251
Views
21
CrossRef citations to date
0
Altmetric
Special Report

Developments towards effective treatments for Nipah and Hendra virus infection

&
Pages 43-55 | Published online: 10 Jan 2014

References

  • Lamb RA, Kolakofsky D. Fields Virology. Knipe DM, Howley PM (Eds). Lippincott Williams & Wilkins, PA, USA, 1305–1340 (2001).
  • Murray K, Eaton B, Hooper P et al. Emerging Infections. Scheld WM, Armstrong D, Hughes JM (Eds). ASM Press, Washington, DC, USA, 43–58 (1998).
  • Chua KB. Nipah virus outbreak in Malaysia. J. Clin. Virol. 26, 265–275 (2003).
  • Selvey LA, Wells RM, McCormack JG et al. Infection of humans and horses by a newly described morbillivirus. Med. J. Aust. 162, 642–645 (1995).
  • Wong KT, Shieh WJ, Kumar S et al. Nipah virus infection: pathology and pathogenesis of an emerging paramyxoviral zoonosis. Am. J. Pathol. 161, 2153–2167 (2002).
  • Tan CT, Wong KT. Nipah encephalitis outbreak in Malaysia. Ann. Acad. Med. Singapore 32, 112–117 (2003).
  • Halpin K, Young PL, Field HE, Mackenzie JS. Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus. J. Gen. Virol. 81, 1927–1932 (2000).
  • Chua KB, Lek Koh C, Hooi PS et al. Isolation of Nipah virus from Malaysian island flying-foxes. Microbes Infect. 4, 145–151 (2002).
  • Anonymous. Pro-med. International Society for Infectious Diseases (2004).
  • Anonymous. Emerging infections update: November 2004 to January 2005. Commun. Dis. Rep. Wkly 15 (2005).
  • Anonymous. Nipah encephalitis outbreak over wide area of western Bangladesh, 2004. Health and Science Bulletin (ICDDR,B) 2, 7–11 (2004).
  • Hsu VP, Hossain MJ, Parashar UD et al. Nipah virus encephalitis reemergence, Bangladesh. Emerg. Infect. Dis. 10, 2082–2087 (2004).
  • Anonymous. Person-to-person transmission of Nipah virus during outbreak in Faridpur District, 2004. Health and Science Bulletin (ICDDR,B) 2, 5–9 (2004).
  • Hooper P, Zaki S, Daniels P, Middleton D. Comparative pathology of the diseases caused by Hendra and Nipah viruses. Microbes Infect. 3, 315–322 (2001).
  • Lam SK, Chua KB. Nipah virus encephalitis outbreak in Malaysia. Clin. Infect. Dis. 34, S48–S51 (2002).
  • Bonaparte MI, Dimitrov AS, Bossart KN et al. Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus. Proc. Natl Acad. Sci. USA 102, 10652–10657 (2005).
  • Negrete OA, Levroney EL, Aguilar HC et al. EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus. Nature 436, 401–405 (2005).
  • Poliakov A, Cotrina M, Wilkinson DG. Diverse roles of eph receptors and ephrins in the regulation of cell migration and tissue assembly. Dev. Cell 7, 465–480 (2004).
  • Drescher U. Eph family functions from an evolutionary perspective. Curr. Opin. Genet. Dev. 12, 397–402 (2002).
  • Flanagan JG, Vanderhaeghen P. The ephrins and Eph receptors in neural development. Ann. Rev. Neurosci. 21, 309–345 (1998).
  • Adams RH, Wilkinson GA, Weiss C et al. Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev. 13, 295–306 (1999).
  • Wang HU, Chen ZF, Anderson DJ. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93, 741–753 (1998).
  • Yob JM, Field H, Rashdi AM et al. Nipah virus infection in bats (order Chiroptera) in peninsular Malaysia. Emerg. Infect. Dis. 7, 439–441 (2001).
  • Middleton DJ, Westbury HA, Morrissy CJ et al. Experimental Nipah virus infection in pigs and cats. J. Comp. Pathol. 126, 124–136 (2002).
  • Weingartl H, Czub S, Copps J et al. Invasion of the central nervous system in a porcine host by Nipah virus. J. Virol. 79, 7528–7534 (2005).
