434
Views
99
CrossRef citations to date
0
Altmetric
Review

Acinetobacter baumannii: an emerging multidrug-resistant threat

&
Pages 309-325 | Published online: 10 Jan 2014

References

  • Bergogne-Berezin E, Towner KJ. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical and epidemiological features. Clin. Microbiol. Rev.9(2), 148–165 (1996).
  • Murray CK, Hospenthal DR. Treatment of multidrug resistant Acinetobacter. Curr. Opin. Infect. Dis.18, 502–506 (2005).
  • Seifert H, Baginski R, Schulze A, Pulverer G. Antimicrobial susceptibility of Acinetobacter species. Antimicrob. Agents Chemother.37(4), 750–753 (1993).
  • Dijkshoorn L, Nemec A, Seifert H. An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii.Nat. Rev. Microbiol.5(12), 939–951 (2007).
  • Richet H, Fournier PE. Nosocomial infections caused by Acinetobacter baumannii: a major threat worldwide. Infect. Control Hosp. Epidemiol.27(7), 645–646 (2006).
  • Waterer GW, Wunderink RG. Increasing threat of Gram-negative bacteria. Crit. Care Med.29(Suppl. 4), N75–N81 (2001).
  • Falagas ME, Koletsi PK, Bliziotis IA. The diversity of definitions of multidrug-resistant (MDR) and pandrug-resistant (PDR) Acinetobacter baumannii and Pseudomonas aeruginosa. J. Med. Microbiol.55, 1619–1629 (2006).
  • Van Looveren M, Goossens H, Group AS. Antimicrobial resistance of Acinetobacter spp. in Europe. Clin. Microbiol. Infect.10, 684–704 (2004).
  • Fournier PE, Vallenet D, Barbe V et al. Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet.2(1), 62–72 (2006).
  • Rahal JJ, Urban C. Acinetobacter. Semin. Respir. Crit. Care Med.21(4), 341–348 (2000).
  • Fournier PE, Richet H. The epidemiology and control of Acinetobacter baumannii in health care facilities. Clin. Infect. Dis.42, 692–699 (2006).
  • Kramer A, Schwebke I, Kampf G. How long do nosocomial pathogens persist on inanimate surfaces? BMC Infect. Dis.6, 130–137 (2006).
  • Paterson DL. The epidemiological profile of infections with multidrug-resistant Pseudomonas aeruginosa and Acinetobacter species. Clin. Infect. Dis.43, S43–S48 (2006).
  • Denton M, Wilcox MH, Parnell P et al. Role of environmental cleaning in controlling an outbreak of Acinetobacter baumannii on a neurosurgical intensive care unit. J. Hosp. Infect.56, 106–110 (2004).
  • Hansen S, Stamm-Balderiahn S, Zuschneid I et al. Closure of medical departments during nosocomial outbreaks: data from a systemic analysis of the literature. J. Hospital Infect.65, 348–353 (2007).
  • Mulin B, Talon D, Viel JF et al. Risk factors for nosocomical colonization with multiresistant Acinetobacter baumannii. Eur. J. Clin. Microbiol. Infect. Dis.14(7), 569–576 (1995).
  • Berlau J, Aucken H, Malnick H, Pitt T. Distribution of Acinetobacter species on skin of healthy humans. Eur. J. Clin. Microbiol. Infect. Dis.18, 179–183 (1999).
  • Seifert H, Dijkshoorn L, Gerner-Smidt P, Pelzer N, Tjernberg I, Vaneechoutte M. Distribution of Acinetobacter species on human skin: comparison of phenotypic and genotypic identification methods. J. Clin. Microbiol.35(11), 2819–2825 (1997).
  • Zeana C, Larson E, Sahni J, Bayuga SJ, Wu F, Della-Latta P. The epidemiology of multidrug-resistant Acinetobacter baumannii: does the community represent a reservoir? Infect. Control Hosp. Epidemiol.24, 275–279 (2003).
  • Stephens C, Francis SJ, Abell V, DiPersio JR, Wells P. Emergence of resistant Acinetobacter baumannii in critically ill patients within an acute care teaching hospital and long-term acute care hospital. Am. J. Infect. Control35, 212–215 (2007).
  • Dijkshoorn L, van Aken E, Shunburne L et al. Prevalence of Acinetobacter baumannii and other Acinetobacter spp. in faecal samples from non-hospitalised individuals. Clin. Microbiol. Infect.11, 329–332 (2005).
  • Donskey CJ. Antibiotic regimens and intestinal colonization with antibiotic-resistant Gram-negative bacilli. Clin. Infect. Dis.43, S62–S69 (2006).
