205
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Atopic dermatitis-associated protein interaction network lead to new insights in chronic sulfur mustard skin lesion mechanisms

, , &
Pages 449-460 | Published online: 09 Jan 2014

References

  • Ghabili K, Agutter PS, Ghanei M, Ansarin K, Panahi Y, Shoja MM. Sulfur mustard toxicity: History, chemistry, pharmacokinetics, and pharmacodynamics. Crit. Rev. Toxicol. 41(5), 384–403 (2011).
  • Uhde GI. Mustard-gas burns of human eyes in World War II. Am. J. Ophthalmol. 29, 929–938 (1946).
  • Balali-Mood M, Hefazi M. The pharmacology, toxicology, and medical treatment of sulphur mustard poisoning. Fundam. Clin. Pharmacol. 19(3), 297–315 (2005).
  • Balali M, Navaiean A. Clinical and practical findings in 232 patients with sulfur mustard poisoning. In: Second World Congress on New Compounds in Biologic and Chemical Warfare. Heyndricks B ( Ed.). Rijksuniversiteit, Ghent, Belgium, 464–473 (1986).
  • Mellor SG, Rice P, Cooper GJ. Vesicant burns. Br. J. Plast. Surg. 44(6), 434–437(1991).
  • Shakarjian MP, Heck DE, Gray JP et al. Mechanisms mediating the vesicant actions of sulfur mustard after cutaneous exposure. Toxicol. Sci. 114(1), 5–19 (2010).
  • Kehe K, Thiermann H, Balszuweit F, Eyer F, Steinritz D, Zilker T. Acute effects of sulfur mustard injury--Munich experiences. Toxicology 263(1), 3–8 (2009).
  • Kehe K, Thiermann H. Clinical picture of sulfur mustard poisoning. Toxicology 263(1), 1–1 (2009).
  • Petrali JP, Oglesby SB, Meier HL. Ultrastructural correlates of the protection afforded by niacinamide against sulfur mustard-induced cytotoxicity of human lymphocytes in vitro. Ultrastruct. Pathol. 14(3), 253–262 (1990).
  • Kehe K, Szinicz L. Medical aspects of sulphur mustard poisoning. Toxicology 214(3), 198–209 (2005).
  • Balali-Mood M, Hefazi M. Comparison of early and late toxic effects of sulfur mustard in Iranian veterans. Basic Clin. Pharmacol. Toxicol 99(4), 273–282 (2006).
  • Khateri S, Ghanei M, Keshavarz S, Soroush M, Haines D. Incidence of lung, eye, and skin lesions as late complications in 34,000 Iranians with wartime exposure to mustard agent. J. Occup. Environ. Med. 45(11), 1136–1143 (2003).
  • Upham JW, Holt PG. Environment and development of atopy. Curr. Opin. Allergy Clin. Immunol. 5(2), 167–172 (2005).
  • Blumenthal MN. The role of genetics in the development of asthma and atopy. Curr. Opin. Allergy Clin. Immunol. 5(2), 141–145 (2005).
  • Emadi SN, Mortazavi M, Mortazavi H. Late cutaneous manifestations 14 to 20 years after wartime exposure to sulfur mustard gas: a long-term investigation. Arch Dermatol, 144(8), 1059–1061 (2008).
  • Hefazi M, Maleki M, Mahmoudi M, Tabatabaee A, Balali-Mood M. Delayed complications of sulfur mustard poisoning in the skin and the immune system of Iranian veterans 16–20 years after exposure. Int J Dermatol, 45(9), 1025–1031 (2006).
  • Balali-Mood M, Hefazi M, Mahmoudi M et al. Long-term complications of sulphur mustard poisoning in severely intoxicated Iranian veterans. Fundam. Clin. Pharmacol. 19(6), 713–721 (2005).
  • Emadi SN, Kaffashi M, Poursaleh Z et al. Sulfur mustard-induced poikiloderma: A case report. Cutan. Ocul. Toxicol. 30(2), 170–174 (2011).
  • Rodríguez E, Baurecht H, Herberich E et al. Meta-analysis of filaggrin polymorphisms in eczema and asthma: robust risk factors in atopic disease. J. Allergy Clin. Immunol. 123(6), 1361–1370.e1367 (2009).