  • Daniels P, Ksiazek T, Eaton BT. Laboratory diagnosis of Nipah and Hendra virus infections. Microbes Infect. 3, 289–295 (2001).
  • Westbury HA, Hooper PT, Selleck PW, Murray PK. Equine morbillivirus pneumonia: susceptibility of laboratory animals to the virus. Aust. Vet. J. 72, 278–279 (1995).
  • Hooper PT, Westbury HA, Russell GM. The lesions of experimental equine morbillivirus disease in cats and guinea-pigs. Vet. Pathol. 34, 323–329 (1997).
  • Williamson MM, Hooper PT, Selleck PW, Westbury HA, Slocombe RF. A guinea-pig model of Hendra virus encephalitis. J. Comp. Pathol. 124, 273–279 (2001).
  • Wong KT, Grosjean I, Brisson C et al. A golden hamster model for human acute Nipah virus infection. Am. J. Pathol. 163, 2127–2137 (2003).
  • Hooper PT, Ketterer PJ, Hyatt AD, Russell GM. Lesions of experimental equine morbillivirus pneumonia in horses. Vet. Pathol. 34, 312–322 (1997).
  • Westbury HA, Hooper PT, Brouwer SL, Selleck PW. Susceptibility of cats to equine morbillivirus. Aust. Vet. J. 74, 132–134 (1996).
  • Williamson MM, Hooper PT, Selleck PW et al. Transmission studies of Hendra virus (equine morbillivirus) in fruit bats, horses and cats. Aust. Vet. J. 76, 813–818 (1998).
  • Morrison TG. The three faces of paramyxovirus attachment proteins. Trends Microbiol. 9, 103–105 (2001).
  • Murphy BR, Chanock RM. Fields Virology. Knipe DM, Howley PM (Eds). Lippincott Williams & Wilkins, PA, USA, 435–468 (2001).
  • Quinnan GV. Antiviral Agents and Human Viral Disease. Galasso G, Whitley R, Merigan TC (Eds). Raven Press, NY, USA, 791–834 (1997).
  • Pantaleo G, Koup RA. Correlates of immune protection in HIV-1 infection: what we know, what we don’t know, what we should know. Nat. Med. 10, 806–810 (2004).
  • Griffin DE. Immune responses during measles virus infection. Curr. Top. Microbiol. Immunol. 191, 117–134 (1995).
  • Guillaume V, Contamin H, Loth P et al. Nipah virus: vaccination and passive protection studies in a hamster model. J. Virol. 78, 834–840 (2004).
  • Bossart KN, Crameri G, Dimitrov AS et al. Receptor binding, fusion inhibition, and induction of cross-reactive neutralizing antibodies by a soluble G glycoprotein of Hendra virus. J. Virol. 79, 6690–6702 (2005).
  • Sutter G, Staib C. Vaccinia vectors as candidate vaccines: the development of modified vaccinia virus Ankara for antigen delivery. Curr. Drug Targets Infect. Disord. 3, 263–271 (2003).
  • Franchini G, Gurunathan S, Baglyos L, Plotkin S, Tartaglia J. Poxvirus-based vaccine candidates for HIV: two decades of experience with special emphasis on canarypox vectors. Expert Rev. Vaccines 3(4 Suppl.), S75–S88 (2004).
  • Broder CC, Earl PL. Recombinant vaccinia viruses. Design, generation, and isolation. Mol. Biotechnol. 13, 223–245 (1999).
  • Murray PK, Eaton BT. Vaccines for bluetongue. Aust. Vet. J. 73, 207–210 (1996).
  • Pearson LD, Roy P. Genetically engineered multi-component virus-like particles as veterinary vaccines. Immunol. Cell Biol. 71(Pt 5), 381–389 (1993).
  • Schreckenberger C, Kaufmann AM. Vaccination strategies for the treatment and prevention of cervical cancer. Curr. Opin. Oncol. 16, 485–491 (2004).
  • Zhu Z, Dimitrov AS, Bossart KN et al. Potent neutralization of Hendra and Nipah viruses by human monoclonal antibodies. J. Virol. 80, 891–899 (2006).
  • Casadevall A. Passive antibody therapies: progress and continuing challenges. Clin. Immunol. 93, 5–15 (1999).