  • Falagas ME, Karveli EA. The changing global epidemiology of Acinetobacter baumannii infections: a development with major public health implications. Clin. Microbiol. Infect.13, 117–119 (2007).
  • Paterson DL. Serious infections in the intensive care unit: Pseudomonas aeruginosa and Acinetobacter baumannii. Clin. Infect. Dis.43, S41–S42 (2006).
  • Villari P, Iacuzio L, Vozzella EA, Bosco U. Unusual genetic heterogeneity of Acinetobacter baumannii isolates in a university hospital in Italy. Am. J. Infect. Control27, 247–253 (1999).
  • Vila J. Mechanisms of antimicrobial resistance in Acinetobacter baumannii. Rev. Med. Microbiol.9(2), 87 (1998).
  • Gombac F, Riccio ML, Rossolini GM et al. Molecular characterization of integrons in epidemiologically unrelated clinical isolates of Acinetobacter baumannii from Italian hospitals reveals a limited diversity of gene cassette arrays. Antimicrob. Agents Chemother.46(11), 3665–3668 (2002).
  • Smith MG, Gianoulis TA, Pukatzki S et al. New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Develop.21, 601–614 (2007).
  • Garrouste-Orgeas M, Marie O, Rouveau M, Villiers S, Arlet G, Schlemmer B. Secondary carriage with multi-resistant Acinetobacter baumannii and Klebsiella pneumoniae in an adult ICU population: relationship with nosocomial infections and mortality. J. Hosp. Infect.34, 279–289 (1996).
  • Perez F, Hujer AM, Hujer KM, Decker BK, Rather PN, Bonomo RA. Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother.51(10), 3471–3484 (2007).
  • Sunenshine RH, Wright M-O, Maragakis LL et al. Multidrug-resistant Acinetobacter infection mortality rate and length of hospitalization. Emerg. Infect. Dis.13(1), 97–103 (2007).
  • Falagas ME, Bliziotis IA, Siempos II. Attributable mortality of Acinetobacter baumannii infections in critically ill patients: a systematic review of matched cohort and case-control studies. Crit. Care10(2), R48 (2006).
  • Mahgoub S, Ahmed J, Glatt AE. Completely resistant Acinetobacter baumannii strains. Infect. Control Hosp. Epidemiol.23, 477–479 (2002).
  • Gkrania-Klotsas E, Hershow RC. Colonization or infection with multidrug-resistant Acinetobacter baumannii may be an independent risk factor for increased mortality. Clin. Infect. Dis.43, 1224–1225 (2006).
  • Abbo A, Carmeli Y, Navon-Venezia S, Siegman-Igra Y, Schwaber MJ. Impact of multidrug-resistant Acinetobacter baumannii on clinical outcomes. Eur. J. Clin. Microbiol. Infect. Dis.26, 793–800 (2007).
  • Krcmery V L, Kalavsky E. Multidrug-resistant Acinetobacter baumannii. Emerg. Infect. Dis.13(6), 943–944 (2007).
  • Mahgoub S, Ahmed J, Glatt AE. Underlying characteristics of patients harboring highly resistant Acinetobacter baumannii. Am. J. Infect. Control30, 386–390 (2002).
  • Chen H-P, Chen T-L, Lai C-H et al. Predictors of mortality in Acinetobacter baumannii bacteremia. J. Microbiol. Immunol. Infect.38, 127–136 (2005).
  • Davis KA, Moran KA, McAllister CK, Gray PJ. Multidrug-resistant Acinetobacter extremity infections in soldiers. Emerg. Infect. Dis.11(8), 1218–1224 (2005).
  • Cisneros JM, Reyes MJ, Pachon J et al. Bacteremia due to Acinetobacter baumannii: epidemiology, clinical findings, and prognostic features. Clin. Infect. Dis.22(6), 1026–1032 (1996).
  • Seifert H, Strate A, Pulverer G. Nosocomial bacteremia due to Acinetobacter baumannii: clinical features, epidemiology and predictors of mortality. Medicine74(6), 340–349 (1995).
  • Poutanen SM, Louie M, Simor AE. Risk factors, clinical features and outcome of Acinetobacter bacteremia in adults. Eur. J. Clin. Microbiol. Infect. Dis.16(10), 737–740 (1997).
  • Abbo A, Navon-Venezia S, Hammer-Muntz O, Krichali T, Siegman-Igra Y, Carmeli Y. Multidrug-resistant Acinetobacter baumannii. Emerg. Infect. Dis.11(1), 22–28 (2005).
  • Longo B, Pantosti A, Luzzi I et al. An outbreak of Acinetobacter baumannii in an intensive care unit: epidemiological and molecular findings. J. Hosp. Infect.64(3), 303–305 (2006).
