2004).
  • Johnston SL, Papi A, Bates PJ, Mastronarde JG, Monick MM, Hunnighake GW. Low grade rhinovirus infection induces a prolonged release of IL-8 in pulmonary epithelium. J. Immunol. 160, 6172–6181 (1998).
  • Biagioli MC, Kaul P, Singh I, Turner RB. The role of oxidative stress in rhinovirus induced elaboration of IL-8 by respiratory epithelial cells. Free Radic. Biol. Med. 26, 454–462 (1999).
  • Griego SD, Weston CB, Adams JL, Tal-Singer R, Dillon SB. Role of p38 mitogen-activated protein kinase in rhinovirus-induced cytokine production by bronchial epithelial cells. J. Immunol. 165, 5211–5220 (2000).
  • Donninger H, Glashoff R, Haitchi HM et al. Rhinovirus induction of the CXC chemokine epithelial-neutrophil activating peptide-78 in bronchial epithelium. J. Infect. Dis. 187, 1809–1817 (2003).
  • Zhu J, Tang W, Gwaltney JM Jr, Wu Y, Elias JA. Rhinovirus stimulation of interleukin-8 in vivo and in vitro: role of NF-kB. Am. J. Physiol. 273, L814–L824 (1997).
  • Papi A, Johnston SL. Respiratory epithelial cell expression of vascular cell adhesion molecule-1 and its upregulation by rhinovirus infection via NF-kappaB and GATA transcription factors. J. Biol. Chem. 274, 30041–30051 (1999).
  • Papi A, Johnston SL. Rhinovirus infection induces expression of its own receptor intercellular adhesion molecule 1 (ICAM-1) via increased NF-kappaB-mediated transcription. J. Biol. Chem. 274, 9707–9720 (1999).
  • Mastronarde JG, He B, Monick MM, Mukaida N, Matsushima K, Hunnighake GW. Induction of interleukin (IL)-8 gene expression by respiratory syncitial virus involves activation of nuclear factor (NF)-kB and NF-IL-6. J. Infect. Dis. 174, 262–267 (1996).
  • Mastronarde JG, Monick MM, Mukaida N, Matsushima K, Hunnighake GW. Activator protein-1 is the preferred transcription factor for co-operative interaction with nuclear factor-kappaB in respiratory syncytial virus-induced interleukin-8 gene expression in airway epithelium. J. Infect. Dis. 177, 1275–1281 (1998).
  • Ludwig S, Ehrhardt C, Neumeier ER, Kracht M, Rapp UR, Pleschka S. Influenza virus-induced AP-1-dependent gene expression requires activation of the JNK signaling pathway. J. Biol. Chem. 276, 10990–10998 (2001).
  • Papadopoulos NG, Papi A, Meyer J et al. Rhinovirus infection upregulates eotaxin and eotaxin-2 expression in bronchial epithelial cells. Clin. Exp. Allergy 31, 1060–1066 (2001).
  • Noah TL, Wortman IA, Becker S. The effect of fluticasone propionate on respiratory syncytial virus-induced chemokines release by a human bronchial epithelial cell line. Immunopharmacology 39, 193–199 (1998).
  • Gern JE, Galagan DM, Jarjour NN, Dick EC, Busse W. Detection of rhinovirus RNA in lower airway cells during experimentally induced infection. Am. J. Respir. Crit. Care Med. 155, 1159–1161 (1997).
  • Papadopoulos NG, Bates PJ, Bardin PG et al. Rhinoviruses infect the lower airways. J. Infect. Dis. 181, 1875–1884 (2000).
  • Grunberg K, Smits HH, Timmers MC et al. Experimental rhinovirus 16 infection: effects on cell differentials and soluble markers in sputum of asthmatic subjects. Am. J. Respir. Crit. Care Med. 156, 609–616 (1997).
  • Fleming HE, Little FF, Schnurr D et al. Rhinovirus-16 colds in healthy and asthmatic subjects. Am. J. Respir. Crit. Care Med. 160, 100–108 (1999).
  • Seemungal T, Harper-Owen R, Bhowmic A et al. Respiratory viruses, symptoms, and inflammatory markers in acute exacerbations and stable chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 164, 1618–1623 (2001).
  • Greenberg SB. Viral respiratory infections in elderly patients and patients with chronic obstructive pulmonary disease. Am. J. Med. 112(6A), 28S–32S (2002).
  • Wedzicha JA. Role of viruses in exacerbations of chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 1, 115–120 (2004).
  • Stott EJ, Grist NR, Eadie MB. Rhinovirus infections in chronic bronchitis: isolation of eight possible new rhinovirus serotypes. J. Med. Microbiol. 1, 109–117 (1968).
  • Gump DW, Phillips CA, Forsyth BR. Role of infections in chronic bronchitis. Am. Rev. Respir. Dis. 113, 465–473 (1976).
  • Rhode G, Wiethege A, Borg I et al. Respiratory viruses in exacerbations of chronic obstructive pulmonary disease requiring hospitalisation: a case-control study. Thorax 58, 37–42 (2003).
  • Tan WC, Xiang X, Qiu D et al. Epidemiology of respiratory viruses in patients hospitalized with near-fatal asthma, acute exacerbations of asthma, or chronic obstructive pulmonary disease. Am. J. Med. 115, 272–277 (2003).
  • Pletz MW, Ioanas M, de Roux A, Burkhardt O, Lode H. Reduced spontaneous apoptosis in peripheral blood neutrophils during exacerbation of COPD. Eur. Respir. J. 23, 532–537 (2004).
  • Beaty CD, Grayston JT, Wang SP, Kuo CC, Reto CS, Martin TR. Chlamydia pneumoniae, strain Twar, infection in patients with chronic obstructive pulmonary disease. Am. Rev. Respir. Dis. 144, 1408–1410 (1991).
  • Blasi F, Legnani D, Lombardo VM et al. Chlamydia pneumoniae infection in acute exacerbations of COPD. Eur. Respir. J. 6, 19–22 (1993).
  • Mogulkoc N, Karakurt S, Isalska B et al. Acute purulent exacerbation of chronic obstructive pulmonary disease and Chlamydia pneumoniae infection. Am. J. Respir. Crit. Care Med. 160, 349–353 (1999).
  • Karnak D, Beng-sun S, Beder S, Kayacan O. Chlamydia pneumoniae infection and acute exacerbation of chronic obstructive pulmonary disease (COPD). Respir. Med. 95, 811–816 (2001).