  • Wright A, Shin SU, Morrison SL. Genetically engineered antibodies: progress and prospects. Crit. Rev. Immunol. 12, 125–168 (1992).
  • Kang AS, Jones TM, Burton DR. Antibody redesign by chain shuffling from random combinatorial immunoglobulin libraries. Proc. Natl Acad. Sci. USA 88, 11120–11123 (1991).
  • Zeitlin L, Cone RA, Moench TR, Whaley KJ. Preventing infectious disease with passive immunization. Microbes Infect. 2, 701–708 (2000).
  • Rader C, Barbas CF III. Phage display of combinatorial antibody libraries. Curr. Opin. Biotechnol. 8, 503–508 (1997).
  • Hayden MS, Gilliland LK, Ledbetter JA. Antibody engineering. Curr. Opin. Immunol. 9, 201–212 (1997).
  • Hudson PJ, Souriau C. Recombinant antibodies for cancer diagnosis and therapy. Expert Opin. Biol. Ther. 1, 845–855 (2001).
  • Weissenhorn W, Dessen A, Calder LJ et al. Structural basis for membrane fusion by enveloped viruses. Mol. Membr. Biol. 16, 3–9 (1999).
  • Chan DC, Kim PS. HIV entry and its inhibition. Cell 93, 681–684 (1998).
  • Skehel JJ, Wiley DC. Coiled coils in both intracellular vesicle and viral membrane fusion. Cell 95, 871–874 (1998).
  • Singh M, Berger B, Kim PS. LearnCoil-VMF: computational evidence for coiled-coil-like motifs in many viral membrane-fusion proteins. J. Mol. Biol. 290, 1031–1041 (1999).
  • Hughson FM. Enveloped viruses: a common mode of membrane fusion? Curr. Biol. 7, R565–R569 (1997).
  • Xu Y, Gao S, Cole DK et al. Basis for fusion inhibition by peptides: analysis of the heptad repeat regions of the fusion proteins from Nipah and Hendra viruses, newly emergent zoonotic paramyxoviruses. Biochem. Biophys. Res. Commun. 315, 664–670 (2004).
  • Bossart KN, Wang LF, Eaton BT, Broder CC. Functional expression and membrane fusion tropism of the envelope glycoproteins of Hendra virus. Virology 290, 121–135 (2001).
  • Chambers P, Pringle CR, Easton AJ. Heptad repeat sequences are located adjacent to hydrophobic regions in several types of virus fusion glycoproteins. J. Gen. Virol. 71, 3075–3080 (1990).
  • Earp LJ, Delos SE, Park HE, White JM. The many mechanisms of viral membrane fusion proteins. Curr. Top. Microbiol. Immunol. 285, 25–66 (2005).
  • Weiss CD. HIV-1 gp41: mediator of fusion and target for inhibition. AIDS Rev. 5, 214–221 (2003).
  • Kilby JM, Hopkins S, Venetta TM et al. Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nat. Med. 4, 1302–1307 (1998).
  • Kilby JM, Lalezari JP, Eron JJ et al. The safety, plasma pharmacokinetics, and antiviral activity of subcutaneous enfuvirtide (T-20), a peptide inhibitor of gp41-mediated virus fusion, in HIV-infected adults. AIDS Res. Hum. Retroviruses18,685–693 (2002).
  • Xu Y, Lou Z, Liu Y et al. Crystallization and preliminary crystallographic analysis of the fusion core from two new zoonotic paramyxoviruses, Nipah virus and Hendra virus. Acta Crystallogr. D Biol. Crystallogr. 60, 1161–1164 (2004).
  • Lambert DM, Barney S, Lambert AL et al. Peptides from conserved regions of paramyxovirus fusion (F) proteins are potent inhibitors of viral fusion. Proc. Natl Acad. Sci. USA 93, 2186–2191 (1996).
  • Joshi SB, Dutch RE, Lamb RA. A core trimer of the paramyxovirus fusion protein: parallels to influenza virus hemagglutinin and HIV-1 gp41. Virology 248, 20–34 (1998).
  • Wild TF, Buckland R. Inhibition of measles virus infection and fusion with peptides corresponding to the leucine zipper region of the fusion protein. J. Gen. Virol. 78, 107–111 (1997).