  • Koeleman JGM, Stoof J, Van der Bijl MW, Vandenbroucke-Grauls CMJE, Savelkoul PHM. Identification of epidemic strains of Acinetobacter baumannii by integrase gene PCR. J. Clin. Microbiol.39 (1), 8–13 (2001).
  • Scott PT, Petersen K, Fishbain J et al.Acinetobacter baumannii infections among patients at military medical facilities treating injured U. S. service members, 2002–2004. MMWR Morb. Mortal. Wkly Rep.53(45), 1063–1066 (2004).
  • Murray CK, Yun HC, Griffith ME, Hospenthal DR, Tong MJ. Acinetobacter infection: what was the true impact during the Vietnam conflict? Clin. Infect. Dis.43(3), 383–384 (2006).
  • Griffith ME, Ceremuga JM, Ellis MW, Guymon CH, Hospenthal DR, Murray CK. Acinetobacter skin colonization of US Army soldiers. Infect. Control Hosp. Epidemiol.27(7), 659–661 (2006).
  • Scott P, Deve G, Srinivasan A et al. An outbreak of multidrug-resistant Acinetobacter baumannii–calcoaceticus complex infection in the US military health care system associated with military operations in Iraq. Clin. Infect. Dis.44(12), 1577–1584 (2007).
  • Leung W-S, Chu C-M, Tsang K-Y, Lo F-H, Lo K-F, Ho P-L. Fulminant community-acquired Acinetobacter baumannii pneumonia as a distinct clinical syndrome. Chest129, 102–109 (2006).
  • McDonald LC, Banerjee SN, Jarvis WR, System NNIS. Seasonal variation of Acinetobacter infections: 1987–1996. Clin. Infect. Dis.29, 1133–1137 (1999).
  • Young DM, Parke D, Ornston LN. Opportunities for genetic investigation afforded by Acinetobacter baylyi, a nutritionally versatile bacterial species that is highly competent for natural transformation. Ann. Rev. Microbiol.59, 519–551 (2005).
  • Nielsen KM, Smalla K, Van Elsas JD. Natural transformation of Acinetobacter sp. strain BD413 with cell lysates of Acinetobacter sp., Pseudomonas fluorescens, and Burkholderia cepacia in soil mirocosms. Appl. Environ. Microbiol.66(1), 206–212 (2000).
  • Choi CH, Lee EY, Lee YC et al. Outer membrane protein 38 of Acinetobacter baumannii localizes to the mitochondria and induces apoptosis of epithelial cells. Cell. Microbiol.7(8), 1127–1138 (2005).
  • Tomaras AP, Dorsey CW, Edelmann RE, Actis LA. Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system. Microbiology149, 3473–3484 (2003).
  • Joly-Guillou M-L. Clinical impact and pathogenicity of Acinetobacter. Clin. Microbiol. Infect.11, 868–873 (2005).
  • Lee JC, Koerten H, Van den Broek P et al. Adherence of Acinetobacter baumannii strains to human bronchial epithelial cells. Res. Microbiol.157, 360–366 (2006).
  • Dorsey CW, Tolmasky ME, Crosa JH, Actis LA. Genetic organization of an Acinetobacter baumannii chromosomal region harboring genes related to siderophore biosynthesis and transport. Microbiology149, 1227–1238 (2003).
  • Braun G, Vidotto MC. Evaluation of adherence, hemagglutination, and presence of genes codifying for virulence factors of Acinetobacter baumannii causing urinary tract infection. Mem. Inst. Oswaldo Cruz99(8), 839–844 (2004).
  • van Faassen H, KuoLee R, Harris G, Zhao X, Conlan JW, Chen W. Neutrophils play an important role in host resistance to respiratory infection with Acinetobacter baumannii in mice. Infect. Immun.75(12), 5597–5608 (2007).
  • Joly-Guillou M-L, Wolff M, Pocidalo J-J, Walker F, Carbon C. Use of a new mouse model of Acinetobacter baumannii pneumonia to evaluate the postantibiotic effect of imipenem. Antimicrob. Agents Chemother.41(2), 345–351 (1997).
  • Landman D, Bratu S, Kochar S et al. Evolution of antimicrobial resistance among Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae in Brooklyn, NY. J. Antimicrob. Chemother.60, 78–82 (2007).
  • Hoban DJ, Bouchillon SK, Dowzicky MJ. Antimicrobial susceptibility of extended-spectrum β-lactamase producers and multidrug-resistant Acinetobacter baumannii throughout the United States and comparative in vitro activity of tigecycline, a new glycylcycline antimicrobial. Diagn. Microbiol. Infect. Dis.57, 423–428 (2007).
