232
Views
14
CrossRef citations to date
0
Altmetric
Review

Advanced therapeutic and prophylactic strategies for Epstein–Barr virus infection in immunocompromised patients

&
Pages 403-413 | Published online: 10 Jan 2014

References

  • Epstein MA, Achong BG, Barr YM. Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet15, 702–703 (1964).
  • Okano M. Haematological associations of Epstein–Barr virus infection. Bailliere’s Best Pract. Res. Clin. Haematol.13, 199–214 (2000).
  • Henle G, Henle W. Immunofluorescence in cells derived from Burkitt’s lymphoma. J. Bacteriol.91, 1248–1256 (1966).
  • Henle G, Henle W, Diehl V. Relation to Burkitt’s tumor-associated herpes type virus to infectious mononucleosis. Proc. Natl Acad. Sci. USA59, 94–101 (1968).
  • Evans AS, Niderman JC, McCollum RW. Seroepidemiologic studies of infectious mononucleosis with EB virus. N. Engl. J. Med.279, 1121–1127 (1968).
  • Old LJ, Boyse EA, Oettgen HF et al. Precipitating antibody in human serum to an antigen present in cultured Burkitt’s lymphoma cells. Proc. Natl Acad. Sci. USA56, 1699–1704 (1966).
  • zur Hausen H, Schulte-Holthausen H, Klein G et al. EB-virus DNA in biopsies of Burkitt’s tumors and anaplastic carcinomas of the nasopharynx. Nature228, 1056–1057 (1970).
  • Purtilo DT, Cassel CK, Yang JPS et al. X-linked recessive progressive combined variable immunodeficiency (Duncan’s disease). Lancet1(7913), 935–941 (1975).
  • Chapel H, Geha R, Rosen F. IUIS (Primary Immunodeficiencies) Classification Committee. Primary immunodeficiency diseases: an update. Clin. Exp. Immunol.132, 9–15 (2003).
  • Joncas J, LaPointe N, Gervais F, Leyritz M. Unusual prevalence of Epstein–Barr early antigen (EBV-EA) antibody in ataxia–telangiectasia. J. Immunol.119, 1857–1859 (1977).
  • Saemundsen AK, Berkel AI, Henle W et al. Epstein–Barr virus carrying lymphoma in a patient with ataxia telangiectasia. Br. Med. J.282, 425–427 (1981).
  • Okano M, Mizuno F, Osato T, Takahashi Y, Sakiyama Y, Matsumoto S. Wiskott–Aldrich syndrome and Epstein–Barr virus-induced lymphoproliferation. Lancet2(8408), 933–934 (1984).
  • Nakanishi M, Kikuta H, Tomizawa K et al. Distinct clonotypic Epstein–Barr virus-induced fatal lymphoproliferative disorder in a patient with Wiskott–Aldrich syndrome. Cancer72, 1376–1381 (1993).
  • Crawford DH, Thomas JA, Janossy G et al. Epstein–Barr virus nuclear antigen positive lymphoma after cyclosporin A treatment in patient with renal allograft. Lancet1(8182), 1355–1356 (1980).
  • Hanto DW, Sakamoto K, Purtilo DT, Simmons RL, Najarian JS. The Epstein–Barr virus in the pathogenesis of posttransplant lymphoproliferative disorders. Surgery90, 204–213 (1981).
  • Okano M. The evolving therapeutic approaches for Epstein–Barr virus infection in immunocompetent and immunocompromised individuals. Curr. Drug Target Immune Endocr. Metabol. Disord.3, 137–142 (2003).
  • Okano M. Epstein–Barr virus in patients with immunodeficiency disorders. Biomed. Pharmacother.55, 353–361 (2001).
  • Okano M, Gross TG. A review of Epstein–Barr virus infection in patients with immunodeficiency disorders. Am. J. Med. Sci.319, 392–396 (2000).
  • Savoldo B, Goss JA, Hammer MM et al. Treatment of solid organ transplant recipients with autologous Epstein–Barr virus-specific T lymphocytes (CTL). Blood108, 2942–2949 (2006).
  • Buell JF, Gross TG, Woodle ES. Malignancy after transplantation. Transplantation80(Suppl.), 272–274 (2005).