  • Wu L, Skinner SJ, Lambie N, Vuletic JC, Blasi F, Black PN. Immunohistochemical staining for Chlamydia pneumoniae is increased in lung tissue from subjects with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 162, 1148–1151 (2000).
  • Seemungal TA, Wedzicha JA, MacCallum PK, Johnston SL, Lambert PA. Chlamydia pneumoniae and COPD exacerbation. Thorax 57, 1087–1088 (2002).
  • Smith CB, Golden CA, Kanner RE, Renzetti AD Jr. Association of viral and Mycoplasma pneumoniae infections with acute respiratory illness in patients with chronic obstructive pulmonary disease. Am. Rev. Respir. Dis. 121, 225–232 (1980).
  • Lieberman D, Ben-Yaakov M, Lazarovich Z, Ohana B, Boldur I. Chlamydia pneumoniae infection in acute exacerbations of chronic obstructive pulmonary disease: analysis of 250 hospitalizations. Eur. J. Clin. Microbiol. Infect. Dis. 20, 698–704 (2001).
  • Hirschmann JV. Do bacteria cause exacerbations of COPD? Chest 118, 193–203 (2000).
  • Murphy TF, Sethi S, Niederman MS. The role of bacteria in exacerbations of COPD. A constructive view. Chest 118, 204–209 (2000).
  • Sethi S, Murphy TF. Bacterial infection in chronic obstructive pulmonary disease in 2000: a state-of-the-art review. Clin. Microbiol. Rev. 14, 336–363 (2001).
  • Miravitlles M, Espinosa C, Fernandez-Laso E, Martos JA, Maldonado JA, Gallego M, Study Group of Bacterial Infection in COPD. Relationship between bacterial flora in sputum and functional impairment in patients with acute exacerbations of COPD. Chest 116, 40–46 (1999).
  • Eller J, Ede A, Schaberg T, Niederman M, Mauch H, Lode H. Infective exacerbations of chronic obstructive pulmonary disease. Relation between bacteriologic etiology and lung function. Chest 113, 1542–1548 (1998).
  • Monso E, Garcia-Aymerich J, Soler N et al., EFRAM Investigators. Bacterial infection in exacerbated COPD with changes in sputum characteristics. Epidemiol. Infect. 131, 799–804 (2003).
  • McHardy VU, Inglis JM, Calder MA et al. A study of infecive and other factors in exacerbations of chronic bronchitis. Br. J. Dis. Chest 74, 228–238 (1980).
  • Murphy TF, Brauer AL, Schiffmacher AT, Sethi S. Persistent colonization by Haemophilus influenzae in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 170, 266–272 (2004).
  • Patel IS, Seemungal TAR, Wilks M, Lloyd-Owen SJ, Donaldson GC, Wedzicha JA. Relationship between bacterial colonisation and the frequency, character, and severity of COPD exacerbations. Thorax 57, 759–764 (2002).
  • Wilkinson TM, Patel IS, Wilks M, Donaldson GC, Wedzicha JA. Airway bacterial load and FEV1 decline in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 167, 1090–1095 (2003).
  • Monso E, Ruiz J, Rosell A et al. Bacterial infection in chronic obstructive pulmonary disease: a study of stable and exacerbated out-patients using the protected specimen brush. Am. J. Respir. Crit. Care Med. 152, 1316–1320 (1995).
  • Fagon JY, Chastre J, Trouillet JL et al. Characterization of distal bronchial microflora during acute exacerbation of chronic bronchitis. Use of the protected specimen brush technique in 54 mechanically ventilated patients. Am. Rev. Respir. Dis. 142, 1004–1008 (1990).
  • Soler N, Torres A, Ewig S et al. Bronchial microbial patterns in severe exacerbations of chronic obstructive pulmonary disease (COPD) requiring mechanical ventilation. Am. J. Respir. Crit. Care Med. 157, 1498–1505 (1998).
  • Pela R, Marchesani F, Agostinelli C et al. Airways microbial flora in COPD patients in stable clinical conditions and during exacerbations: a bronchoscopic investigation. Monaldi Arch. Chest Dis. 53, 262–267 (1998).
  • Bandi V, Apicella MA, Mason E et al. Nontypeable Haemophilus influenzae in the lower respiratory tract of patients with chronic bronchitis. Am. J. Respir. Crit. Care Med. 164, 2114–2119 (2001).
  • Rosell A, Monso E, Soler N et al. Microbiologic determinants of exacerbation in chronic obstructive pulmonary disease. Arch. Intern. Med. 165, 891–897 (2005).
  • Sethi S, Evans N, Grant BJB, Murphy TF. New strains of bacteria and exacerbations of chronic obstructive pulmonary disease. N. Engl. J. Med. 347, 465–471 (2002).
  • Chin CL, Manzel LJ, Lehman EE et al. Haemophilus influenzae from COPD patients with exacerbation induce more inflammation than colonizers. Am. J. Respir. Crit. Care Med. 172, 85–91 (2005).
  • Murphy TF, Brauer AL, Grant BJB, Sethi S. Moraxella catarrhalis in chronic obstructive pulmonary disease: burden of disease and immune reponse. Am. J. Respir. Crit. Care Med. 172(2), 195–199 (2005).
  • Musher DM, Kubitschek KR, Crennan J et al. Pneumonia and acute febrile tracheobronchitis due to Haemophilus influenzae. Ann. Intern. Med. 99, 444–450 (1983).
  • Yi K, Sethi S, Murphy TF. Human immune response to non-typable Haemophilus influenzae in chronic bronchitis. J. Infect. Dis. 176, 1247–1252 (1997).
  • Bakri F, Brauer AL, Sethi S, Murphy TF. Systemic and mucosal antibody response to Moraxella catarrhalis after exacerbations of chronic obstructive pulmonary disease. J. Infect. Dis. 185, 632–640 (2002).
  • Bandi V, Jakubowycz M, Kinyon C et al. Infectious exacerbations of chronic obstructive pulmonary disease associated with respiratory viruses and non-typeable Haemophilus influenzae. FEMS Immunol. Med. Microbiol. 10, 69–75 (2003).
  • Abe Y, Murphy TF, Sethi S et al. Lymphocyte proliferative response to P6 of Haemophilus influenzae is associated with relative protection from exacerbations of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 165, 967–971 (2002).