  • Young JK, Li D, Abramowitz MC, Morrison TG. Interaction of peptides with sequences from the Newcastle disease virus fusion protein heptad repeat regions. J. Virol. 73, 5945–5956 (1999).
  • Young JK, Hicks RP, Wright GE, Morrison TG. Analysis of a peptide inhibitor of paramyxovirus (NDV) fusion using biological assays, NMR, and molecular modeling. Virology 238, 291–304 (1997).
  • Rapaport D, Ovadia M, Shai Y. A synthetic peptide corresponding to a conserved heptad repeat domain is a potent inhibitor of Sendai virus-cell fusion: an emerging similarity with functional domains of other viruses. EMBO J. 14, 5524–5531 (1995).
  • Bossart KN, Wang LF, Flora MN et al. Membrane fusion tropism and heterotypic functional activities of the Nipah virus and Hendra virus envelope glycoproteins. J. Virol. 76, 11186–11198 (2002).
  • Bossart KN, Broder CC. Viral glycoprotein-mediated cell fusion assays using vaccinia virus vectors. Methods Mol. Biol. 269, 309–332 (2004).
  • Bossart KN, Mungall BA, Crameri G et al. Inhibition of Henipavirus fusion and infection by heptad-derived peptides of the Nipah virus fusion glycoprotein. Virol. J. 2, 57 (2005).
  • Harris JM, Martin NE, Modi M. Pegylation: a novel process for modifying pharmacokinetics. Clin. Pharmacokinet. 40, 539–551 (2001).
  • Delgado C, Pedley RB, Herraez A et al. Enhanced tumour specificity of an anticarcinoembrionic antigen Fab’ fragment by poly(ethylene glycol) (PEG) modification. Br. J. Cancer 73, 175–182 (1996).
  • Delgado C, Malik F, Selisko B, Fisher D, Francis GE. Quantitative analysis of polyethylene glycol (PEG) in PEG-modified proteins/cytokines by aqueous two-phase systems. J. Biochem. Biophys. Methods 29, 237–250 (1994).
  • Caliceti P, Veronese FM. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. Adv. Drug Deliv. Rev. 55, 1261–1277 (2003).
  • Pager CT, Dutch RE. Cathepsin L is involved in proteolytic processing of the hendra virus fusion protein. J. Virol. 79, 12714–12720 (2005).
  • Sever N, Filipic M, Brzin J, Lah TT. Effect of cysteine proteinase inhibitors on murine B16 melanoma cell invasion in vitro. Biol. Chem. 383, 839–842 (2002).
  • Yasuma T, Oi S, Choh N et al. Synthesis of peptide aldehyde derivatives as selective inhibitors of human cathepsin L and their inhibitory effect on bone resorption. J. Med. Chem. 41, 4301–4308 (1998).
  • Diederich S, Moll M, Klenk HD, Maisner A. The Nipah virus fusion protein is cleaved within the endosomal compartment. J. Biol. Chem. 280, 29899–29903 (2005).
  • Masood R, Xia G, Smith DL et al. Ephrin B2 expression in Kaposi sarcoma is induced by human herpesvirus Type 8: phenotype switch from venous to arterial endothelium. Blood 105, 1310–1318 (2005).
  • Martiny-Baron G, Korff T, Schaffner F et al. Inhibition of tumor growth and angiogenesis by soluble EphB4. Neoplasia 6, 248–257 (2004).
  • Surawska H, Ma PC, Salgia R. The role of ephrins and Eph receptors in cancer. Cytokine Growth Factor Rev. 15, 419–433 (2004).
  • Crumpacker C. Fields Virology. Knipe DM, Howley PM (Eds). Lippincott Williams & Wilkins, PA, USA, 393–433 (2001).
  • Sidwell RW, Huffman JH, Khare GP et al. Broad spectrum antiviral activity of Virazole: 1-beta-d-ribofuranosyl-1,2,4-triazole-3-carboxamide. Science 177, 705–706 (1972).
  • Snell NJ. Ribavirin-current status of a broad spectrum antiviral agent. Expert Opin. Pharmacother.2,1317–1324 (2001).
  • Heathcote J, Main J. Treatment of hepatitis C. J. Viral. Hepat. 12, 223–235 (2005).