  • Beral V, Peterman T, Berkelman R et al. AIDS-associated non-Hodgkin lymphoma. Lancet337, 805–809 (1991).
  • Okano M, Thiele GM, Davis JR, Grierson HL, Purtilo DT. Epstein–Barr virus and human diseases: recent advances in diagnosis. Clin. Microbiol. Rev.1, 300–312 (1988).
  • Kamel OW, van de Rijn M, Weiss LM et al. Reversible lymphomas associated with Epstein–Barr virus occurring during methotrexate therapy for rheumatoid arthritis and dermatomyositis. N. Engl. J. Med.328, 1317–1321 (1993).
  • Gandhi MK, Tellam JT, Khanna R. Epstein–Barr virus-associated Hodgkin’s lymphoma. Br. J. Haematol.125, 267–281 (2004).
  • Imai S, Nishikawa J, Takada K. Cell-to-cell contact as an efficient mode of Epstein–Barr virus infection of diverse human epithelial cells. J. Virol.72, 4371–4378 (1998).
  • Callan MFC, Tan L, Annels N et al. Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein–Barr virus in vivo.J. Exp. Med.187, 1395–1402 (1998).
  • Levitskaya JM, Coram V, Levitsky S et al. Inhibition of antigen processing by the internal repeat region of the Epstein–Barr virus nuclear antigen-1. Nature375, 385–388 (1995).
  • Munz C. Epstein–Barr virus nuclear antigen 1: from immunologically invisible to promising T cell target. J. Exp. Med.199, 1301–1304 (2004).
  • Alfieri C, Birkenbach M, Kieff E. Early events in Epstein–Barr virus infection of human B-lymphocytes. Virology181, 595–608 (1991).
  • Kelly G, Bell A, Rickinson A. Epstein–Barr virus-associated Burkitt lymphomagenesis selects for downregulation of the nuclear antigen EBNA2. Nat. Med.8, 1098–1104 (2002).
  • Rigaud S, Fondaneche M-C, Lambert N et al. XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature444, 110–114 (2006).
  • Seemayer TA, Gross TG, Egeler RM et al. X-linked lymphoproliferative disease: twenty-five years after the discovery. Pediatr. Res.38, 471–478 (1995).
  • Sayos J, Wu C, Morra M et al. The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature395, 462–469 (1998).
  • Coffee AJ, Brooksbank RA, Brandau O et al. Host response to EBV infection in X-linked lymphoproliferative disease results from mutation in an SH2-domain-encoding gene. Nat. Genet.20, 195–135 (1998).
  • Nichols KE, Harkin DT, Levitz S et al. Inactivating mutations in an SH2 domain-encoding gene in X-linked lymphoproliferative syndrome. Proc. Natl Acad. Sci. USA95, 13765–13770 (1998).
  • Okano M, Mizuno F, Aya T, Sakiyama Y, Matsumoto S, Osato T. Epstein–Barr virus hypersensitivity of lymphocytes from patients with ataxia telangiectasia. Int. J. Oncol.2, 1027–1031 (1993).
  • Lu S, Day NE, Degos L et al. Linkage of a nasopharyngeal carcinoma susceptibility locus to the HLA region. Nature346, 470–471 (1990).
  • Armstrong RW, Armstrong MJ, Yi MC, Henderson BE. Salted fish and inhalants as risk factors for nasopharyngeal carcinoma in Malaysian Chinese. Cancer Res.43, 2967–2970 (1983).
  • Osato T, Mizuno F, Imai S et al. African Burkitt’s lymphoma and Epstein–Barr virus-enhancing plant Euphorbia tirucalli. Lancet1(8544), 1257–1258 (1987).
  • Bar RS, Delor CJ, Clausen KP et al. Fatal infectious mononucleosis in a family. N. Engl. J. Med.290, 363–367 (1974).
  • Parolini S, Bottino C, Falco M et al. X-linked lymphoproliferative disease: 2B4 molecules displaying inhibitory rather than activating function are responsible for the inability of natural killer cells to kill Epstein–Barr virus-infected cells. J. Exp. Med.192, 337–346 (2000).