  • Falagas ME, Mourtzoukou EG, Polemis M, Vatopoulos AC; Greek System for Surveillance of Antimicrobial Resistance. Trends in antimicrobial resistance of Acinetobacter baumannii clinical isolates from hospitalised patients in Greece and treatment implications. Clin. Microbiol. Infect.13, 816–819 (2007).
  • Corbella X, Montero A, Miquel P et al. Emergence and rapid spread of carbapenem resistance during a large and sustained hospital outbreak of multiresistant Acinetobacter baumannii. J. Clin. Microbiol.38(11), 4086–4095 (2000).
  • Del Mar Tomas M, Cartell M, Pertega S et al. Hospital outbreak caused by a carbapenem-resistant strain of Acinetobacter baumannii: patient prognosis and risk-factors for colonisation and infection. Clin. Microbiol. Infect.11, 540–546 (2005).
  • Wang H, Chen M; Group CNPRSS. Surveillance for antimicrobial resistance among clinical isolates of Gram-negative bacteria from intensive care unit patients in China, 1996 to 2002. Diagn. Microbiol. Infect. Dis.51, 201–208 (2005).
  • Lockhart SR, Abramson MA, Beekmann SE et al. Antimicrobial resistance among Gram-negative bacilli causing infections in intensive care unit patients in the United States between 1993 and 2004. J. Clin. Microbiol.45(10), 3352–3359 (2007).
  • Poirel L, Nordmann P. Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin. Microbiol. Infect.12, 826–836 (2006).
  • Joly-Guillou ML, Vallee E, Bergogn-Berezin E, Philippon A. Distribution of β-lactamases and phenotype analysis in clinical strains of Acinetobacter calcoaceticus. J. Antimicrob. Chemother.22, 597–604 (1988).
  • Lopez-Hernandez S, Alarcon T, Lopez-Brea M. Biochemical characterization of chromosomal cephalosporinases from isolates belonging to the Acinetobacter baumannii complex. Clin. Microbiol. Infect.7(4), 218–226 (2001).
  • Blechschmidt B, Borneleit P, Kleber H-P. Purification and characterization of an extracellular β-lactamase produced by Acinetobacter calcoaceticus. J. Gen. Microbiol.138, 1197–1202 (1992).
  • Perilli M, Felici A, Oratore A et al. Characterization of the chromosomal cephalosporinases produced by Acinetobacter lwoffii and Acinetobacter baumannii clinical isolates. Antimicrob. Agents Chemother.40(3), 715–719 (1996).
  • Bou G, Martinez-Beltran J. Cloning, nucleotide sequencing, and analysis of the gene encoding an AmpC β-lactamase in Acinetobacter baumannii. Antimicrob. Agents Chemother.44(2), 428–432 (2000).
  • Hujer KM, Hamza NS, Hujer AM et al. Identification of a new allelic variant of the Acinetobacter baumannii cephalosporinase, ADC-7 β-lactamase: defining a unique family of class C enzymes. Antimicrob. Agents Chemother.49(7), 2941–2948 (2005).
  • Beceiro A, Perez-Llarena FJ, Perez A et al. Molecular characterization of the gene encoding a new AmpC β-lactamase in Acinetobacter baylyi. J. Antimicrob. Chemother.59, 996–1000 (2007).
  • Corvec S, Caroff N, Espaze E, Giraudeau C, Drugeon H, Reynaud A. AmpC cephalosporinase hyperproduction in Acinetobacter baumannii clinical strains. J. Antimicrob. Chemother.52(4), 629–635 (2003).
  • Segal H, Nelson EC, Elisha BG. Genetic environment and transcription of ampC in an Acinetobacter baumannii clinical isolate. Antimicrob. Agents Chemother.48(2), 612–614 (2004).
  • Heritier C, Poirel L, Nordmann P. Cephalosporinase over-expression resulting from insertion of ISAba1 in Acinetobacter baumannii. Clin. Microbiol. Infect.12, 123–130 (2006).
  • Segal H, Garny S, Elisha BG. Is ISAba-1 customized for Acinetobacter? FEMS Microbiol. Lett.243, 425–429 (2005).
  • Bonomo RA, Szabo D. Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clin. Infect. Dis.43, S49–S56 (2006).
  • Endimiani A, Luzzaro F, Migliavacca R et al. Spread in an Italian hospital of a clonal Acinetobacter baumannii strain producing the TEM-92 extended-spectrum β-lactamase. Antimicrob. Agents Chemother.51(6), 2211–2214 (2007).
  • Sechi L, Karadenizli A, Deriu A et al. PER-1 type β-lactamase production in Acinetobacter baumannii is related to cell adhesion. Med. Sci. Monit.10(6), CR-180–CR-184 (2004).