  • King PT, Hutchinson PE, Johnson PD, Holmes PW, Freezer NJ, Holdsworth ST. Adaptive immunity to nontypeable Haemophilus influenzae. Am. J. Respir. Crit. Care Med. 167, 587–592 (2003).
  • Bach PB, Brown C, Gelfand SE, McCroy DC. Management of acute exacerbations of chronic obstructive pulmonary disease: a summary and appraisal of published evidence. Ann. Intern. Med. 134, 600–620 (2001).
  • Snow V, Lascher S, Mottur-Pilson C. Evidence base for management of acute exacerbations of chronic obstructive pulmonary disease. Ann. Intern. Med. 134, 595–599 (2001).
  • Saint S, Flaherty KR, Abrahamse P, Martinez FJ, Fendrick AM. Acute exacerbations of chronic bronchitis: disease-specific issues that influence the cost–effectiveness of antimicrobial therapy. Clin. Ther. 23, 499–512 (2001).
  • McCrory DC, Brown C, Gelfand SE, Bach PB. Management of acute exacerbations of COPD: a summary and appraisal of published evidence. Chest 119, 1190–209 (2001).
  • Sachs AP, Koeter GH, Groenier KH, van der Waaij D, Schiphuis J, Meyboom-de Jong B. Changes in symptoms, peak expiratory flow, and sputum flora during treatment with antibiotics of exacerbations in patients with chronic obstructive pulmonary disease. Thorax 50, 758–763 (1995).
  • Allegra L, Blasi F, de Bernardi B, Cosentini R, Tarsia P. Antibiotic treatment and baseline severity or disease in acute exacerbations of chronic bronchitis: a re-evaluation of previously published data of a placebo-controlled randomized study. Pulm. Pharmacol. Ther. 14, 149–155 (2001).
  • Nouira S, Marghli S, Belghith M, Besbes L, Elatrous S, Abroug F. Once daily oral ofloxacin in chronic obstructive pulmonary disease exacerbation requiring mechanical ventilation: a randomised placebo-controlled trial. Lancet 358, 2020–2025 (2001).
  • Saint S, Bent S, Vittinghoff E, Grady D. Antibiotics in chronic obstructive pulmonary disease exacerbations. A meta-analysis. JAMA273,957–960 (1995).
  • Anthonisen N, Manfreda J, Warren C, Hersfield E, Harding G, Nelson N. Antibiotic therapy in exacerbations of chronic obstructive pulmonary disease. Ann. Intern. Med. 106, 196–204 (1987).
  • Berry DG, Fry J, Hindley CP et al. Exacerbations of chronic bronchitis treatment with oxytetracycline. Lancet 1, 137–139 (1960).
  • Aldons PM. A comparison of clarithromycin with ampicillin in the treatment of out-patients with acute bacterial exacerbation of chronic bronchitis. J. Antimicrob. Chemother. 27(Suppl. A), 101–108 (1991).
  • Allegra L, Konietzko N, Leophonte P et al. Comparative safety and efficacy of sparfloxacin in the treatment of acute exacerbations of chronic obstructive pulmonary disease: a double-blind, randomised, parallel, multicentre study. J. Antimicrob. Chemother. 37(Suppl. A), 93–104 (1996).
  • Amsden GW, Baird IM, Simon S, Treadway G. Efficacy and safety of azithromycin vs. levofloxacin in the out-patient treatment of acute bacterial exacerbations of chronic bronchitis. Chest 123, 772–777 (2003).
  • Anzueto A, Niederman MS, Tillotson GS, Bronchitis Study Group. Etiology, susceptibility, and treatment of acute bacterial exacerbations of complicated chronic bronchitis in the primary care setting: ciprofloxacin 750 mg b.i.d. versus clarithromycin 500 mg bid. Clin. Ther. 20, 835–850 (1998).
  • Anzueto A, Fisher CL Jr, Busman T, Olson CA. Comparison of the efficacy of extended-release clarithromycin tablets and amoxicillin/clavulanate tablets in the treatment of acute exacerbation of chronic bronchitis. Clin. Ther. 23, 72–86 (2001).
  • Anzueto A, Niederman MS, Haverstock DC, Tillotson GS. Efficacy of ciprofloxacin and clarithromycin in acute bacterial exacerbations of complicated chronic bronchitis: interim analysis. Bronchitis Study Group. Clin. Ther. 19, 989–1001 (1997).
  • Aubier M, Aldons PM, Leak A et al. Telithromycin is as effective as amoxicillin/clavulanate in acute exacerbations of chronic bronchitis. Respir. Med. 96, 862–871 (2002).
  • Aubier MA. Comparison of ceftibuten versus amoxicillin/clavulanate in the treatment of acute exacerbations of chronic bronchitis. Chemotherapy 43, 297–302 (1997).
  • Bachand RT Jr. Comparative study of clarithromycin and ampicillin in the treatment of patients with acute bacterial exacerbations of chronic bronchitis. J. Antimicrob. Chemother. 27(Suppl. A), 91–100 (1991).
  • Boye NP, Gaustad P. Double-blind comparative study of ofloxacin (Hoe 280) and trimethoprim–sulfamethoxazole in the treatment of patients with acute exacerbations of chronic bronchitis and chronic obstructive lung disease. Infection 19(Suppl. 7), S388–S390 (1991).
  • Cazzola M, Vinciguerra A, DiPerna F et al. Comparative study of dirithromycin and azithromycin in the treatment of acute bacterial exacerbations of chronic bronchitis. J. Chemother. 11, 119–125 (1999).
  • Chodosh S, Schreurs A, Siami G et al., Bronchitis Study Group. Efficacy of oral ciprofloxacin vs. clarithromycin for treatment of acute bacterial exacerbations of chronic bronchitis. Clin. Infect. Dis. 27, 730–738 (1998).
  • Chodosh S, McCarty J, Farkas S et al. Randomized, double-blind study of ciprofloxacin and cefuroxime axetil for treatment of acute bacterial exacerbations of chronic bronchitis. The Bronchitis Study Group. Clin. Infect. Dis. 27, 722–729 (1998).
  • Chodosh S, Lakshminarayan S, Swarz H, Breisch S. Efficacy and safety of a 10-day course of 400 or 600 milligrams of grepafloxacin once daily for treatment of acute bacterial exacerbations of chronic bronchitis: comparison with a 10-day course of 500 milligrams of ciprofloxacin twice daily. Antimicrob. Agents Chemother. 42, 114–120 (1998).
