962
Views
255
CrossRef citations to date
0
Altmetric
Review

Resistance in bacteria of the food chain: epidemiology and control strategies

, &
Pages 733-750 | Published online: 10 Jan 2014

References

  • Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med.10(Suppl. 12), S122–S129 (2004).
  • Norrby SR, Nord CE, Finch R. Lack of development of new antimicrobial drugs: a potential serious threat to public health. Lancet Infect. Dis.5, 115–119 (2005).
  • Aarestrup FM. Origin, evolution, and local and global dissemination of antimicrobial resistance. In: Antimicrobial Resistance in Bacteria of Animal Origin. Aarestrup FM (Ed.). ASM Press, Washington, DC, USA 339–360 (2006).
  • Sheridan RP, Chopra I. Origin of tetracycline efflux proteins: conclusions from nucleotide sequence analysis. Mol. Microbiol.5(4), 895–900 (1991).
  • Massova I, Mobashery S. Kinship and diversification of bacterial penicillin-binding proteins and β-lactamases. Antimicrob. Agents Chemother.42(1), 1–17 (1998).
  • Joyce P, Abdo Z, Ponciano JM, De Gelder L, Forney LJ, Top EM. Modeling the impact of periodic bottlenecks, unidirectional mutation, and observational error in experimental evolution. J. Math. Biol.50(6), 645–662 (2005).
  • Wahl LM, Gerrish PJ, Saika-Voivod I. Evaluating the impact of population bottlenecks in experimental evolution. Genetics 162(2), 961–971 (2002).
  • Frost LS, Leplae R, Summers AO, Toussaint A. Mobile genetic elements: the agents of open source evolution. Nat. Rev. Microbiol.3(9), 722–732 (2005).
  • Osborn AM, Böltner D. When phage, plasmids, and transposons collide: genomic islands, and conjugative- and mobilizable-transposons as a mosaic continuum. Plasmid48(3), 202–212 (2002).
  • Dahl KH, Mater DD, Flores MJ et al. Transfer of plasmid and chromosomal glycopeptide resistance determinants occurs more readily in the digestive tract of mice than in vitro and exconjugants can persist stably in vivo in the absence of glycopeptide selection. J. Antimicrob. Chemother.59(3), 478–486 (2007).
  • Dionisio F, Matic I, Radman M, Rodrigues OR, Taddei F. Plasmids spread very fast in heterogeneous bacterial communities. Genetics162(4), 1525–1532 (2002).
  • Delsol AA, Anjum M, Woodward MJ, Sunderland J, Roe JM. The effect of chlortetracycline treatment and its subsequent withdrawal on multi-resistant Salmonella enterica serovar Typhimurium DT104 and commensal Escherichia coli in the pig. J. Appl. Microbiol.95(6), 1226–1234 (2003).
  • Mathew AG, Garner KN, Ebner PD, Saxton AM, Clift RE, Liamthong S. Effects of antibiotic use in sows on resistance of E. coli and Salmonella enterica Typhimurium in their offspring. Foodborne Pathog. Dis.2(3), 212–220 (2005).
  • Delsol AA, Woodward MJ, Roe JM. Effect of a 5 day enrofloxacin treatment on Salmonella enterica serotype Typhimurium DT104 in the pig. J. Antimicrob. Chemother.53(2), 396–398 (2004).
  • Delsol AA, Sunderland J, Woodward MJ, Pumbwe L, Piddock LJ, Roe JM. Emergence of fluoroquinolone resistance in the native Campylobacter coli population of pigs exposed to enrofloxacin. J. Antimicrob. Chemother.53(5), 872–874 (2004).
  • McDermott PF, Bodeis SM, English LL et al. Ciprofloxacin resistance in Campylobacter jejuni evolves rapidly in chickens treated with fluoroquinolones. J. Infect. Dis.185(6), 837–840 (2002).
  • Randall LP, Eaves DJ, Cooles SW et al. Fluoroquinolone treatment of experimental Salmonella enterica serovar Typhimurium DT104 infections in chickens selects for both gyrA mutations and changes in efflux pump gene expression. J. Antimicrob. Chemother.56(2), 297–306 (2005).