  • Naas T, Coignard B, Carbonnet A et al. VEB-1 extended-spectrum β-lactamase-producing Acinetobacter baumannii, France. Emerg. Infect. Dis.12(8), 1214–1222 (2006).
  • Walther-Rasmussen, Hoiby N. Cefotaximases (CTX-M-ases), an expanding family of extended-spectrum β-lactamases. Can. J. Microbiol.50, 137–165 (2004).
  • Naas T, Kernbaum S, Allali S, Nordmann P. Multidrug-resistant Acinetobacter baumannii, Russia. Emerg. Infect. Dis.13(4), 669–671 (2007).
  • Naas T, Bogaerts P, Bauraing C, Degheldre Y, Glupczynski Y, Nordmann P. Emergence of PER and VEB extended-spectrum β-lactamases in Acinetobacter baumannii in Belgium. J. Antimicrob. Chemother.58, 178–182 (2006).
  • Carbonne A, Nass T, Blanckaert K et al. Investigation of a nosocomial outbreak of extended-spectrum β-lactamase VEB-1-producing isolates of Acinetobacter baumannii in a hospital setting. J. Hosp. Infect.60, 14–18 (2005).
  • Paterson DL, Bonomo RA. Extended-spectrum β-lactamases: a clinical update. Clin. Microbiol. Rev.18(4), 657–686 (2005).
  • Arduino SM, Roy PH, Jacoby GA, Orman BE, Pineiro SA, Centron D. blaCTX-M-2 is located in an unusual class I integron (In35) which includes Orf513. Antimicrob. Agents Chemother.46(7), 2303–2306 (2002).
  • Brown S, Amyes SGB. The sequences of seven class D β-lactamases isolated from carbapenem-resistant Acinetobacter baumannii from four continents. Clin. Microbiol. Infect.11, 326–328 (2005).
  • Brown S, Amyes S. OXA β-lactamases in Acinetobacter: the story so far. J. Antimicrob. Chemother.57, 1–3 (2006).
  • Heritier C, Poirel L, Lambert T, Nordmann P. Contribution of acquired carbapenem-hydrolyzing oxacillinases to carbapenem resistance in Acinetobacter baumannii. Antimicrob. Agents Chemother.49(8), 3198–3202 (2005).
  • Turton J, Ward M, Woodford N et al. The role of ISAba1 in expression of oxa carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol. Lett.258, 72–78 (2006).
  • Bou G, Cervero G, Dominguez MA, Quereda C, Martinez-Beltran J. Characterization of a nosocomial outbreak caused by a multiresistant Acinetobacter baumannii strain with a carbapenem-hydrolyzing enzyme: high-level carbapenem resistance in A. baumannii is not due solely to the presence of β-lactamases. J. Clin. Microbiol.38(9), 3299–3305 (2000).
  • Poirel L, Marque S, Heritier C, Segonds C, Chabanon G, Nordmann P. OXA-58, a novel class D β-lactamase involved in resistance to carbapenems in Acinetobacter baumannii. Antimicrob. Agents Chemother.49(1), 202–208 (2005).
  • Woodford N, Ellington MJ, Coelho JM et al. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int. J. Antimicrob. Agents27, 351–353 (2006).
  • Afzal-Shah M, Woodford N, Livermore DM. Characterization of OXA-25, OXA-26, and OXA-27, molecular class D β-lactamases associated with carbapenem resistance in clinical isolates of Acinetobacter baumannii. Antimicrob. Agents Chemother.45(2), 583–588 (2001).
  • Hujer KM, Hujer AM, Hulten EA et al. Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter spp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center. Antimicrob. Agents Chemother.50(12), 4114–4123 (2006).
  • Bogaerts P, Naas T, Wybo I et al. Outbreak of infection by carbapenem-resistant Acinetobacter baumannii producing the carbapenemase OXA-58 in Belgium. J. Clin. Microbiol.44(11), 4189–4192 (2006).
  • Pournaras S, Markogiannakis A, Ikonomidis A et al. Outbreak of multiple clones of imipenem-resistant Acinetobacter baumannii isolates expressing OXA-58 carbapenemases in an intensive care unit. J. Antimicrob. Chemother.57, 557–561 (2006).
  • Bertini A, Poirel L, Bernabeu S et al. Multicopy blaOXA-58 gene as a source of high-level resistance to carbapenems in Acinetobacter baumannii. Antimicrob. Agents Chemother.51(7), 2324–2328 (2007).
  • Giordano A, Varesi P, Bertini A et al. Outbreak of Acinetobacter baumannii producing the carbapenem-hydrolyzing oxacillinase OXA-58 in Rome, Italy. Microb. Drug Resist.13(1), 37–43 (2007).