  • Chodosh S. Efficacy of fleroxacin versus amoxicillin in acute exacerbations of chronic bronchitis. Am. J. Med. 94, 131S–135S (1993).
  • Chodosh S, DeAbate CA, Haverstock D, Aneiro L, Church D. Short-course moxifloxacin therapy for treatment of acute bacterial exacerbations of chronic bronchitis. The Bronchitis Study Group. Respir. Med. 94, 18–27 (2000).
  • DeAbate CA, Bettis R, Munk ZM et al. Effectiveness of short-course therapy (5 days) with grepafloxacin in the treatment of acute bacterial exacerbations of chronic bronchitis. Clin. Ther. 21, 172–188 (1999).
  • DeAbate CA, Dan H, Bensch G et al. Sparfloxacin vs. ofloxacin in the treatement of acute bacterial exacerbations of chronic bronchitis: a multicenter, double-blind, randomized, comparative study. Chest 114, 120–130 (1998).
  • DeAbate CA, Mathew CP, Warner JH, Heyd A, Church D. The safety and efficacy of short course (5-day) moxifloxacin vs. azithromycin in the treatment of patients with acute exacerbations of chronic bronchitis. Respir. Med. 94, 1029–1037 (2000).
  • Fogarty CM, Bettis RB, Griffin TJ, Keyserling CH, Nemeth MA, Tack KJ. Comparison of a 5 day regimen of cefdinir with a 10 day regimen of cefprozil for treatment of acute exacerbations of chronic bronchitis. J. Antimicrob. Chemother. 45, 851–858 (2000).
  • Gaillat J. A multicentre study comparing the safety and efficacy of dirithromycin with erythromycin in the treatment of bronchitis. J. Antimicrob. Chemother. 31(Suppl. C), 139–151 (1993).
  • Georgopoulos A, Borek M, Ridl W. Randomized, double-blind, double-dummy study comparing the efficacy and safety of amoxycillin 1 g bd with amoxycillin 500 mg tds in the treatment of acute exacerbations of chronic bronchitis. J. Antimicrob. Chemother. 47, 67–76 (2001).
  • Gotfried MH, Ellison WT. Safety and efficacy of lomefloxacin versus cefaclor in the treatment of acute exacerbations of chronic bronchitis. Am. J. Med. 92, 108S–113S (1992).
  • Grassi C, Albera C, Pozzi E. Lomefloxacin versus amoxicillin in the treatment of acute exacerbations of chronic bronchitis: an Italian multicenter study. Am. J. Med. 92, 103S–107S (1992).
  • Grassi C, Salvatori E, Rosignoli MT, Dionisio P. Randomized, double-blind study of prulifloxacin versus ciprofloxacin in patients with acute exacerbations of chronic bronchitis. Respiration 69, 217–222 (2002).
  • Guest N, Langan CE. Comparison of the efficacy and safety of a short course of ceftibuten with that of amoxycillin/clavulanate in the treatment of acute exacerbations of chronic bronchitis. Int. J. Antimicrob. Agents 10, 49–54 (1998).
  • Klietmann W, Cesana M, Rondel RK, Focht J. Double-blind, comparative study of rufloxacin once daily versus amoxicillin three times a day in treatment of out-patients with exacerbations of chronic bronchitis. Antimicrob. Agents Chemother. 37, 2298–2306 (1993).
  • Langan C, Clecner B, Cazzola CM, Brambilla C, Holmes CY, Staley H. Short-course cefuroxime axetil therapy in the treatment of acute exacerbations of chronic bronchitis. Int. J. Clin. Pract. 52, 289–297 (1998).
  • Langan CE, Cranfield R, Breisch S, Pettit R. Randomized, double-blind study of grepafloxacin versus amoxycillin in patients with acute bacterial exacerbations of chronic bronchitis. J. Antimicrob. Chemother. 40, 63–72 (1997).
  • Langan CE, Zuck P, Vogel F et al. Randomized, double-blind study of short-course (5 day) grepafloxacin versus 10 day clarithromycin in patients with acute bacterial exacerbations of chronic bronchitis. J. Antimicrob. Chemother. 44, 515–523 (1999).
  • Leophonte P, Baldwin RJ, Pluck N. Trovafloxacin versus amoxicillin/clavulanic acid in the treatment of acute exacerbations of chronic obstructive bronchitis. Eur. J. Clin. Microbiol. Infect. Dis. 17, 434–440 (1998).
  • Masterson RG, Burley CJ, The Study Group. Randomized, double-blind study comparing 5- and 7-day regimens of oral levofloxacin in patients with acute exacerbation of chronic bronchitis. Int. J. Antimicrob. Agents 18, 503–512 (2001).
  • McCarty JM, Pierce PF. Five days of cefprozil versus 10 days of clarithromycin in the treatment of an acute exacerbation of chronic bronchitis. Ann. Allergy Asthma Immunol. 87, 327–334 (2001).
  • O’Doherty B, Daniel R. Treatment of acute exacerbations of chronic bronchitis: comparison of trovafloxacin and amoxicillin in a multicentre, double-blind, double-dummy study. Trovafloxacin Bronchitis Study Group. Eur. J. Clin. Microbiol. Infect. Dis. 17, 441–446 (1998).
  • Perez-Gonzalvo ME, Mosquera-Pestana JA, Ramos D et al. Ofloxacin versus trimethoprim–sulfamethoxazole in the treatment of patients with acute exacerbation of chronic bronchitis. Study of ofloxacin in Lower Respiratory Tract Infections Research Group. Clin. Ther. 18, 440–447 (1996).
  • Periti P, Novelli A, Schildwachter G, Schmidt-Gayk H, Ryo Y, Zuck P. Efficacy and tolerance of cefpodoxime proxetil compared with co-amoxiclav in the treatment of exacerbations of chronic bronchitis. J. Antimicrob. Chemother. 26(Suppl. E), 63–69 (1990).
  • Phillips H, Van Hook CJ, Butler T, Todd WM. A comparison of cefpodoxime proxetil and cefaclor in the treatment of acute exacerbation of COPD in adults. Chest 104, 1387–1392 (1993).
  • Rademaker CM, Sips AP, Beumer HM et al. A double-blind comparison of low-dose ofloxacin and amoxycillin/clavulanic acid in acute exacerbations of chronic bronchitis. J. Antimicrob. Chemother. 26(Suppl. D), 75–81 (1990).