  • Takahashi T, Ishihara K, Kojima A, Asai T, Harada K, Tamura Y. Emergence of fluoroquinolone resistance in Campylobacter jejuni in chickens exposed to enrofloxacin treatment at the inherent dosage licensed in Japan. J. Vet. Med. B Infect. Dis. Vet. Public Health52(10), 460–464 (2005).
  • van Boven M, Veldman KT, de Jong MC, Mevius DJ. Rapid selection of quinolone resistance in Campylobacter jejuni but not in Escherichia coli in individually housed broilers. J. Antimicrob. Chemother.52(4), 719–723 (2003).
  • Wiuff C, Lykkesfeldt J, Svendsen O, Aarestrup FM. The effects of oral and intramuscular administration and dose escalation of enrofloxacin on the selection of quinolone resistance among Salmonella and coliforms in pigs. Res. Vet. Sci.75(3), 185–193 (2003).
  • Aarestrup FM, Carstensen B. Effect of tylosin used as a growth promoter on the occurrence of macrolide-resistant enterococci and staphylococci in pigs. Microb. Drug Resist.4(4), 307–312 (1998).
  • Butaye P, Devriese LA, Haesebrouck F. Effect of avilamycin fed to chickens on E. faecium counts and on the selection of avilamycin-resistant E. faecium populations. Microb. Drug Resist.11(2), 170–177 (2005).
  • Delsol AA, Randall L, Cooles S, Woodward MJ, Sunderland J, Roe JM. Effect of the growth promoter avilamycin on emergence and persistence of antimicrobial resistance in enteric bacteria in the pig. J. Appl. Microbiol.98(3), 564–571 (2005).
  • Dunlop RH, McEwen SA, Meek AH, Clarke RC, Black WD, Friendship RM. Associations among antimicrobial drug treatments and antimicrobial resistance of fecal Escherichia coli of swine on 34 farrow-to-finish farms in Ontario, Canada. Prev. Vet. Med.34(4), 283–305 (1998).
  • Akwar HT, Poppe C, Wilson J et al. Associations of antimicrobial uses with antimicrobial resistance of fecal Escherichia coli from pigs on 47 farrow-to-finish farms in Ontario and British Columbia. Can. J. Vet. Res.72(2), 202–210 (2008).
  • Aarestrup FM, Bager F, Andersen JS. Association between the use of avilamycin for growth promotion and the occurrence of resistance among Enterococcus faecium from broilers: epidemiological study and changes over time. Microb. Drug Resist.6(1), 71–75 (2000).
  • Bager F, Madsen M, Christensen J, Aarestrup FM. Avoparcin used as a growth promoter is associated with the occurrence of vancomycin-resistant Enterococcus faecium on Danish poultry and pig farms. Prev. Vet. Med.31(1–2), 95–112 (1997).
  • Chauvin C, Gicquel-Bruneau M, Perrin-Guyomard A et al. Use of avilamycin for growth promotion and avilamycin-resistance among Enterococcus faecium from broilers in a matched case–control study in France. Prev. Vet. Med.70(3–4), 155–163 (2005).
  • Aarestrup FM. Occurrence of glycopeptide resistance among Enterococcus faecium isolates from conventional and ecological poultry farms. Microb. Drug Resist.1(3), 255–257 (1995).
  • Cui S, Ge B, Zheng J, Meng J. Prevalence and antimicrobial resistance of Campylobacter spp. and Salmonella serovars in organic chickens from Maryland retail stores. Appl. Environ. Microbiol.71(7), 4108–4111 (2005).
  • Gebreyes WA, Thakur S, Morrow WE. Campylobacter coli: prevalence and antimicrobial resistance in antimicrobial-free (ABF) swine production systems. J. Antimicrob. Chemother.56(4), 765–768 (2005).
  • Luangtongkum T, Morishita TY, Ison AJ, Huang S, McDermott PF, Zhang Q. Effect of conventional and organic production practices on the prevalence and antimicrobial resistance of Campylobacter spp. in poultry. Appl. Environ. Microbiol.72(5), 3600–3607 (2006).