  • Navia MM, Ruiz J, Vila J. Characterization of an integron carrying a new class D β-lactamase (OXA-37) in Acinetobacter baumannii. Microb. Drug Resist.8(4), 261–265 (2002).
  • Brown S, Young HK, Amyes SGB. Characterisation of OXA-51, a novel class D carbapenemase found in genetically unrelated clinical strains of Acinetobacter baumannii from Argentina. Clin. Microbiol. Infect.11, 15–23 (2005).
  • Valenzuela JK, Thomas L, Partridge SR, van der Reijden T, Dijkshoorn L, Iredell J. Horizontal gene transfer in a polyclonal outbreak of carbapenem-resistant Acinetobacter baumannii. J. Clin. Microbiol.45(2), 453–460 (2007).
  • Koh TH, Sng L-H, Wang GCY, Hsu L-Y, Zhao Y. IMP-4 and OXA β-lactamses in Acinetobacter baumannii from Singapore. J. Antimicrob. Chemother.59, 627–632 (2007).
  • Zhou H, Pi B-R, Yang Q et al. Dissemination of imipenem-resistant Acinetobacter baumannii strains carrying the ISAba-1–blaOXA-23 genes in a Chinese hospital. J. Med. Microbiol.56, 1076–1080 (2007).
  • Depardieu F, Podglajen I, Leclercq R, Collatz E, Courvalin P. Modes and modulations of antibiotic gene expression. Clin. Microbiol. Rev.20(1), 79–114 (2007).
  • Lee K, Yum JH, al el. Novel acquired metallo-β-lactamase gene, blaSIM-1, in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob. Agents Chemother.49, 4485–4491 (2005).
  • Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-β-lactamases: the quiet before the storm? Clin. Microbiol. Rev.18(2), 306–325 (2005).
  • Lolans K, Queenan AM, Bush K, Sahud A, Quinn JP. First nosocomial outbreak of Pseudomonas aeruginosa producing an integron-borne metallo-β-lactamase (VIM-2) in the United States. Antimicrob. Agents Chemother.49(8), 3538–3540 (2005).
  • Toleman MA, Biedenbach D, Bennett DMC, Jones RN, Walsh TR. Italian metallo-β-lactamases: a national problem? Report from the SENTRY Antimicrobial Surveillance Programme. J. Antimicrob. Chemother.55, 61–70 (2005).
  • Hanson ND, Hossain A, Buck L, Moland ES, Thomson KS. First occurrence of a Pseudomonas aeruginosa isolate in the United States producing an IMP metallo-β-lactamase, IMP-18. Antimicrob. Agents Chemother.50(6), 2272–2273 (2006).
  • Wroblewska MM, Towner KJ, Marchel H, Luczak M. Emergence and spread of carbapenem-resistant strains of Acinetobacter baumannii in a tertiary-care hospital in Poland. Clin. Microbiol. Infect.13, 490–496 (2007).
  • Ellington MJ, Kistler J, Livermore DM, Woodford N. Multiplex PCR for rapid detection of genes encoding acquired metallo-β-lactamases. J. Antimicrob. Chemother.59, 321–322 (2007).
  • Ying CM, Ling TKW, Lee CC, Ling JM. Characterization of carbapenem-resistant Acinetobacter baumannii in Shanghai and Hong Kong. J. Med. Microbiol.55(Pt 6), 799–802 (2006).
  • Yong D, Choi YS, Roh KH et al. Increasing prevalence and diversity of metallo-β-lactamases in Pseudomonas spp. Acinetobacter spp. and Enterobacteriaceae from Korea. Antimicrob. Agents Chemother.50(5), 1884–1886 (2006).
  • Tsakris A, Ikonomidis A, Pournaras S et al. VIM-1 metallo-β-lactamase in Acinetobacter baumannii. Emerg. Infect. Dis.12(6), 981–983 (2006).
  • Noppe-Leclercq I, Wallet F, Haentjens S, Courcol R, Simonet M. PCR detection of aminoglycoside resistance genes: a rapid molecular typing method for Acinetobacter baumannii. Res. Microbiol.150, 317–322 (1999).
  • Huys G, Cnockaert M, Nemec A et al. Repetitive-DNA-element PCR fingerprinting and antibiotic resistance of pan-European multiresistant Acinetobacter baumannii clone III strains. J. Med. Microbiol.54, 851–856 (2005).
  • Vila J, Marcos A, Marco F et al. In vitro antimicrobial production of β-lactamases, aminoglycoside-modifying enzymes, and chloramphenicol acetyltransferase by and susceptibility of clinical isolates of Acinetobacter baumannii. Antimicrob. Agents Chemother.37(1), 138–141 (1993).