  • Read RC, Kuss A, Berrisoul F, Kearsley N, Torres A, Kubin R. The efficacy and safety of a new ciprofloxacin suspension compared with co-amoxiclav tablets in the treatment of acute exacerbations of chronic bronchitis. Respir. Med. 93, 252–261 (1999).
  • Shah PM, Maesen FPV, Domann A, Vetter N, Fiss E, Wesch R. Levofloxacin versus cefuroxime axetil in the treatment of acute exacerbation of chronic bronchitis: results of a randomized, double-blind study. J. Antimicrob. Chemother. 43, 529–539 (1999).
  • Sides GD. Clinical efficacy of dirithromycin in acute exacerbations of chronic bronchitis. J. Antimicrob. Chemother. 31(Suppl. C), 131–138 (1993).
  • Soler M, Lode H, Baldwin R et al. Randomised double-blind comparison of oral gatifloxacin and co-amoxiclav for acute exacerbation of chronic bronchitis. Eur. J. Clin. Microbiol. Infect. Dis. 22, 144–150 (2003).
  • Wasilewski MM, Johns D, Sides GD. Five-day dirithromycin therapy is as effective as seven-day erythromycin therapy for acute exacerbations of chronic bronchitis. J. Antimicrob. Chemother. 43, 541–548 (1999).
  • Wilson R, Schentag JJ, Ball P, Mandell L. A comparison of gemifloxacin and clarithromycin in acute exacerbations of chronic bronchitis and long-term clinical outcomes. Clin. Ther. 24, 639–652 (2002).
  • Wilson R, Kubin R, Ballin I et al. Five day moxifloxacin therapy compared with 7 day clarithromycin therapy for the treatment of acute exacerbations of chronic bronchitis. J. Antimicrob. Chemother. 44, 501–513 (1999).
  • Wilson R, Allegra L, Huchon G, Izquierdo JL, Jones P, Shaberg T, Sagnier PP, MOSAIC Study Group. Short-term and long-term outcomes of moxifloxacin compared to standard antibiotic treatment in acute exacerbations of chronic bronchitis. Chest 125, 953–964 (2004).
  • Zeckel ML, Jacobson KD, Guerra FJ, Therasse DG, Farlow D. Loracarbef (LY-163892) versus amoxicillin/clavulanate in the treatment of acute bacterial exacerbations of chronic bronchitis. Clin. Ther. 14, 214–229 (1992).
  • Ziering W, McElvanie P. Randomized comparison of once-daily ceftibuten and twice-daily clarithromycin in the treatment of acute exacerbation of chronic bronchitis. Infection 26, 72–75 (1998).
  • Zervos MJ, Heyder AM, Leroy B. Oral telithromycin 800 mg once daily for 5 days versus cefuroxime axetil 500 mg twice daily for 10 days in adults with acute exacerbations of chronic bronchitis. J. Int. Med. Res. 31, 157–169 (2003).
  • Sethi S, Breton J, Wynne B. Efficacy and safety of pharmacokinetically enhanced amoxicillin–clavulanate at 2,000/125 milligrams twice daily for 5 days versus amoxicillin–clavulanate at 875/125 milligrams twice daily for 7 days in the treatment of acute exacerbations of chronic bronchitis. Antimicrob. Agents Chemother. 49, 153–160 (2005).
  • Zervos M, Breen J, Jorgensen DM, Goodrich JM. Novel, single-dose microsphere formulation of azithromycin versus levofloxacin for the treatment of acute exacerbation of chronic bronchitis. Infect. Dis. Clin. Pract. 13, 115–121 (2005).
  • Miravitlles M, Torres A. No more equivalence trials for antibiotics in exacerbations of COPD, please. Chest 125, 811–813 (2004).
  • Miravitlles M, Llor C, Naberan K, Cots JM, Molina J. Effect of various antimicrobial regimens on the clinical course of exacerbations of chronic bronchitis and chronic obstructive pulmonary disease in primary care. Clin. Drug Invest. 24, 63–72 (2004).
  • Martinez FJ, Grossman RF, Zadeikis N et al. Patient stratification in the management of acute bacterial exacerbation of chronic bronchitis: the role of levofloxacin 750 mg. Eur. Respir. J. 25(6), 1001–1010 (2005).
  • Anzueto A, Rizzo JA, Grossman RF. The infection-free interval: its use in evaluating antimicrobial treatment of acute exacerbations of chronic bronchitis. Clin. Infect. Dis. 28, 1344–1345 (1999).
  • Chodosh S. Clinical significance of the infection-free interval in the management of acute bacterial exacerbations of chronic bronchitis. Chest 127, 2231–2236 (2005).
  • Miravitlles M. Exacerbations of chronic obstructive pulmonary disease: when are bacteria important? Eur. Respir. J. 20(Suppl. 36), 9S–19S (2002).
  • Martinez FJ. Acute exacerbation of chronic bronchitis: treatment challenges and the disease-free interval. Infect. Med. 22, 217–223 (2005).
  • Lode H, Eller J, Linnhoff A, Ioanas M, and the Evaluation of Therapy-Free Interval in COPD Patients Study Group. Levofloxacin versus clarithromycin in COPD exacerbation: focus on exacerbation-free interval. Eur. Respir. J. 24, 947–953 (2004).
  • Soler N, Agusti C, Angrill J, Puig de la Bellacasa J, Miravitlles M, Torres A. Microbiologic validation of anthonisen criteria in COPD exacerbations: a bronchoscopic study in hospitalized patients. Am. J. Respir. Crit. Care Med. 169, A207 (2004).
  • Stockley RA, O’Brien C, Pye A, Hill SL. Relationship of sputum color to nature and out-patient management of acute exacerbations of COPD. Chest 117, 1638–1645 (2000).
  • Allegra L, Blasi F, Diano PL et al. Sputum color as a marker of acute bacterial exacerbations of chronic obstructive pulmonary disease. Respir. Med. 99, 742–747 (2005).
  • Blasi F, Tarsia P, Aliberti S. Strategic targets of essential host–pathogen interactions. Respiration 72, 9–25 (2005).
  • Christ-Crain M, Jaccard-Stolz D, Bingisser R et al. Effect of procalcitonin-guided treatment on antibiotic use and outcome in lower respiratory tract infections: cluster-randomised, single-blinded intervention trial. Lancet 363, 600–607 (2004).
