195
Views
52
CrossRef citations to date
0
Altmetric
Review

Peptidomics: a logical sequel to proteomics

&
Pages 463-473 | Published online: 09 Jan 2014

References

  • Rawlings ND, Tolle DP, Barrett AJ. MEROPS: the peptidase database. Nucleic Acids Res.32(Database issue), D160–D164 (2004).
  • Slemmon JR, Wengenack TM, Flood DG. Profiling of endogenous peptides as a tool for studying development and neurological disease. Biopolymers 43(2), 157–170 (1997).
  • Karelin AA, Blishchenko EYu, Ivanov VT. A novel system of peptidergic regulation. FEBS Lett. 428(1–2), 7–12 (1998).
  • Ivanov VT. Peptidomics – a logical sequel to proteomics? Int. J. Immunorehabilitation 2(3), 90 (2000).
  • Bergquist J, Ekman R. Future aspects of psychoneuroimmunology – lymphocyte peptides reflecting psychiatric disorders studied by mass spectrometry. Arch. Physiol. Biochem. 109(4), 369–371 (2001).
  • Clynen E, Baggerman G, Veelaert D et al. Peptidomics of the pars intercerebralis–corpus cardiacum complex of the migratory locust, Locusta migratoria. Eur. J. Biochem. 268(7), 1929–1939 (2001).
  • Minamino N. Peptidome: the fact-database for endogenous peptides. Tanpakushitsu Kakusan Koso. 46(11 Suppl.), 1510–1517 (2001).
  • Kuwahara H, Tanaka J, Kihara T, Matsubae M, Takao T, Minamino N. Peptide Science 2001. Aoyagi H (Ed.), The Japanese Peptide Society, Japan, 369–370 (2002).
  • Schulz-Knappe P, Zucht HD, Heine G, Jurgens M, Hess R, Schrader M. Peptidomics: the comprehensive analysis of peptides in complex biological mixtures. Comb. Chem. High Throughput Screen. 4(2), 207–217 (2001).
  • Verhaert P, Uttenweiler-Joseph S, de Vries M, Loboda A, Ens W, Standing KG. Matrix-assisted laser desorption/ionization quadrupole time-of-flight mass spectrometry: an elegant tool for peptidomics. Proteomics 1(1), 118–131 (2001).
  • Soloviev M, Finch P. Peptidomics, current status. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 815(1–2), 11–24 (2005).
  • Baggerman G, Verleyen P, Clynen E, Huybrechts J, De Loof A, Schoofs L. Peptidomics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 803(1), 3–16 (2004).
  • Paulson L, Persson R, Karlsson G et al. Proteomics and peptidomics in neuroscience. Experience of capabilities and limitations in a neurochemical laboratory. J. Mass Spectrom. 40(2), 202–213 (2005).
  • O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250(10), 4007–4021 (1975).
  • Jurgens M, Schrader M. Peptidomic approaches in proteomic research. Curr. Opin. Mol. Ther. 4(3), 236–241 (2002).
  • Rabilloud T. Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics 2(1), 3–10 (2002).
  • Corthals GL, Wasinger VC, Hochstrasser DF, Sanchez JC. The dynamic range of protein expression: a challenge for proteomic research. Electrophoresis 21(6), 1104–1115 (2000).
  • Gygi SP, Corthals GL, Zhang Y, Rochon Y, Aebersold R. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc. Natl Acad. Sci. USA 97(17), 9390–9395 (2000).
  • Kislinger T, Rahman K, Radulovic D, Cox B, Rossant J, Emili A. PRISM, a generic large scale proteomic investigation strategy for mammals. Mol. Cell. Proteomics 2(2), 96–106 (2003).
  • Adkins JN, Varnum SM, Auberry KJ et al. Toward a human blood serum proteome: analysis by multidimensional separation coupled with mass spectrometry. Mol. Cell. Proteomics 1(12), 947–955 (2002).