  • Palmer CNA, Irvine AD, Terron-Kwiatkowski A et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat. Genet. 38(4), 441–446 (2006).
  • Howell MD, Kim BE, Gao P et al. Cytokine modulation of atopic dermatitis filaggrin skin expression. J. Allergy Clin. Immunol. 124(3 Suppl. 2), R7–R12 (2009).
  • Hansson L, Bäckman A, Ny A et al. Epidermal overexpression of stratum corneum chymotryptic enzyme in mice: a model for chronic itchy dermatitis. J. Invest. Dermatol. 118(3), 444–449 (2002).
  • Weidinger S, Gieger C, Rodriguez E et al. Genome-wide scan on total serum IgE levels identifies FCER1A as novel susceptibility locus. PLoS Genet. 4(8), e1000166 (2008).
  • Vasilopoulos Y, Cork MJ, Murphy R et al. Genetic association between an AACC insertion in the 3’UTR of the stratum corneum chymotryptic enzyme gene and atopic dermatitis. J. Invest. Dermatol. 123(1), 62–66 (2004).
  • O’Regan GM, Campbell LE, Cordell HJ, Irvine AD, McLean WHI, Brown SJ. Chromosome 11q13.5 variant associated with childhood eczema: an effect supplementary to filaggrin mutations. J. Allergy Clin. Immunol. 125(1), 170–174.e171–172 (2010).
  • Elias PM, Schmuth M. Abnormal skin barrier in the etiopathogenesis of atopic dermatitis. Curr. Opin. Allergy Clin. Immunol. 9(5), 437–446 (2009).
  • Briot A, Deraison C, Lacroix M et al. Kallikrein 5 induces atopic dermatitis-like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. J. Exp. Med. 206(5), 1135–1147 (2009).
  • Irvine AD, McLean WHI, Leung DYM. Filaggrin mutations associated with skin and allergic diseases. N. Engl. J. Med. 365(14), 1315–1327 (2011).
  • Meier HL, Gross CL, Papirmeister B. 2,2’-Dichlorodiethyl sulfide (sulfur mustard) decreases NAD+ levels in human leukocytes. Toxicol. Lett. 39(1), 109–122 (1987).
  • Pearson GS. Veterans at Risk: The Health Effects of Mustard Gas and Lewisite.Constance M P, David PR ( Eds.). Nature 365(6443), 218–218 (1993).
  • Dabrowska MI, Becks LL, Lelli JL, Levee MG, Hinshaw DB. Sulfur mustard induces apoptosis and necrosis in endothelial cells. Toxicol. Appl. Pharmacol. 141(2), 568–583 (1996).
  • Steinhoff M, Neisius U, Ikoma A et al. Proteinase-activated receptor-2 mediates itch: a novel pathway for pruritus in human skin. J. Neurosci. 23(15), 6176–6180 (2003).
  • Tsuruta J, Sugisaki K, Dannenberg AM, Yoshimura T, Abe Y, Mounts P. The cytokines NAP-1 (IL-8), MCP-1, IL-1 beta, and GRO in rabbit inflammatory skin lesions produced by the chemical irritant sulfur mustard. Inflammation 20(3), 293–318 (1996).
  • Sabourin CLK, Danne MM, Buxton KL, Casillas RP, Schlager JJ. Cytokine, chemokine, and matrix metalloproteinase response after sulfur mustard injury to weanling pig skin. J. Biochem. Mol. Toxicol. 16(6), 263–272 (2002).
  • Grobe K, Pöppelmann M, Becker WM, Petersen A. Properties of group I allergens from grass pollen and their relation to cathepsin B, a member of the C1 family of cysteine proteinases. Eur. J. Biochem. 269(8), 2083–2092 (2002).
  • Umeuchi H, Togashi Y, Honda T et al. Involvement of central mu-opioid system in the scratching behavior in mice, and the suppression of it by the activation of kappa-opioid system. Eur. J. Pharmacol. 477(1), 29–35 (2003).