  • Reichenberger JM, Habicht JM, Gratwohl A, Tamm M. Diagnosis and treatment of invasive pulmonary aspergillosis in neutropenic patients. Eur. Respir. J. 19, 743–755 (2001).
  • Martinez FJ. Acute bronchitis: state of the art diagnosis and therapy. Compr. Ther.30,55–69 (2004).
  • Balter MS, La Forge J, Low DE, Mandell L, Grossman RF. Canadian guidelines for the management of acute exacerbations of acute exacerbations of chronic bronchitis. Can. Respir. J. 10(Suppl. B), 3B–32B (2003).
  • Ball P. Epidemiology and treatment of chronic bronchitis and its exacerbations. Chest 43S–52S (1995).
  • Martinez FJ. The impact of antimicrobial resistance: patterns for common respiratory pathogens. Consultant S1–S6 (2002).
  • Perez-Trallero E, Marimon JM, Gonzales A, Ercibengoa M, Larruskain J. In vivo development of high-level fluroquinolone resistance in Streptococcus pneumoniae in chronic obstructive pulmonary disease. Clin. Infect. Dis. 41, 560–564 (2005).
  • Ho PL, Tse WS, Tsang KWT et al. Risk factors for acquisition of levofloxacin-resistant Streptococcus pneumoniae: a case-control study. Clin. Infect. Dis. 32, 701–707 (2001).
  • Weiss K, Restieri C, Gauthier R et al. A nosocomial outbreak of fluoroquinolone-resistant Streptococcus pneumoniae. Clin. Infect. Dis. 33, 517–522 (2001).
  • Wang D, Coscoy L, Zylberberg M et al. Microarray-based detection and genotyping of viral pathogens. Proc. Natl Acad. Sci. USA 99, 15687–15692 (2002).
  • Wang D, Urisman A, Liu YT et al. Viral discovery and sequence recovery using DNA microarrays. PLoS Biol. 1, E2 (2003).
  • Rota PA, Oberste MS, Monroe SS et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300, 1394–1399 (2003).
  • Roth SB, Jalava J, Ruuskanen O, Ruohola A, Nikkari S. Use of an oligonucleotide array for laboratory diagnosis of bacteria responsible for acute upper respiratory infections. J. Clin. Microbiol. 42, 4268–4274 (2004).
  • Park H, Jang H, Song E et al. Detection and genotyping of Mycobacterium species from clinical isolates and specimens by oligonucleotide array. J. Clin. Microbiol. 43, 1782–1788 (2005).
  • Hjortdahl P, Landaas S, Urdal P, Steinbakk M, Fuglerud P, Nygaard B. C-reactive protein: a new rapid assay for managing infectious disease in primary healthcare. Scand. J. Prim. Health Care 9, 3–10 (1991).
  • Takemura Y, Ebisawa K, Kakoi H et al. Antibiotic selection patterns in acutely febrile new out-patients with or without immediate testing for C reactive protein and leucocyte count. J. Clin. Pathol. 58, 729–733 (2005).
  • van der Meer V, Neven AK, van den Broek PJ, Assendelft WJ. Diagnostic value of C reactive protein in infections of the lower respiratory tract: systematic review. Br. Med. J.331,26 (2005).
  • Simon L, Gauvin F, Amre DK, Saint-Louis P, Lacroix J. Serum procalcitonin and C-reactive protein levels as markers of bacterial infection: a systematic review and meta-analysis. Clin. Infect. Dis. 39, 206–217 (2004).
  • Maruna P, Nedelnikova K, Gurlich R. Physiology and genetics of procalcitonin. Physiol. Res. 49(Suppl. 1), S57–S61 (2000).
  • Assicot M, Gendrel D, Carsin H, Raymond J, Guilbaud J, Bohuon C. High serum procalcitonin concentrations in patients with sepsis and infection. Lancet 341, 515–518 (1993).
  • Gendrel D, Raymond J, Coste J et al. Comparison of procalcitonin with C-reactive protein, interleukin-6 and interferon-alpha for differentiation of bacterial vs. viral infections. Pediatr. Infect. Dis. J. 18, 875–881 (1999).
  • Muller B, Becker KL, Schachinger H et al. Calcitonin precursors are reliable markers of sepsis in a medical intensive care unit. Crit. Care Med. 28, 977–983 (2000).
  • Delevaux I, Andre M, Colombier M et al. Can procalcitonin measurement help in differentiating between bacterial infection and other kinds of inflammatory processes? Ann. Rheum. Dis. 62, 337–340 (2003).
  • Barnes PJ, Stockley RA. COPD: current therapeutic interventions and future approaches. Eur. Respir. J. 25, 1084–1106 (2005).
  • Sin DD, McAlister FA, Man SFP, Anthonisen NR. Contemporary management of chronic obstructive pulmonary disease. Scientific review. JAMA290,2301–2312 (2003).
  • Niewoehner DE, Rice K, Cote C et al. Prevention of exacerbations of chronic obstructive pulmonary disease with tiotropium, a once-daily inhaled anticholinergic bronchodilator: a randomized trial. Ann. Intern. Med. 143, 317–326 (2005).
  • Barr RG, Bourbeau J, Camargo CA, Ram FSF. Inhaled tiotropium for stable chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2 (2005).
  • Barnes PJ. Theophylline: new perspectives for an old drug. Am. J. Respir. Crit. Care Med. 167, 813–818 (2003).
  • Cosio BG, Tsaprouni L, Ito K, Jazrawi E, Adcock IM, Barnes PJ. Theophylline restores histone deacetylase activity and steroid responses in COPD macrophages. J. Exp. Med.200,689–695 (2004).
  • Yasui K, Hu B, Nakazawa T, Agematsu K, Komiyama A. Theophylline accelerates human granulocyte apoptosis not via phosphodiesterase inhibition. J. Clin. Invest. 100, 1677–1684 (1997).
  • Yasui K, Agematsu K, Shinozaki K et al. Theophylline induces neutrophil apoptosis through adenosine A2A receptor antagonism. J. Leukoc. Biol. 67, 529–535 (2000).
  • Mascali JJ, Cvietusa P, Negri J, Borish L. Anti-inflammatory effects of theophylline: modulation of cytokine production. Ann. Allergy Asthma Immunol. 77, 34–38 (1996).
  • Lipworth BJ. Phosphodiesterase-4 inhibitors for asthma and chronic obstructive pulmonary disease. Lancet 365, 167–175 (2005).