  • Sato K, Bartlett PC, Kaneene JB, Downes FP. Comparison of prevalence and antimicrobial susceptibilities of Campylobacter spp. isolates from organic and conventional dairy herds in Wisconsin. Appl. Environ. Microbiol.70(3), 1442–1447 (2004).
  • Chaslus-Dancla E, Martel JL, Carlier C, Lafont JP, Courvalin P. Emergence of amino­glycoside 3-N-acetyltransferase IV in Escherichia coli and Salmonella typhimurium isolated from animals in France. Antimicrob. Agents Chemother.29(2), 239–243 (1986).
  • Tschäpe H, Tietze E, Prager R, Voigt W, Wolter E, Seltmann G. Plasmid borne streptothricin resistance in Gram-negative bacteria. Plasmid12(3), 189–196 (1984).
  • Wray C, Hedges RW, Shannon KP, Bradley DE. Apramycin and gentamicin resistance in Escherichia coli and salmonellas isolated from farm animals. J. Hyg. Camb.97(3), 445–456 (1986).
  • Endtz HP, Ruijs GJ, van Klingeren B, Jansen WH, van der Reyden T, Mouton RP. Quinolone resistance in Campylobacter isolated from man and poultry following the introduction of fluoroquinolones in veterinary medicine. J. Antimicrob. Chemother.27(2), 199–208 (1991).
  • Engberg J, Aarestrup FM, Taylor DE, Gerner-Smidt P, Nachamkin I. Quinolone and macrolide resistance in Campylobacter jejuni and C. coli: resistance mechanisms and trends in human isolates. Emerg. Infect. Dis.7(1), 24–34 (2001).
  • McDermott PF. Antimicrobial resistance in nontyphoidal salmonellae. In: Antimicrobial Resistance in Bacteria of Animal Origin. Aarestrup FM (Ed.) ASM Press, Washington, DC, USA 293–314 (2006).
  • Gupta A, Fontana J, Crowe C et al. Emergence of multidrug-resistant Salmonella enterica serotype Newport infections resistant to expanded-spectrum cephalosporins in the United States. J. Infect. Dis.188(11), 1707–1716 (2003).
  • Hendriksen RS, Mevius DJ, Schroeter A et al. Occurrence of antimicrobial resistance among bacterial pathogens and indicator bacteria in pigs in different European countries from year 2002–2004; the ARBAO-II study. Acta Vet. Scand.50(1), 19 (2008).
  • Riaño I, Moreno MA, Teshager T, Sáenz Y, Domínguez L, Torres C. Detection and characterization of extended-spectrum β-lactamases in Salmonella enterica strains of healthy food animals in Spain. J. Antimicrob. Chemother.58(4), 844–847 (2006).
  • Meunier D, Jouy E, Lazizzera C, Kobisch M, Madec JY. CTX-M-1- and CTX-M-15-type β-lactamases in clinical Escherichia coli isolates recovered from food-producing animals in France. Int. J. Antimicrob. Agents28(5), 402–407 (2006).
  • McMahon MA, Xu J, Moore JE, Blair IS, McDowell DA. Environmental stress and antibiotic resistance in food-related pathogens. Appl. Environ. Microbiol.73(1), 211–217 (2007).
  • Beaber JW, Hochhut B, Waldor MK. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature427(6969), 72–74 (2004).
  • Ubeda C, Maiques E, Knecht E, Lasa I, Novick RP, Penadés JR. Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. Mol. Microbiol.56(3), 836–844 (2005).
  • Miller C, Thomsen LE, Gaggero C, Mosseri R, Ingmer H, Cohen SN. SOS response induction by β-lactams and bacterial defense against antibiotic lethality. Science305(5690), 1629–1631 (2005).
  • Piddock LJ, Walters RN, Diver JM. Correlation of quinolone MIC and inhibition of DNA, RNA, and protein synthesis and induction of the SOS response in Escherichia coli. Antimicrob. Agents Chemother.34(12), 2331–2336 (1990).