  • Pan ZZ. mu-Opposing actions of the kappa-opioid receptor. Trends Pharmacol. Sci. 19(3), 94–98 (1998).
  • Nakao K, Ikeda K, Kurokawa T et al. [Effect of TRK-820, a selective kappa opioid receptor agonist, on scratching behavior in an animal model of atopic dermatitis]. Nihon Shinkei Seishin Yakurigaku Zasshi 28(2), 75–83 (2008).
  • Grewe M, Vogelsang K, Ruzicka T, Stege H, Krutmann J. Neurotrophin-4 production by human epidermal keratinocytes: increased expression in atopic dermatitis. J. Invest. Dermatol. 114(6), 1108–1112 (2000).
  • Greaves MW, McDonald-Gibson W. Itch: role of prostaglandins. Br. Med. J. 3(5881), 608–609 (1973).
  • Zhang Q, Putheti P, Zhou Q, Liu Q, Gao W. Structures and biological functions of IL-31 and IL-31 receptors. Cytokine Growth Factor Rev. 19(5–6), 347–356).
  • Sonkoly E, Muller A, Lauerma AI et al. IL-31: a new link between T cells and pruritus in atopic skin inflammation. J. Allergy Clin. Immunol. 117(2), 411–417 (2006).
  • Neis MM, Peters B, Dreuw A et al. Enhanced expression levels of IL-31 correlate with IL-4 and IL-13 in atopic and allergic contact dermatitis. J. Allergy Clin. Immunol. 118(4), 930–937 (2006).
  • Nordlind K, Chin LB, Ahmed AA, Brakenhoff J, Theodorsson E, Lidén S. Immunohistochemical localization of interleukin-6-like immunoreactivity to peripheral nerve-like structures in normal and inflamed human skin. Arch. Dermatol. Res. 288(8), 431–435 (1996).
  • Jafari M, Primo V, Smejkal GB, Moskovets EV, Kuo WP, Ivanov AR. Comparison of in-gel protein separation techniques commonly used for fractionation in mass spectrometry-based proteomic profiling. Electrophoresis 33(16), 2516–2526 (2012).
  • Hou J, Chi X. Predicting protein functions from PPI networks using functional aggregation. Math Biosci. 240(1), 63–69 (2012).
  • Hishigaki H, Nakai K, Ono T, Tanigami a, Takagi T. Assessment of prediction accuracy of protein function from protein--protein interaction data. Yeast. 18(6), 523–531 (2001).
  • Deng M, Zhang K, Mehta S, Chen T, Sun F. Prediction of protein function using protein-protein interaction data. Proc. IEEE Comput. Soc. Bioinform. Conf. 1(6), 197–206 (2002).
  • Brun C, Chevenet F, Martin D, Wojcik J, Guénoche A, Jacq B. Functional classification of proteins for the prediction of cellular function from a protein-protein interaction network. Genome. Biol. 5(1), R6–R6 (2003).
  • Jansen BJH, Schalkwijk J. Transcriptomics and proteomics of human skin. Brief Funct. Genomic Proteomic. 1(4), 326–341 (2003).
  • Huang C-m, Foster KW, DeSilva T et al. Comparative proteomic profiling of murine skin. J. Invest. Dermatol. 121(1), 51–64 (2003).
  • Carlén LM, Sánchez F, Bergman A-C et al. Proteome analysis of skin distinguishes acute guttate from chronic plaque psoriasis. J. Invest. Dermatol. 124(1), 63–69 (2005).
  • Yoon SW, Kim TY, Sung MH, Kim CJ, Poo H. Comparative proteomic analysis of peripheral blood eosinophils from healthy donors and atopic dermatitis patients with eosinophilia. Proteomics 5(7), 1987–1995 (2005).
  • Park Y-D, Park D, Bhak J, Yang J-M. Proteomic approaches to the analysis of atopic dermatitis and new insights from interactomics. Proteomics Clin. Appl. 2(3), 290–300 (2008).
  • Park YD, Lyou YJ, Yang JM. Two-dimensional electrophoresis analyses of atopic dermatitis and the chances to detect new candidate proteins by the variations in immobilized pH gradient strips. J. Dermatol. Sci. 47(1), 9–17 (2007).