  • Rabe KF, Bateman ED, O’Donnell DE, Witte S, Bredenbroker D, Bethke TD. Roflumilastan oral anti-inflammatory treatment for chronic obstructive pulmonary disease: a randomised controlled trial. Lancet 366, 563–571 (2005).
  • Tsai WC, Standiford TJ. Immunomodulatory effects of macrolides in the lung: lessons from in vitro and in vivo models. Curr. Pharm. Des. 10, 2081–2093 (2004).
  • Amsden GW. Anti-inflammatory effects of macrolides-an underappreciated benefit in the treatment of community-acquired respiratory tract infections and chronic inflammatory pulmonary conditions? J. Antimicrob. Chemother. 55, 10–21 (2005).
  • Martinez FJ, Simon RH. Clinical implications of macrolide therapy in chronic sinopulmonary diseases. Curr. Pharm. Des. 10, 3095–3110 (2004).
  • Tamaoki J, Kadota J, Takizawa H. Clinical implications of the immunomodulatory effects of macrolides. Am. J. Med. 117(Suppl. 9A), 5S–11S (2004).
  • Rubin BK, Henke MO. Immunomodulatory activity and effectiveness of macrolides in chronic airway disease. Chest 125(2 Suppl.), 70S–78S (2004).
  • Parnham MJ, Culic O, Erakovic V et al. Modulation of neutrophil and inflammation markers in chronic obstructive pulmonary disease by short-term azithromycin treatment. Eur. J. Pharmacol. 517, 132–143 (2005).
  • Basyigit I, Yildiz F, Ozkara SK, Yildirim E, Boyaci H, Ilgazli A. The effect of clarithromycin on inflammatory markers in chronic obstructive pulmonary disease: preliminary data. Ann. Pharmacother. 38, 783–792 (2004).
  • Gomez J, Banos V, Simarro E et al. Estudio prospective y comparative (1994–1998) sobre la influencia del tratamiento corto profilactico con azitromicina en pacientes con EPOC evolucionada. Rev. Esp. Quimioter. 13, 379–383 (2000).
  • Suzuki T, Yanai M, Yamaya M et al. Erythromycin and common cold in COPD. Chest 120, 730–733 (2001).
  • Alseedi A, Sin DD, McAlister FA. The effects of inhaled corticosteroids in chronic obstructive pulmonary disease: a systemic review of randomized placebo-controlled trials. Am. J. Med. 113, 59–65 (2002).
  • Sin DD, Johnson M, Gan WQ, Man SF. Combination therapy of inhaled corticosteroids and long-acting β2-adrenergics in management of patients with chronic obstructive pulmonary disease. Curr. Pharm. Des. 10, 3547–3560 (2004).
  • Niewoehner DE, Erbland ML, Deupree RH et al., for the Department of Veterans Affairs Co-operative Study Group. Effect of sytemic glucocorticoids on exacerbations of chronic obstructive pulmonary disease. N. Engl. J. Med. 340, 1941–1947 (1999).
  • Curtis JL. Cell-mediated adaptive immune defense of the lungs. Proc. Am. Thorac. Soc. 2(5), 412–416 (2005).
  • Barnes PJ. New concepts in chronic obstructive pulmonary disease. Ann. Rev. Med. 54, 113–129 (2003).
  • Shapiro SD, Ingenito EP. The pathogenesis of chronic obstructive pulmonary disease. Advances in the past 100 years. Am. J. Respir. Cell Mol. Biol. 32, 367–372 (2005).
  • Saetta M, Di Stefano A, Maestrelli P et al. Activated T-lymphocytes and macrophages in bronchial mucosa of subjects with chronic bronchitis. Am. Rev. Respir. Dis. 147, 301–306 (1993).
  • O’Shaughnessy TC, Ansari TW, Barnes NC, Jeffery PK. Inflammation in bronchial biopsies of subjects with chronic bronchitis: inverse relationship of CD8+ T-lymphocytes with FEV1. Am. J. Respir. Crit. Care Med. 155, 852–857 (1997).
  • Caramori G, Romagnoli M, Casolari P et al. Nuclear localisation of p65 in sputum macrophages but not in sputum neutrophils during COPD exacerbations. Thorax 58, 348–351 (2003).
  • Majo J, Ghezzo H, Cosio MG. Lymphocyte population and apoptosis in the lungs of smokers and their relation to emphysema. Eur. Respir. J. 17, 946–953 (2001).
  • Saetta M, Mariani M, Panina-Bordignon P et al. Increased expression of the chemokine receptor CXCR3 and its ligand CXCL10 in peripheral airways of smokers with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 165, 1404–1409 (2002).
  • Grumelli S, Corry DB, Song LZ et al. An immune basis for lung parenchymal destruction in chronic obstructive pulmonary disease and emphysema. PLOS Med. 1, 75–83 (2004).
  • Woodland DL, Scott I. T-cell memory in the lung airways. Proc. Am. Thorac. Soc. 2, 126–131 (2005).
  • Kolls JK, Linden A. Interleukin-17 family members and inflammation. Immunity 21, 467–476 (2004).
  • Chen Y, Thai P, Zhao YH, Ho YS, DeSouza MM, Wu R. Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop. J. Biol. Chem. 278, 17036–17043 (2003).
  • Oppmann B, Lesley R, Blom B et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13, 715–725 (2000).
  • Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL. Interleukin-23 promotes a distinct CD4 T-cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 278, 1910–1914 (2003).
  • Langrish CL, McKenzie BS, Wilson NJ, de Waal Malefyt R, Kastelein RA, Cua DJ. IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol. Rev. 202, 96–105 (2004).
  • Welsh RM, Selin LK, Szomolanyi-Tsuda E. Immunological memory to viral infections. Ann. Rev. Immunol. 22, 711–743 (2004).
  • Hohn H, Kortsik C, Tully G et al. Longitudinal analysis of Mycobacterium tuberculosis 19-kDa antigen-specific T-cells in patients with pulmonary tuberculosis: association with disease activity and cross-reactivity to a peptide from HIVenv gp120. Eur. J. Immunol. 33, 1613–1623 (2003).
  • Paine R III, Chavis A, Gaposchkin D et al. A factor secreted by a human pulmonary alveolar epithelial-like cell line blocks T-cell proliferation between G1 and S phase. Am. J. Respir. Cell Mol. Biol. 6, 658–666 (1992).