  • Ramstrom M, Bergquist J. Miniaturized proteomics and peptidomics using capillary liquid separation and high resolution mass spectrometry. FEBS Lett. 567(1), 92–95 (2004).
  • Domon B, Broder S. Implications of new proteomics strategies for biology and medicine. J. Proteome Res. 3(2), 253–260 (2004).
  • Mutt V. Recent developments in the chemistry of gastrointestinal peptides. Eur. J. Clin. Invest. 20(Suppl. 1), S2–S9 (1990).
  • Karelin AA, Philippova MM, Yatskin ON et al. Peptides comprising the bulk of rat brain extracts: isolation, amino acid sequences and biological activity. J. Pept. Sci. 6(8), 345–354 (2000).
  • Che FY, Yan L, Li H, Mzhavia N, Devi LA, Fricker LD. Identification of peptides from brain and pituitary of Cpe(fat)/Cpe(fat) mice. Proc. Natl Acad. Sci. USA 98(17), 9971–9976 (2001).
  • Skold K, Svensson M, Kaplan A, Bjorkesten L, Astrom J, Andren PE. A neuroproteomic approach to targeting neuropeptides in the brain. Proteomics 2(4), 447–454 (2002).
  • Svensson M, Skold K, Svenningsson P, Andren PE. Peptidomics-based discovery of novel neuropeptides. J. Proteome Res. 2(2), 213–219 (2003).
  • Rose K, Bougueleret L, Baussant T et al. Industrial-scale proteomics: from liters of plasma to chemically synthesized proteins. Proteomics 4(7), 2125–2150 (2004).
  • Quadroni M, Ducret A, Stocklin R. Quantify this! Report on a round table discussion on quantitative mass spectrometry in proteomics. Proteomics 4(8), 2211–2215 (2004).
  • Linscheid MW. Quantitative proteomics. Anal. Bioanal. Chem. 381(1), 64–66 (2005).
  • Che FY, Biswas R, Fricker LD. Relative quantitation of peptides in wild type and Cpe(fat/fat) mouse pituitary using stable isotopic tags and mass spectrometry. J. Mass Spectrom. 40(2), 227–237 (2005).
  • Che FY, Fricker LD. Quantitative peptidomics of mouse pituitary: comparison of different stable isotopic tags. J. Mass Spectrom. 40(2), 238–249 (2005).
  • Clynen E, De Loof A, Schoofs L. The use of peptidomics in endocrine research. Gen. Comp. Endocrinol. 132(1), 1–9 (2003).
  • Russell RB. Genomics, proteomics and bioinformatics: all in the same boat. Genome Biol. 3(10), REPORTS 4034 (2002).
  • Ivanov VT, Blishchenko EY, Sazonova OV, Karelin AA. What to synthesize? From Emil Fischer to peptidomics. J. Pept. Sci. 9(9), 553–562 (2003).
  • Schrader M, Schulz-Knappe P. Peptidomics technologies for human body fluids. Trends Biotechnol. 19(10 Suppl.), S55–S60 (2001).
  • Stark M, Danielsson O, Griffiths WJ, Jornvall H, Johansson J. Peptide repertoire of human cerebrospinal fluid: novel proteolytic fragments of neuroendocrine proteins. J. Chromatogr. B Biomed. Sci. Appl. 754(2), 357–367 (2001).
  • Karelin AA, Philippova MM, Karelina EV et al. Peptides from bovine brain: structure and biological role. J. Pept. Sci. 4(3), 211–225 (1998).
  • Minamino N, Tanaka J, Kuwahara H et al. Determination of endogenous peptides in the porcine brain: possible construction of peptidome, a fact database for endogenous peptides. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 792(1), 33–48 (2003).
  • Ivanov VT, Karelin AA, Yatskin ON. Generation of peptides by human erythrocytes: facts and artifacts. Biopolymers 80(2–3), 332–346 (2005).