  • Park Y-D, Kim S-y, Jang H-S et al. Towards a proteomic analysis of atopic dermatitis: A two-dimensional-polyacrylamide gel electrophoresis/mass spectrometric analysis of cultured patient-derived fibroblasts. Proteomics 4(11), 3446–3455 (2004).
  • Kim WK, Hwang H-R, Kim DH et al. Glycoproteomic analysis of plasma from patients with atopic dermatitis: CD5L and ApoE as potential biomarkers. Exp. Mol. Med. 40(6), 677–677 (2008).
  • Kim WK, Cho HJ, Ryu SI et al. Comparative proteomic analysis of peripheral blood mononuclear cells from atopic dermatitis patients and healthy donors. BMB Rep. 41(8), 597–603 (2008).
  • Ishibashi Y, Kato H, Asahi Y, Sugita T, Nishikawa A. Identification of the major allergen of Malassezia globosa relevant for atopic dermatitis. J. Dermatol. Sci. 55(3), 185–192 (2009).
  • Broccardo CJ, Mahaffey S, Schwarz J et al. Comparative proteomic profiling of patients with atopic dermatitis based on history of eczema herpeticum infection and Staphylococcus aureus colonization. J. Allergy Clin. Immunol. 127(1), 186–193, 193.e181–111 (2011).
  • El-Rachkidy RG, Hales JM, Freestone PPE, Young HS, Griffiths CEM, Camp RDR. Increased blood levels of IgG reactive with secreted Streptococcus pyogenes proteins in chronic plaque psoriasis. J. Invest. Dermatol. 127(6), 1337–1342 (2007).
  • Carlén L, Sakuraba K, Ståhle M, Sánchez F. HLA-C expression pattern is spatially different between psoriasis and eczema skin lesions. J. Invest. Dermatol. 127(2), 342–348 (2007).
  • Ariza M-E, Williams MV. A human endogenous retrovirus K dUTPase triggers a TH1, TH17 cytokine response: does it have a role in psoriasis? J. Invest. Dermatol. 131(12), 2419–2427 (2011).
  • Fernandez-Flores A. CD10 immunohistochemistry in prurigo nodularis. Histopathology 52(5), 642–643 (2008).
  • Brown SJ, McLean WHI. Eczema genetics: current state of knowledge and future goals. J. Invest. Dermatol. 129(3), 543–552 (2009).
  • Jafari M, Masoudi-Nejad A. Proteomics Databases and Websites. JPS 3(3), 44–51 (2012).
  • von Mering C, Jensen LJ, Kuhn M et al. STRING 7--recent developments in the integration and prediction of protein interactions. Nucleic Acids Res. 35(Database issue), D358–D362 (2007).
  • Szklarczyk D, Franceschini A, Kuhn M et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 39(Database issue), D561–D568 (2011).
  • Van Hemert JL, Dickerson JA. Pathway access: Cell designer plugins for pathway databases. Bioinformatics 26(18), 2345–2346 (2010).
  • Cline MS, Smoot M, Cerami E et al. Integration of biological networks and gene expression data using Cytoscape. Nat. Protoc. 2(10), 2366–2382 (2007).
  • Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. International Association for the Advancement of Artificial Intelligence. Paris, France, 2009
  • Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27(3), 431–432 (2011).
  • Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21(16), 3448–3449 (2005).
  • Jafari M, Mirzaie M, Sadeghi M, Marashi S-A, Rezaei-Tavirani M. Exploring biological processes involved in embryonic stem cell differentiation by analyzing proteomic data. Biochim. Biophys. Acta. 1834(6), 1063–1069 (2013).
  • Yu Qb, Li G, Wang G et al. Construction of a chloroplast protein interaction network and functional mining of photosynthetic proteins in Arabidopsis thaliana. Cell. Res. 18(10), 1007–1019 (2008).
  • del Sol A, Fujihashi H, O’Meara P. Topology of small-world networks of protein-protein complex structures. Bioinformatics 21(8), 1311–1315 (2005).
  • Simonsson C, Andersson SI, Stenfeldt AL et al. Caged fluorescent haptens reveal the generation of cryptic epitopes in allergic contact dermatitis. J. Invest. Dermatol. 131(7), 1486–1493 (2011).