  • Sharifi R, Sinclair JC, Gilmour KC et al. SAP mediates specific cytotoxic T-cell functions in X-linked lymphoproliferative disease. Blood103, 3821–3827 (2004).
  • Nichols KE, Hom J, Gong S-Y et al. Regulation of NKT cell development by SAP, the protein defective in XLP. Nat. Med.11, 340–345 (2005).
  • Okano M, Thiele GM, Kobayashi RH et al. Interferon-γ in a family with X-linked lymphoproliferative syndrome with acute Epstein–Barr virus infection. J. Clin. Immunol.9, 48–54 (1989).
  • Brandau O, Schuster V, Weiss M et al. Epstein–Barr virus negative boys with non-Hodgkin lymphoma are mutated in the SH2D1A gene, as are patients with X-linked lymphoproliferative disease (XLP). Hum. Mol. Genet.8, 2407–2413 (1999).
  • Savitsky K, Bar-Shira A, Gilad S et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science268, 1749–1753 (1995).
  • Berkel AI, Henle W, Henle G et al. Epstein–Barr virus-related antibody patterns in ataxia-telangiectasia. Clin. Exp. Immunol.35, 196–201 (1979).
  • Okano M, Sakiyama Y, Matsumoto S et al. A serological study of Epstein–Barr virus infection in Japanese patients with ataxia telangiectasia. Immunol. Infect. Dis.4, 65–68 (1994).
  • Reyes C, Abuzaitoum O, De Jong A, Hanson C, Langston C. Epstein–Barr virus-associated smooth muscle tumors in ataxia–telangiectasia: a case report and review. Hum. Pathol.33, 133–136 (2002).
  • Derry JMD, Ochs HD, Franke U. Isolation of a novel gene mutated Wiskott–Aldrich syndrome. Cell78, 635–644 (1994).
  • Vilmer E, Lenoir GM, Virelizier JL, Griscelli C. Epstein–Barr virus serology in immunodeficiency diseases: an attempt to correlate with immune abnormalities in Wiskott–Aldrich and Chediak–Higashi syndromes and ataxia telangiectasia. Clin. Exp. Immunol.55, 249–256 (1984).
  • Sasahara Y, Fujie H, Kumaki S, Ohashi Y, Minegishi M, Tuchiya S. Epstein–Barr virus-associated Hodgkin’s disease in a patient with Wiskott–Aldrich syndrome. Acta Paediatr.90, 1348–1351 (2001).
  • Ozsahin H, Le Deist F, Benkerrou M et al. Bone marrow transplantation in 26 patients with Wiskott–Aldrich syndrome from a single center. J. Pediatr.129, 238–244 (1996).
  • Barbosa MDFS, Nguyen QA, Tcherner VT et al. Identification of the homologous beige and Chediak–Higashi syndrome genes. Nature382, 262–265 (1996).
  • Merino F, Klein G, Henle G et al. Elevated antibody titers to Epstein–Barr virus and low natural killer cell activity in patients with Chediak–Higashi syndrome. Clin. Immunol. Immunopathol.27, 326–339 (1983).
  • Kinugawa N. Epstein–Barr virus infection in Chediak–Higashi syndrome mimicking acute lymphocytic leukemia. Am. J. Pediatr. Hematol. Oncol.12, 182–186 (1990).
  • Toita N, Hatano N, Ono S et al. Epstein–Barr virus-associated B-cell lymphoma in a patient with DNA ligase IV (LIG4) syndrome. Am. J. Med. Genet. Part A143A, 742–745 (2007).
  • Kimura H, Morita M, Yabuta Y et al. Quantitative analysis of Epstein–Barr virus load by using a real-time PCR assay. J. Clin. Microbiol.37, 132–136 (1999).
  • Rooney CM, Smith CA, Ng CYC et al. Use of gene-mediated virus-specific T lymphocytes to control Epstein–Barr virus-related lymphoproliferation. Lancet345, 9–13 (1995).
  • Sivaraman P, Lye WC. Epstein–Barr virus-associated T-cell lymphoma in solid organ transplant recipients. Biomed. Pharmacother.55, 366–368 (2001).