  • Seiler P, Standker L, Mark S, Hahn W, Forssmann WG, Meyer M. Application of a peptide bank from porcine brain in isolation of regulatory peptides. J. Chromatogr. A. 852(1), 273–283 (1999).
  • Ziganshin RKh, Sviriaev VI, Vas’kovskii BV et al. Biologically active peptides isolated from the brain of hibernating ground squirrels. Bioorg. Khim. 20(8–9), 899–918 (1994).
  • Wittke S, Fliser D, Haubitz M et al. Determination of peptides and proteins in human urine with capillary electrophoresis-mass spectrometry, a suitable tool for the establishment of new diagnostic markers. J. Chromatogr. A. 1013(1–2), 173–181 (2003).
  • Cutillas PR, Norden AG, Cramer R, Burlingame AL, Unwin RJ. Detection and analysis of urinary peptides by on-line liquid chromatography and mass spectrometry: application to patients with renal Fanconi syndrome. Clin. Sci. (Lond). 104(5), 483–490 (2003).
  • Kaplan B, Cojocaru M, Unsworth E, Knecht A, Martin BM. Search for peptidic ‘middle molecules’ in uremic sera: isolation and chemical identification of fibrinogen fragments. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 796(1), 141–153 (2003).
  • Richter R, Schulz-Knappe P, Schrader M et al. Composition of the peptide fraction in human blood plasma: database of circulating human peptides. J. Chromatogr. B Biomed. Sci. Appl. 726(1–2), 25–35 (1999).
  • Hickman HD, Luis AD, Buchli R et al. Toward a definition of self: proteomic evaluation of the class I peptide repertoire. J. Immunol. 172(5), 2944–2952 (2004).
  • Karelin AA, Filippova MM, Iatskin ON, Blishchenko EIu, Nazimov IV, Ivanov VT. Proteolytic degradation of hemoglobin in erythrocytes results in formation of biologically active peptides. Bioorg. Khim. 24(4), 271–281 (1998).
  • Conlon JM, Kim JB, Johansson A, Kikuyama S. Comparative peptidomics of the endocrine pancreas: islet hormones from the clawed frog Xenopus laevis and the red-bellied newt Cynops pyrrhogaster. J. Endocrinol. 175(3), 769–777 (2002).
  • Predel R, Wegener C, Russell WK, Tichy SE, Russell DH, Nachman RJ. Peptidomics of CNS-associated neurohemal systems of adult Drosophila melanogaster: a mass spectrometric survey of peptides from individual flies. J. Comp. Neurol. 474(3), 379–392 (2004).
  • Verleyen P, Huybrechts J, Sas F et al. Neuropeptidomics of the grey flesh fly, Neobellieria bullata. Biochem. Biophys. Res. Commun. 316(3), 763–770 (2004).
  • Baggerman G, Cerstiaens A, De Loof A, Schoofs L. Peptidomics of the larval Drosophila melanogaster central nervous system. J. Biol. Chem. 277(43), 40368–40374 (2002).
  • Baggerman G, Boonen K, Verleyen P, De Loof A, Schoofs L. Peptidomic analysis of the larval Drosophila melanogaster central nervous system by two-dimensional capillary liquid chromatography quadrupole time-of-flight mass spectrometry. J. Mass Spectrom. 40(2), 250–260 (2005).
  • Huybrechts J, Verleyen P, Schoofs L. Mass spectrometric analysis of head ganglia and neuroendocrine tissue of larval Galleria mellonella (Arthropoda, Insecta). J. Mass Spectrom. 40(2), 271–276 (2005).
  • Huybrechts J, Nusbaum MP, Bosch LV, Baggerman G, De Loof A, Schoofs L. Neuropeptidomic analysis of the brain and thoracic ganglion from the Jonah crab, Cancer borealis. Biochem. Biophys. Res. Commun. 308(3), 535–544 (2003).
  • Bosch TC, Fujisawa T. Polyps, peptides and patterning. Bioessays 23(5), 420–427 (2001).