  • Roth MD, Golub SH. Human pulmonary macrophages utilize prostaglandins and transforming growth factor b1 to suppress lymphocyte activation. J. Leukoc. Biol. 53, 366–371 (1993).
  • Seitzman GD, Sonstein J, Kim S, Choy W, Curtis JL. Lung lymphocytes proliferate minimally in the murine pulmonary immune response to intratracheal sheep erythrocytes. Am. J. Respir. Cell Mol. Biol. 18, 800–812 (1998).
  • Borron PJ, Crouch EC, Lewis JF, Wright JR, Possmayer F, Fraher LJ. Recombinant rat surfactant-associated protein D inhibits human T-lymphocyte proliferation and IL-2 production. J. Immunol. 161, 4599–4603 (1998).
  • Borron P, McCormack FX, Elhalwagi BM et al. Surfactant protein A inhibits T-cell proliferation via its collagen-like tail and a 210-kDa receptor. Am. J. Physiol. 275, L679–L686 (1998).
  • Borron PJ, Mostaghel EA, Doyle C, Walsh ES, McHeyzer-Williams MG, Wright JR. Pulmonary surfactant proteins A and D directly suppress CD3+/CD4+ cell function: evidence for two shared mechanisms. J. Immunol. 169, 5844–5850 (2002).
  • Lipscomb MF, Lyons CR, Nunez G et al. Human alveolar macrophages: HLA-DR-positive cells that are poor stimulators of a primary mixed leukocyte reaction. J. Immunol. 136, 497–504 (1986).
  • Thepen T, Van Rooijen N, Kraal G. Alveolar macrophage elimination in vivo is associated with an increase in pulmonary immune response in mice. J. Exp. Med.170,499–509 (1989).
  • Thepen T, McMenamin C, Girn B, Kraal G, Holt PG. Regulation of IgE production in pre-sensitized animals: in vivo elimination of alveolar macrophages preferentially increases IgE responses to inhaled allergen. Clin. Exp. Allergy 22, 1107–1114 (1992).
  • Yarbrough WC Jr, Wilkes DS, Weissler JC. Human alveolar macrophages inhibit receptor-mediated increases in intracellular calcium concentration in lymphocytes. Am. J. Respir. Cell Mol. Biol. 5, 411–415 (1991).
  • Holt PG, Oliver J, Bilyk N et al. Downregulation of the antigen-presenting cell function(s) of pulmonary dendritic cells in vivo by resident alveolar macrophages. J. Exp. Med.177,397–407 (1993).
  • Robbins CS, Dawe DE, Goncharova SI et al. Cigarette smoke decreases pulmonary dendritic cells and impacts antiviral immune responsiveness. Am. J. Respir. Cell Mol. Biol. 30, 202–211 (2004).
  • Casolaro MA, Bernaudin JF, Saltini C, Ferrans VJ, Crystal RG. Accumulation of Langerhans’ cells on the epithelial surface of the lower respiratory tract in normal subjects in association with cigarette smoking. Am. Rev. Respir. Dis. 137, 406–411 (1988).
  • Soler P, Moreau A, Basset F, Hance AJ. Cigarette smoking-induced changes in the number and differentiated state of pulmonary dendritic cells/Langerhans cells. Am. Rev. Respir. Dis. 139, 1112–1117 (1989).
  • Osterholzer JJ, Ames T, Polak T et al. CCR2 and CCR6, but not endothelial selectins, mediate the accumulation of immature dendritic cells within the lungs of mice in response to particulate antigen. J. Immunol. 175, 874–883 (2005).
  • Hamelin ME, Cote S, Laforge J et al. Human metapneumovirus infection in adults with community-acquired pneumonia and exacerbation of chronic obstructive pulmonary disease. Clin. Infect. Dis. 41, 498–502 (2005).
  • Elmes PC, Fletcher CM, Dutton AA. Prophylactic use of oxytetracycline for exacerbations of chronic bronchitis. Br. Med. J.2,1272–1275 (1957).
  • Fear EC, Edwards G. Antibiotic regimes in chronic bronchitis. Br. J. Dis. Chest 56, 153–162 (1962).
  • Elmes PC, King TK, Langlands JH et al. Value of ampicillin in the hospital treatment of exacerbations of chronic bronchitis. Br. Med. J.5467,904–908 (1965).
  • Petersen ES, Esmann V, Honcke P et al. A controlled study of the effect of treatment on chronic bronchitis: an evaluation using pulmonary function tests. Acta Med. Scand. 182, 293–305 (1967).
  • Pines A, Raafat H, Plucinski K et al. Antibiotic regimens in severe and acute purulent exacerbations of chronic bronchitis. Br. Med. J.2,735–738 (1968).
  • Pines A, Raafat H, Greenfiled JS et al. Antibiotic regimens in moderately ill patients with purulent exacerbation of chronic bronchitis. Br. J. Dis. Chest 66, 107–115 (1972).
  • Nicotra MB, Rivera M, Awe RJ. Antibiotic therapy of acute exacerbations of chronic bronchitis: a controlled study using tetracycline. Ann. Intern. Med. 97, 18–21 (1982).
  • Jorgensen AF, Coolidge J, Pedersen PA, Petersen KP, Waldroff S, Widding E. Amoxicillin in treatment of acute uncomplicated exacerbations of chronic bronchitis: a double-blind, placebo-controlled multicenter study in general practice. Scand. J. Prim. Health Care 10, 7–11 (1992).
  • Grossman R, Mukherjee J, Vaughan D et al. A 1-year community-based health economic study of ciprofloxacin vs. usual antibiotic treatment in acute exacerbations of chronic bronchitis. The Canadian Ciprofloxacin Health Economic Study Group. Chest 113, 131–141 (1998).
  • Celli BR, MacNee W, and committee members. ATS/ERS Task Force. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur. Respir. J. 23(6), 932–946 (2004).
  • Chronic Obstructive Pulmonary Disease. National clinical guideline on management of chronic obstructive pulmonary disease in adults in primary and secondary care. Thorax 59(Suppl. 1), I1–I232 (2004).
  • Woodhead M, Blasi F, Ewig S et al. Guidelines for the management of adult lower respiratory tract infections. Eur. Respir. J.26(6), 1138–1180 (2005).

Website

  • The Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global Strategy for the Diagnosis, Management, and Prevention of COPD. www.goldcopd.com

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.