  • Sato K, Nakae T. Outer membrane permeability of Acinetobacter calcoaceticus and its implication in antibiotic resistance. J. Antimicrob. Chemother.28(1), 35–45 (1991).
  • Vila J, Marti S, Sanchez-Cespedes J. Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii. J. Antimicrob. Chemother.59, 1210–1215 (2007).
  • Gribun A, Nitzan Y, Pechatnikov I, Hershkovits G, Katcoff DJ. Molecular and structural characterization of the HMP-AB gene encoding a pore-forming protein from a clinical isolate of Acinetobacter baumannii. Curr. Microbiol.47(5), 434–443 (2003).
  • Siroy A, Molle V, Lemaitre-Guillier C et al. Channel formation by CarO, the carbapenem resistance-associated outer membrane protein of Acinetobacter baumannii. Antimicrob. Agents Chemother.49(12), 4876–4883 (2005).
  • Mussi MA, Limansky AS, Viale A. Acquisition of resistance to carbapenems in multidrug-resistant clinical strains of Acinetobacter baumannii: natural insertional inactivation of a gene encoding a member of a novel family of β-barrel outer membrane proteins. Antimicrob. Agents Chemother.49(4), 1432–1440 (2005).
  • Kaczmarek FM, Dib-Hajj F, Shang W, Gootz TD. High-level carbapenem resistance in a Klebsiella pneumoniae clinical islate is due to the combination of blaACT-1 β-lactamase production, porin OmpK35/36 insertional inactivation, and down-regulation of the phosphate transport porin PhoE. Antimicrob. Agents Chemother.50(10), 3396–3406 (2006).
  • Limansky AS, Mussi MA, Viale AM. Loss of a 29-kilodalton outer membrane protein in Acinetobacter baumannii is associated with imipenem resistance. J. Clin. Microbiol.40(12), 4776–4778 (2002).
  • Clark RB. Imipenem resistance among Acinetobacter baumannii: association with reduced expression of a 33–36 kDa outer membrane protein. J. Antimicrob. Chemother.38, 245–251 (1996).
  • Magnet S, Courvalin P, Lambert T. Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob. Agents Chemother.45(12), 3375–3380 (2001).
  • Marchand I, Damier-Piolle L, Courvalin P, Lambert T. Expression of the RND-type efflux pump AdeABD in Acinetobacter baumannii is regulated by the AdeRS two component system. Antimicrob. Agents Chemother.48(9), 3298–3304 (2004).
  • Piddock LJV. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin. Microbiol. Rev.19(2), 382–402 (2006).
  • Ruzin A, Keeney D, Bradford PA. AdeABC multidrug efflux pump is associated with decreased susceptibility to tigecycline in Acinetobacter alcoaceticus-Acinetobacter baumannii complex. J. Antimicrob. Chemother.59, 1001–1004 (2007).
  • Peleg AY, Adams J, Paterson DL. Tigecycline efflux as a mechanism for nonsusceptibility in Acinetobacter baumannii. Antimicrob. Agents Chemother.51(6), 2065–2069 (2007).
  • Reid GE, Grim SA, Aldeza CA, Janda WM, Clark NM. Rapid development of Acinetobacter baumannii resistance to tigecycline. Pharmacotherapy27(8), 1198–1201 (2007).
  • Peleg AY, Potoski BA, Rea R et al.Acinetobacter baumannii bloodstream infection while receiving tigecycline: a cautionary report. J. Antimicrob. Chemother.59, 128–131 (2007).
  • Navon-Venezia S, Leavitt A, Carmeli Y. High tigecycline resistance in multidrug resistant Acinetobacter baumannii. J. Antimicrob. Chemother.59, 772–774 (2007).
  • Ribera A, Roca I, Ruiz J, Gibert I, Vila J. Partial characterization of a transposon containing the tet(A) determinant in a clinical isolate of Acinetobacter baumannii. J. Antimicrob. Chemother.52, 477–480 (2003).
  • Wisplinghoff H, Decker M, Haefs C, Krut O, Plum G, Seifert H. Mutations in gyrA and parC associated with resistance to fluoroquinolones in epidemiologically defined clinical strains of Acinetobacter baumannii. J. Antimicrob. Chemother.51, 177–180 (2003).
  • Munoz-Price LS, Weinstein R. Acinetobacter infection. N. Engl. J. Med.358, 1271–1281 (2008).
  • Bernabeu-Wittel M, Pichardo C, Garcia-Curiel A et al. Pharmacokinetic/pharmacodynamic assessment of the in vivo efficacy of imipenem alone or in combination with amikacin for the treatment of experimental multiresistant Acinetobacter baumannii pneumonia. Clin. Microbiol. Infect.11(4), 319–325 (2005).