  • Olsen AN, Mundy J, Skriver K. Peptomics, identification of novel cationic Arabidopsis peptides with conserved sequence motifs. In Silico Biol. 2(4), 441–451 (2002).
  • Schulte I, Tammen H, Selle H, Schulz-Knappe P. Peptides in body fluids and tissues as markers of disease. Expert Rev. Mol. Diagn. 5(2), 145–157 (2005).
  • Villanueva J, Philip J, Entenberg D et al. Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry. Anal. Chem. 76(6), 1560–1570 (2004).
  • Petricoin EF, Ardekani AM, Hitt BA et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359(9306), 572–577 (2002).
  • Karelin AA, Blishchenko EYu, Ivanov VT. Fragments of functional proteins: role in endocrine regulation. Neurochem. Res. 24(9), 1117–1124 (1999).
  • Blischenko EYu, Mernenko OA, Yatskin ON et al. Neokyotorphin and neokyotorphin (1–4): cytolytic activity and comparative levels in rat tissues. Biochem. Biophys. Res. Commun. 224(3), 721–727 (1996).
  • Yatskin ON, Philippova MM, Blishchenko EYu, Karelin AA, Ivanov VT. LVV- and VV-hemorphins: comparative levels in rat tissues. FEBS Lett. 428(3), 286–290 (1998).
  • Pivnik AV, Rasstrigin NA, Philippova MM, Karelin AA, Ivanov VT. Alteration of intraerythrocyte proteolytic degradation of hemoglobin during Hodgkin’s disease. Leuk. Lymphoma 22(3–4), 345–349 (1996).
  • Slemmon JR, Flood DG. Profiling of endogenous brain peptides and small proteins: methodology, computer-assisted analysis, and application to aging and lesion models. Neurobiol. Aging 13(6), 649–660 (1992).
  • Slemmon JR, Hughes CM, Campbell GA, Flood DG. Increased levels of hemoglobin-derived and other peptides in Alzheimer’s disease cerebellum. J. Neurosci. 14(4), 2225–2235 (1994).
  • Zhu YX, Hsi KL, Chen ZG et al. Neo-kyotorphin, an analgesic peptide isolated from human lung carcinoma. FEBS Lett. 208(2), 253–257 (1986).
  • Glamsta EL, Morkrid L, Lantz I, Nyberg F. Concomitant increase in blood plasma levels of immunoreactive hemorphin-7 and β-endorphin following long distance running. Regul. Pept. 49(1), 9–18 (1993).
  • Che FY, Yuan Q, Kalinina E, Fricker LD. Peptidomics of Cpe fat/fat mouse hypothalamus: effect of food deprivation and exercise on peptide levels. J. Biol. Chem. 280(6), 4451–4461 (2005).
  • Uttenweiler-Joseph S, Moniatte M, Lagueux M, Van Dorsselaer A, Hoffmann JA, Bulet P. Differential display of peptides induced during the immune response of Drosophila: a matrix-assisted laser desorption ionization time-of-flight mass spectrometry study. Proc. Natl Acad. Sci. USA 95(19), 11342–11347 (1998).
  • Karelin AA, Philippova MM, Karelina EV et al. GABA-induced changes of the tissue-specific peptide pool of white rat brain. J. Pept. Sci. 6(4), 168–174 (2000).
  • Filippova MM, Karelin AA, Ivanov VT. Biologically active peptide fragments of functional proteins produced by proteolysis in vitro. Bioorg. Khim. 23(5), 388–409 (1997).
  • Blishchenko EY, Sazonova OV, Kalinina OA et al. Family of hemorphins: co-relations between amino acid sequences and effects in cell cultures. Peptides 23(5), 903–910 (2002).
  • Sazonova OV, Blishchenko EY, Kalinina OA et al. Proliferative activity of neokyotorphin-related hemoglobin fragments in cell cultures. Protein Pept. Lett. 10(4), 386–395 (2003).