  • Aarestrup FM, Butaye P, Witte W. Non-human reservoirs of enterococci. In: The Enterococci: Pathogenesis, Molecular Biology and Antibiotic Resistance (First Edition). Gilmore M (Ed.). ASM Press, Washington, DC, USA 55–99 (2002).
  • Corpet DE. Antibiotic resistance from food. N. Engl. J. Med.318(18), 1206–1207 (1988).
  • Linton AH. Animal to man transmission of Enterobacteriaceae. R. Soc. Health J.97(3), 115–118 (1977).
  • Linton AH, Howe K, Bennett PM, Richmond MH, Whiteside EJ. The colonization of the human gut by antibiotic resistant Escherichia coli from chickens. J. Appl. Bacteriol.43(3), 465–469 (1977).
  • Salyers AA, Gupta A, Wang Y. Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol.12(9), 412–416 (2004).
  • Kruse H, Sørum H. Transfer of multiple drug resistance plasmids between bacteria of diverse origins in natural microenvironments. Appl. Environ. Microbiol.60(11), 4015–4021 (1994).
  • Walsh C, Duffy G, Nally P, O’Mahony R, McDowell DA, Fanning S. Transfer of ampicillin resistance from Salmonella Typhimurium DT104 to Escherichia coli K12 in food. Lett. Appl. Microbiol.46(2), 210–215 (2008).
  • Feld L, Schjørring S, Hammer K et al. Selective pressure affects transfer and establishment of a Lactobacillus plantarum resistance plasmid in the gastrointestinal environment. J. Antimicrob. Chemother.61(4), 845–852 (2008).
  • Lester CH, Frimodt-Møller N, Sørensen TL, Monnet DL, Hammerum AM. In vivo transfer of the vanA resistance gene from an Enterococcus faecium isolate of animal origin to an E. faecium isolate of human origin in the intestines of human volunteers. Antimicrob. Agents Chemother.50(2), 596–599 (2006).
  • Hummel R, Tschäpe H, Witte W. Spread of plasmid-mediated nourseothricin resistance due to antibiotic use in animal husbandry. J. Basic Microbiol.26(8), 461–466 (1986).
  • Chaslus-Dancla E, Lafont JP. Resistance to gentamicin and apramycin in Escherichia coli from calves in France. Vet. Rec.117(4), 90–91 (1985).
  • Chaslus-Dancla E, Pohl P, Meurisse M, Marin M, Lafont JP. High genetic homology between plasmids of human and animal origins conferring resistance to the aminoglycosides gentamicin and apramycin. Antimicrob. Agents Chemother.35(3), 590–593 (1991).
  • Hunter JE, Shelley JC, Walton JR, Hart CA, Bennett M, Apramycin resistance plasmids in Escherichia coli: possible transfer to Salmonella Typhimurium in calves. Epidemiol. Infect.108(2), 271–278 (1992).
  • Hunter JE, Hart CA, Shelley JC, Walton JR, Bennett M, Human isolates of apramycin-resistant Escherichia coli which contain the genes for the AAC(3)IV enzyme. Epidemiol. Infect.110(2), 253–259 (1993).
  • Johnson AP, Burns L, Woodford N et al. Gentamicin resistance in clinical isolates of Escherichia coli encoded by genes of veterinary origin. J. Med. Microbiol.40(3), 221–226 (1994).
  • Johnson AP, Malde M, Woodford N, Cunney RJ, Smyth EG. Urinary isolates of apra­mycin-resistant Escherichia coli and Klebsiella pneumoniae from Dublin. Epidemiol. Infect.114(1), 105–112 (1995).
  • Pohl P, Glupczynski Y, Marin M, Van Robaeys G, Lintermans P, Couturier M. Replicon typing characterization of plasmids encoding resistance to gentamicin and apramycin in Escherichia coli and Salmonella Typhimurium isolated from human and animal sources in Belgium. Epidemiol. Infect.111(2), 229–238 (1993).