  • Rahal JJ. Novel antibiotic combinations against infections with almost completely resistant Pseudomonas aeruginosa and Acinetobacter species. Clin. Infect. Dis.43, S95–S99 (2006).
  • Manikal VM, Landman D, Saurina G, Oydna E, Lal H, Quale J. Endemic carbapenem-resistant Acinetobacter in Brooklyn, New York: citywide prevalence, interinstitutional spread, and relation to antibiotic usage. Clin. Infect. Dis.31, 101–106 (2000).
  • Rice LB. Challenges in identifying new antimicrobial agents effective for treating infections with Acinetobacter baumannii and Pseudomonas aeruginosa. Clin. Infect. Dis.43, S100–S105 (2006).
  • Linden PK, Paterson DL. Parenteral and inhaled colistin for treatment of ventilator-assocaited pneumonia. Clin. Infect. Dis.43, S89–S94 (2006).
  • Corbella X, Ariza J, Ardanuy C et al. Efficacy of sulbactam alone and in combination with ampicillin in nosocomial infections caused by multiresistant Acinetobacter baumannii. J. Antimicrob. Chemother.42, 793–802 (1998).
  • Urban C, Go E, Mariano N et al. Effect of sulbactam on infections caused by imipenem-resistant Acinetobacter calcoaceticus biotype anitratus. J. Infect. Dis.167, 448–451 (1993).
  • Antoniadou A, Kontopidou F, Poulakou G et al. Colistin-resistant isolates of Klebsiella pneumoniae emerging in intensive care unit patients: first report of a multiclonal cluster. J. Antimicrob. Chemother.59, 786–790 (2007).
  • Hawley JS, Murray CK, Jorgensen JH. Development of colistin-dependent Acinetobacter baumannii–Acinetobacter calcoaceticus complex. Antimicrob. Agents Chemother.51(12), 4529–4530 (2007).
  • Urban C, Go E, Mariano N, Rahal JJ. Interaction of sulbactam, clavulanic acid and tazobactam with penicillin-binding proteins of imipenem-resistant and -susceptible Acinetobacter baumannii. FEMS Microbiol. Lett.125, 193–198 (1995).
  • Falagas ME, Kasiakou SK. Toxicity of polymyxins: a systemic review of the evidence from old and recent studies. Crit. Care Med.10, R27 (2006).
  • Harris AD, McGregor J, Furuno JP. What infection control interventions should be undertaken to control multidrug-resistant Gram-negative bacteria? Clin. Infect. Dis.43, S57–S61 (2006).
  • Fujitani S, Yu VL. Quantitative cultures for diagnosing ventilator-associated pneumonia: a critique. Clin. Infect. Dis.43, S106–S113 (2006).
  • Segal H, Thomas R, Elisha BG. Characterization of class I integron resistance gene cassettes and the identification of a novel IS-like element in Acinetobacter baumannii. Plasmid49, 169–178 (2003).
  • Gu B, Tong M, Zhao W et al. Prevalence and characterization of class I integrons among Pseudomonas aeruginosa and Acinetobacter baumannii isolates from patients in Nanjing, China. J. Clin. Microbiol.45(1), 241–243 (2007).
  • Houang ETS, Chu Y-W, Lo W-S, Chu K-Y, Cheng AFB. Epidemiology of rifampin ADP-ribosyltransferase (arr-2) and metallo-β-lactamase (blaIMP-4) gene cassettes in class 1 integrons in Acinetobacter strains isolated from blood cultures in 1997 to 2000. Antimicrob. Agents Chemother.47(4), 1382–1390 (2003).
  • Riccio ML, Franceschini N, Boschi L et al. Characterization of the metallo-β-lactamase determinant of Acinetobacter baumannii AC-54/97 reveals the existence of blaIMP allelic variants carried by gene cassettes of different phylogeny. Antimicrob. Agents Chemother.44(5), 1229–1235 (2000).
  • Zarrilli R, Crispino M, Bagattini M et al. Molecular epidemiology of sequential outbreaks of Acinetobacter baumannii in an intensive care unit shows the emergence of carbapenem resistance. J. Clin. Microbiol.42(3), 946–953 (2004).
  • Fernandez-Cuenca F, Martinez-Martinez L, Conejo MC, Ayala JA, Perea EJ, Pascual A. Relationship between β-lactamase production, outer membrane protein and penicillin-binding protein profiles on the activity of cabapenems against clinical isolates of Acinetobacter baumannii. J. Antimicrob. Chemother.51, 565–574 (2003).
  • Beceiro A, Dominguez L, Ribera A et al. Molecular characterization of the gene encoding a new AmpC β-lactamase in a clinical strain of Acinetobacter genomic species 3. Antimicrob. Agents Chemother.48(4), 1374–1378 (2004).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.