  • Blishchenko EYu, Mernenko OA, Mirkina II et al. Tumor cell cytolysis mediated by valorphin, an opioid-like fragment of hemoglobin β-chain. Peptides 18(1), 79–85 (1997).
  • Mernenko OA, Blishchenko EY, Mirkina II, Karelin AA. Met-enkephalin induces cytolytic processes of apoptotic type in K562 human erythroid leukemia cells. FEBS Lett. 383(3), 230–232 (1996).
  • Strizhkov BN, Blishchenko EYu, Satpaev DK, Karelin AA. Both neurotoxin II from venom of Naja naja oxiana and its endogenous analogue induce apoptosis in tumor cells. FEBS Lett. 340(1–2), 22–24 (1994).
  • Blishchenko EYu, Mirkina II, Mernenko OA et al. Cytotoxic activity of acetylcholine receptor ligands. Biochem. Mol. Biol. Int. 42(4), 739–747 (1997).
  • Mirkina II, Mernenko OA, Satpaev DK, Karelin AA, Blishchenko EYu. Cytolytic processes induced by TNF in L929 and K562 differ in DNA fragmentation mechanisms. Immunol. Lett. 52(2–3), 105–108 (1996).
  • Blishchenko EYu, Karelin AA. Tubocurarin induces the wide spectrum of cytolytic effects in tumor cells. Immunol. Lett. 42(1–2), 13–17 (1994).
  • Karelin AA, Ivanov VT. Peptidomics, a new line in postgenomic technologies. Herald of the Russian Academy of Sciences. 75(1), 63–71 (2005).
  • Blishchenko EYu, Sazonova OV, Leontiev KV et al. Components of tissue specific peptide pools: contribution to regulation of cell growth. In: Peptides 2002. Benedetti E, Pedone C (Eds), Edizioni Ziino, Napoli, Italy, 440–441 (2002).
  • Ivanov VT, Karelin AA, Blishchenko EYu, Philippova MM, Nazimov IV. Proteolytic degradation of hemoglobin in vivo. Role in formation of tissue specific peptide pool. Pure Appl. Chem. 70(1), 67–74 (1998).
  • Ivanov VT, Yatskin ON, Kalinina OA, Philippova MM, Karelin AA, Blishchenko EYu. Tissue-specific peptide pools. Generation and function. Pure Appl. Chem. 72(3), 355–363 (2000).
  • Nyberg F, Sanderson K, Glamsta EL. The hemorphins: a new class of opioid peptides derived from the blood protein hemoglobin. Biopolymers 43(2), 147–156 (1997).
  • Zhao Q, Garreau I, Sannier F, Piot JM. Opioid peptides derived from hemoglobin: hemorphins. Biopolymers 43(2), 75–98 (1997).
  • Hatzoglou A, Bakogeorgou E, Hatzoglou C, Martin PM, Castanas E. Antiproliferative and receptor binding properties of α- and β-casomorphins in the T47D human breast cancer cell line. Eur. J. Pharmacol. 310(2–3), 217–223 (1996).
  • Marsili V, Angiolillo A, Gianfranceschi GL. Synthetic octapeptide pyroGlu-Asp-Asp-Ser-Asp-Glu-Glu-Asn promotes differentiation in promyelocytic HL-60 cell line. Cell. Mol. Biol. (Noisy-le-grand). 41(4), 515–523 (1995).
  • Kokoz YM, Zenchenko KI, Alekseev AE et al. The effect of some peptides from the hibernating brain on Ca2+ current in cardiac cells and on the activity of septal neurons. FEBS Lett. 411(1), 71–76 (1997).
  • Sazonova OV, Blishchenko EYu, Leontiev KV, Khaidukov SV, Karelin AA, Ivanov VT. Products of in vivo hemoglobin proteolysis as tissue growth promoters. In: Peptides 2002. Benedetti E, Pedone C (Eds), Edizioni Ziino, Napoli, Italy, 608–609 (2002).