  • Threlfall EJ, Rowe B, Ferguson JL, Ward LR. Characterization of plasmids conferring resistance to gentamicin and apramycin in strains of Salmonella Typhimurium phage type 204c isolated in Britain. J. Hyg. Camb.97(3), 419–426 (1986).
  • Johnson JR, Sannes MR, Croy C et al. Antimicrobial drug-resistant Escherichia coli from humans and poultry products, Minnesota and Wisconsin, 2002–2004. Emerg. Infect. Dis.13(6), 838–846 (2007).
  • Johnson JR, Kuskowski MA, Menard M, Gajewski A, Xercavins M, Garau J. Similarity between human and chicken Escherichia coli isolates in relation to ciprofloxacin resistance status. J. Infect. Dis.194(1), 71–78 (2006).
  • Johnson JR, Kuskowski MA, Smith K, O’Bryan TT, Tatini S. Antimicrobial-resistant and extraintestinal pathogenic Escherichia coli in retail foods. J. Infect. Dis.191(7), 1040–1049 (2005).
  • Jensen LB, Hammerum AM, Aarestrup FM, van den Bogaard AE, Stobberingh EE. Occurrence of satA and vgb genes in streptogramin-resistant Enterococcus faecium isolates of animal and human origins in The Netherlands. Antimicrob. Agents Chemother.42(12), 3330–3331 (1998).
  • van den Bogaard AE, Jensen LB, Stobberingh EE. Vancomycin-resistant enterococci in turkeys and farmers. N. Engl. J. Med.337(21), 1558–1559 (1997).
  • Hendriksen SW, Orsel K, Wagenaar JA, Miko A, van Duijkeren E. Animal-to-human transmission of Salmonella Typhimurium DT104A variant. Emerg. Infect. Dis.10(12), 2225–2227 (2004).
  • Smith KE, Stenzel SA, Bender JB et al. Outbreaks of enteric infections caused by multiple pathogens associated with calves at a farm day camp. Pediatr. Infect. Dis. J.23(12), 1098–1104 (2004).
  • Huijsdens XW, van Dijke BJ, Spalburg E et al. Community-acquired MRSA and pig-farming. Ann. Clin. Microbiol. Antimicrob.10, 5–26 (2006).
  • de Neeling AJ, van den Broek MJ, Spalburg EC et al. High prevalence of methicillin resistant Staphylococcus aureus in pigs. Vet. Microbiol.122(3–4), 366–372 (2007).
  • van Belkum A, Melles DC, Peeters JK et al. Methicillin resistant and susceptible Staphylococcus aureus sequence type 398 in pigs and humans. Emerg. Infect. Dis.14(3), 479–483 (2008).
  • van Loo I, Huijsdens X, Tiemersma E et al. Emergence of methicillin-resistant Staphylococcus aureus of animal origin in humans. Emerg. Infect. Dis.13(12), 1834–1839 (2007).
  • Witte W, Strommenger B, Stanek S, Cuny C. Methicillin-resistant Staphylococcus aureus ST398 in humans and animals, central Europe. Emerg. Infect. Dis.13(2), 255–258 (2007).
  • Threlfall EJ. Epidemic Salmonella Typhimurium DT 104 – a truly international multiresistant clone. J. Antimicrob. Chemother.46(1), 7–10 (2000).
  • Aarestrup FM, Hendriksen RS, Lockett J et al. International spread of multidrug-resistant Salmonella Schwarzengrund in food products. Emerg. Infect. Dis.13(5), 726–731 (2007).
  • Crook PD, Aguilera JF, Threlfall EJ et al. A European outbreak of Salmonella enterica serotype Typhimurium definitive phage type 204b in 2000. Clin. Microbiol. Infect.9(8), 839–845 (2003).
  • Bonnet R. Growing group of extended-spectrum β-lactamases: the CTX-M enzymes. Antimicrob. Agents Chemother.48(1), 1–14 (2004).
  • Aarestrup FM. Occurrence, selection and spread of resistance to antimicrobial agents used for growth promotion for food animals in Denmark. APMIS101, 1–48 (2000).