  • Nasta SD, Carrum GM, Shahab I, Hanania NA, Udden MM. Regression of a plasmablastic lymphoma in a patient with HIV on highly active antiretroviral therapy. Leuk. Lymphoma43, 423–426 (2002).
  • Carbone A. AIDS-related non-Hodgkin’s lymphomas: from pathology and molecular pathogenesis to treatment. Hum. Pathol.33, 392–404 (2002).
  • Salloum E, Cooper DL, Howe G et al. Spontaneous regression of lymphoproliferative disorders in patients treated with methotrexate for rheumatoid arthritis and other rheumatic diseases. J. Clin. Oncol.14, 1943–1949 (1996).
  • Mariette X, Cazals-Hatem D, Warsiawski J et al. Lymphomas in rheumatoid arthritis patients treated with methotrexate: a 3-year prospective study in France. Blood99, 3909–4015 (2002).
  • Gross TG, Bucuvalas JC, Park JR et al. Low-dose chemotherapy for Epstein–Barr virus-positive post transplant lymphoproliferative disease in children after solid organ transplantation. J. Clin. Oncol.23, 6481–6488 (2005).
  • Papadopoulos EB, Ladanyl M, Emanuel D et al. Infusions of donor leukocytes to treat Epstein–Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N. Engl. J. Med.330, 1185–1191 (1994).
  • Rooney CM, Smith CA, Ng CYC et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein–Barr virus-induced lymphoma in allogeneic transplant recipients. Blood92, 1549–1555 (1998).
  • Haque T, Wilkie GM, Taylor C et al. Treatment of Epstein–Barr virus-positive post-transplantation lymphoproliferative disease with partly HLA-matched allogeneic cytotoxic T cells. Lancet360, 436–442 (2002).
  • Roskrow MA, Suzuki N, Gan Y et al. Epstein–Barr virus (EBV)-specific cytotoxic T lymphocytes for the treatment of patients with EBV-positive relapsed Hodgkin’s disease. Blood91, 2925–2934 (1998).
  • Lucas KG, Salzman D, Garcia A, Sun Q. Adoptive immunotherapy with allogeneic Epstein–Barr virus (EBV)-specific cytotoxic T-lymphocytes for recurrent, EBV-positive Hodgkin disease. Cancer100, 1892–1901 (2004).
  • Resnick L, Herbst JS, Ablashi DV et al. Regression of oral hairy leukoplakia after orally administered acyclovir therapy. J. Am. Med. Assoc.259, 384–388 (1988).
  • Slobod KS, Taylor GH, Sandlund JT, Furth P, Helton KJ, Sixbey JW. Epstein–Barr virus-targeted therapy for AIDS-related primary lymphoma of the central nervous system. Lancet356(9240), 1493–1494 (2000).
  • Gross TG, Filipovich AH, Conley ME et al. Cure of X-linked lymphoproliferative disease (XLP) with allogeneic hematopoietic stem cell transplantation (HSCT): report from the XLP registry. Bone Marrow Transplant.17, 741–744 (1996).
  • Malbran A, Belmonte L, Ruibal-Ares B et al. Loss of circulating CD27+ memory B cells and CCR4+ T cells occurring in association with elevated EBV loads in XLP patients surviving primary EBV infection. Blood103, 1625–1631 (2004).
  • Milone MC, Tsai DE, Hodinka RL et al. Treatment of primary Epstein–Barr virus infection in patients with X-linked lymphoproliferative disease using B-cell directed therapy. Blood105, 994–996 (2005).
  • Mischler M, Fleming GM, Shanley TP et al. Epstein–Barr virus-induced hemophagocytic lymphohistiocytosis and X-linked lymphoproliferative disease: a mimicker of sepsis in the pediatric intensive care unit. Pediatrics119(5), e1212–e1218 (2007).
  • Okano M, Bashir RM, Davis JR, Purtilo DT. Detection of primary Epstein–Barr virus infection in a patient with X-linked lymphoproliferative disease receiving immunoglobulin prophylaxis. Am. J. Hematol.36, 294–296 (1991).
  • Bharadwaj M, Moss DJ. Epstein–Barr virus vaccine: a cytotoxic T-cell-based approach. Expert Rev. Vaccines1, 467–476 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.