  • Blishchenko EY, Sazonova OV, Kalinina OA et al. Antitumor effect of valorphin in vitro and in vivo: combined action with cytostatic drugs. Cancer Biol. Ther. 4(1), 118–124 (2005).
  • Blishchenko EYu, Sazonova OV, Surovoy AYu et al. Antiproliferative action of valorphin in cell cultures. J. Pept. Sci. 8(8), 438–452 (2002).
  • Blishchenko EY, Kalinina OA, Sazonova OV et al. Endogenous fragment of hemoglobin, neokyotorphin, as cell growth factor. Peptides 22(12), 1999–2008 (2001).
  • Karelin AA, Philippova MM, Ivanov VT. Proteolytic degradation of hemoglobin in erythrocytes leads to biologically active peptides. Peptides 16(4), 693–697 (1995).
  • Ivanov VT, Karelin AA, Philippova MM, Nazimov IV, Pletnev VZ. Hemoglobin as a source of endogenous bioactive peptides: the concept of tissue-specific peptide pool. Biopolymers 43(2), 171–188 (1997).
  • Sazonova OV, Blishchenko EYu, Leontiev KV et al. Tissue specific peptide pools: fine tuning of cell proliferation rate in cell cultures and tissues. In: Peptide Revolution: Genomics, Proteomics & Therapeutics. Chorev M, Sawyer TK (Eds), American Peptide Society, CA, USA, 952–954 (2003).
  • Moody TW, Chan D, Fahrenkrug J, Jensen RT. Neuropeptides as autocrine growth factors in cancer cells. Curr. Pharm. Des. 9(6), 495–509 (2003).
  • Glover S, Nathaniel R, Shakir L et al. Transient upregulation of GRP and its receptor critically regulate colon cancer cell motility during remodeling. Am. J. Physiol. Gastrointest. Liver Physiol. 288(6), G1274–G1282 (2005).
  • Schally AV, Baba Y, Nair RM, Bennett CD. The amino acid sequence of a peptide with growth hormone-releasing activity isolated from porcine hypothalamus. J. Biol. Chem. 246(21), 6647–6650 (1971).
  • Chang RC, Huang WY, Redding TW, Arimura A, Coy DH, Schally AV. Isolation and structure of several peptides from porcine hypothalami. Biochim. Biophys. Acta. 625(2), 266–273 (1980).
  • Saric T, Graef CI, Goldberg AL. Pathway for degradation of peptides generated by proteasomes: a key role for thimet oligopeptidase and other metallopeptidases. J. Biol. Chem. 279(45), 46723–46732 (2004).
  • Ruther E, Ritter R, Apecechea M, Freytag S, Windisch M. Efficacy of the peptidergic nootropic drug cerebrolysin in patients with senile dementia of the Alzheimer type (SDAT). Pharmacopsychiatry 27(1), 32–40 (1994).
  • Kanowski S, Kinzler E, Lehmann E, Schweizer A, Kuntz G. Confirmed clinical efficacy of Actovegin in elderly patients with organic brain syndrome. Pharmacopsychiatry 28(4), 125–33 (1995).
  • Warner E, Weinroth J, Chang S, MacDonald M, Strauss B. Phase II trial of Virulizin in patients with pancreatic cancer. Clin. Invest. Med. 17(1), 37–41 (1994).
  • Lopez-Otin C, Overall CM. Protease degradomics: a new challenge for proteomics. Nature Rev. Mol. Cell Biol. 3(7), 509–519 (2002).
  • Hummon AB, Sweedler JV, Corbin RW. Discovering new neuropeptides using single-cell mass spectrometry. TrAC Trends in Analytical Chemistry 22(8), 515–521 (2003).
  • Rubakhin SS, Greenough WT, Sweedler JV. Spatial profiling with MALDI MS: distribution of neuropeptides within single neurons. Anal. Chem. 75(20), 5374–5380 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.