  • Chong HT, Kamarulzaman A, Tan CT et al. Treatment of acute Nipah encephalitis with ribavirin. Ann. Neurol. 49, 810–813 (2001).
  • Snell NJ. Ribavirin therapy for Nipah virus infection. J. Virol. 78, 10211 (2004).
  • Samuel CE. Antiviral actions of interferons. Clin. Microbiol. Rev. 14, 778–809 (2001).
  • Katze MG, He Y, Gale M Jr. Viruses and interferon: a fight for supremacy. Nat. Rev. Immunol. 2, 675–687 (2002).
  • Poole E, He B, Lamb RA, Randall RE, Goodbourn S. The V proteins of simian virus 5 and other paramyxoviruses inhibit induction of interferon-beta. Virology 303, 33–46 (2002).
  • He B, Paterson RG, Stock N et al. Recovery of paramyxovirus simian virus 5 with a V protein lacking the conserved cysteine-rich domain: the multifunctional V protein blocks both interferon-beta induction and interferon signaling. Virology 303, 15–32 (2002).
  • Gotoh B, Komatsu T, Takeuchi K, Yokoo J. Paramyxovirus strategies for evading the interferon response. Rev. Med. Virol. 12, 337–357 (2002).
  • Didcock L, Young DF, Goodbourn S, Randall RE. The V protein of simian virus 5 inhibits interferon signalling by targeting STAT1 for proteasome-mediated degradation. J. Virol. 73, 9928–9933 (1999).
  • Kubota T, Yokosawa N, Yokota S et al. Mumps virus V protein antagonizes interferon without the complete degradation of STAT1. J. Virol. 79, 4451–4459 (2005).
  • Parisien JP, Lau JF, Rodriguez JJ et al. The V protein of human parainfluenza virus 2 antagonizes Type I interferon responses by destabilizing signal transducer and activator of transcription 2. Virology 283, 230–239 (2001).
  • Eaton BT, Broder CC, Middleton D, Wang LF. Hendra and Nipah viruses: different and dangerous. Nat. Rev. Microbiol. 4, 23–35 (2006).
  • Wang LF, Michalski WP, Yu M et al. A novel P/V/C gene in a new member of the Paramyxoviridae family, which causes lethal infection in humans, horses, and other animals. J. Virol. 72, 1482–1490 (1998).
  • Harcourt BH, Tamin A, Ksiazek TG et al. Molecular characterization of Nipah virus, a newly emergent paramyxovirus. Virology 271, 334–349 (2000).
  • Rodriguez JJ, Horvath CM. Host evasion by emerging paramyxoviruses: Hendra virus and Nipah virus V proteins inhibit interferon signaling. Viral Immunol. 17, 210–219 (2004).
  • Shaw ML, Garcia-Sastre A, Palese P, Basler CF. Nipah virus V and W proteins have a common STAT1-binding domain yet inhibit STAT1 activation from the cytoplasmic and nuclear compartments, respectively. J. Virol. 78, 5633–5641 (2004).
  • Park MS, Shaw ML, Munoz-Jordan J et al. Newcastle disease virus (NDV)-based assay demonstrates interferon-antagonist activity for the NDV V protein and the Nipah virus V W, and C proteins. J. Virol. 77, 1501–1511 (2003).
  • Rodriguez JJ, Cruz CD, Horvath CM. Identification of the nuclear export signal and STAT-binding domains of the Nipah virus V protein reveals mechanisms underlying interferon evasion. J. Virol. 78, 5358–5367 (2004).
  • Shaw ML, Cardenas WB, Zamarin D, Palese P, Basler CF. Nuclear localization of the Nipah virus W protein allows for inhibition of both virus- and toll-like receptor 3-triggered signaling pathways. J. Virol. 79, 6078–6088 (2005).
  • O’Sullivan JD, Allworth AM, Paterson DL et al. Fatal encephalitis due to novel paramyxovirus transmitted from horses. Lancet 349, 93–95 (1997).

Websites

  • Anonymous. In 21 CFR Parts 314 and 601 www.fda.gov/bbs/topics/NEWS/2002/ NEW00811.html
  • www.fda.gov/OHRMS/DOCKETS/98fr/ 98n-0237-nfr 0001-vol1.pdf (2002)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.