  • Aarestrup FM. Monitoring of antimicrobial resistance among food animals: principles and limitations. J. Vet. Med. B. Infect. Dis. Vet. Public Health51(8–9), 380–388 (2004).
  • McEwan SA, Aarestrup FM, Jordan D. Monitoring of antimicrobial resistance in animals: principles and practices In: Antimicrobial Resistance in Bacteria of Animal Origin. Aarestrup FM (Ed.). ASM Press, Washington, DC, USA 397–413 (2006).
  • European Food Safety Authority – Working Group on Developing Harmonised Schemes for Monitoring Antimicrobial Resistance in Zoonotic Agents. Harmonised monitoring of antimicrobial resistance in Salmonella and Campylobacter isolates from food animals in the European Union. Clin. Microbiol. Infect.14(6), 522–533 (2008).
  • Grave K, Jensen VF, McEwen SA, Kruse H. Monitoring of antimicrobial drug usage in animals: methods and applications. In: Antimicrobial Resistance in Bacteria of Animal Origin. Aarestrup FM (Ed.). ASM Press, Washington, DC, USA 375–396 (2006).
  • Stege H, Bager F, Jacobsen E, Thougaard A. VETSTAT – the Danish system for surveillance of the veterinary use of drugs for production animals. Prev. Vet. Med.57(3), 105–115 (2003).
  • Tollefson L, Morris D, Boland C, Kay J. Licensing and approval of antimicrobials for use in animals. In: Antimicrobial Resistance in Bacteria of Animal Origin. Aarestrup FM (Ed.). ASM Press, Washington, DC, USA 361–374 (2006).
  • Kennedy KJ, Roberts JL, Collignon PJ. Escherichia coli bacteraemia in Canberra: incidence and clinical features. Med. J. Aust.188(4), 209–213 (2008).
  • Arnold FW, McDonald LC, Smith RS, Newman D, Ramirez JA. Improving antimicrobial use in the hospital setting by providing usage feedback to prescribing physicians. Infect. Control Hosp. Epidemiol.27(4), 378–382 (2006).
  • Cosgrove SE, Patel A, Song X et al. Impact of different methods of feedback to clinicians after postprescription antimicrobial review based on the Centers For Disease Control and Prevention’s 12 steps to prevent antimicrobial resistance among hospitalized adults. Infect. Control Hosp. Epidemiol.28(6), 641–646 (2007).
  • van den Bogaard AE. A veterinary antibiotic policy: a personal view on the perspectives in The Netherlands. Vet. Microbiol.35(3–4), 303–312 (1993).
  • Pedersen KB, Aarestrup FM, Jensen NE et al. The need for a veterinary antibiotic policy. Vet. Rec.145(2), 50–53 (1999).
  • Ungemach FR, Müller-Bahrdt D, Abraham G. Guidelines for prudent use of antimicrobials and their implications on antibiotic usage in veterinary medicine. Int. J. Med. Microbiol.296(Suppl. 41), S33–S38 (2006).
  • Grave K, Wegener HC. Comment on: veterinarians’ profit on drug dispensing. Prev. Vet. Med.77(3–4), 306–308 (2006).
  • Hux JE, Naylor CD. Drug prices and third party payment: do they influence medication selection? Pharmacoeconomics5(4), 343–350 (1994).
  • Hart J, Salman H, Bergman M, et al. Do drug costs affect physicians’ prescription decisions? J. Intern. Med.241(5), 415–420 (1997).
  • Swann MM. Joint committee on the use of antibiotics in animal husbandry and veterinary medicine. Her Majesty’s Stationery Office, London, UK (1969).
  • van Leeuwen WJ, van Embden J, Guinée P, et al. Decrease of drug resistance in Salmonella in The Netherlands. Antimicrob. Agents Chemother.16(2), 237–239 (1979).
  • Wegener HC. Risk management for the limitation of antibiotic resistance – experience of Denmark. Int. J. Med. Microbiol.296(Suppl. 41) S11–S13 (2006).
  • Aarestrup FM, Hasman H, Jensen LB. Resistant Salmonella virchow in quail products. Emerg. Infect. Dis.11(12), 1984–1985 (2005).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.