  • Rowell M, Kehe K, Balszuweit F, Thiermann H. The chronic effects of sulfur mustard exposure. Toxicology 263(1), 9–11 (2009).
  • Panahi Y, Moharamzad Y, Beiraghdar F, Naghizadeh MM. Comparison of clinical efficacy of topical pimecrolimus with betamethasone in chronic skin lesions due to sulfur mustard exposure: a randomized, investigator-blind study. Basic Clin. Pharmacol Toxicol. 104(2), 171–175 (2009).
  • Panahi Y, Davoudi SM, Sadr SB, Naghizadeh MM, Mohammadi-Mofrad M. Impact of pruritus on quality of life in sulfur mustard-exposed Iranian veterans. Int. J. Dermatol. 47(6), 557–561 (2008).
  • Mehrani H, Ghanei M, Aslani J, Golmanesh L. Bronchoalveolar lavage fluid proteomic patterns of sulfur mustard-exposed patients. Proteomics Clin. Appl. 3(10), 1191–1200 (2009).
  • Lee SH, Miyamoto K, Goto T, Oe T. Non-invasive proteomic analysis of human skin keratins: screening of methionine oxidation in keratins by mass spectrometry. J. Proteomics. 75(2), 435–449 (2011).
  • Kehe K, Balszuweit F, Emmler J, Kreppel H, Jochum M, Thiermann H. Sulfur mustard research--strategies for the development of improved medical therapy. Eplasty 8, e32–e32 (2008).
  • Iyriboz Y. A recent exposure to mustard gas in the United States: clinical findings of a cohort (n = 247) 6 years after exposure. Med. Gen. Med. 6(4), 4–4 (2004).
  • Mishra NC, Rir-sima-ah J, March T et al. Sulfur mustard induces immune sensitization in hairless guinea pigs. Int. Immunopharmacol. 10(2), 193–199 (2010).
  • Mehrani H, Ghanei M, Aslani J, Tabatabaei Z. Plasma proteomic profile of sulfur mustard exposed lung diseases patients using 2-dimensional gel electrophoresis. Clin. Proteomics. 8(1), 2–2 (2011).
  • Khaheshi I, Keshavarz S, Imani Fooladi AA et al. Loss of expression of TGF-βs and their receptors in chronic skin lesions induced by sulfur mustard as compared with chronic contact dermatitis patients. BMC Dermatol. 11(1), 2–2 (2011).
  • Emadi SN, Hosseini-Khalili A, Soroush M et al. External urethral stenosis: a latent effect of sulfur mustard two decades post-exposure. Int. J. Dermatol. 48(9), 960–963 (2009).
  • Zhao Y, Mooney SD. Functional organization and its implication in evolution of the human protein-protein interaction network. BMC Genomics. 13(1), 150–150 (2012).
  • Stelzl U, Worm U, Lalowski M et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell 122(6), 957–968 (2005).
  • Dittrich MT, Klau GW, Rosenwald A, Dandekar T, Müller T. Identifying functional modules in protein-protein interaction networks: an integrated exact approach. Bioinformatics 24(13), i223–i231 (2008).
  • Chen J, Yuan B. Detecting functional modules in the yeast protein-protein interaction network. Bioinformatics 22(18), 2283–2290 (2006).
  • Brodsky B, Trivedi S, Peddada S, Flagler N, Wormser U, Nyska A. Early effects of iodine on DNA synthesis in sulfur mustard-induced skin lesions. Arch. Toxicol. 80(4), 212–216 (2006).
  • Chakrabarti AK, Ray P, Broomfield CA, Ray R. Purification and characterization of protease activated by sulfur mustard in normal human epidermal keratinocytes. Biochem. Pharmacol. 56(4), 467–472 (1998).
  • Arroyo CM, Burman DL, Kahler DW et al. TNF-alpha expression patterns as potential molecular biomarker for human skin cells exposed to vesicant chemical warfare agents: sulfur mustard (HD) and Lewisite (L). Cell. Biol. Toxicol. 20(6), 345–359 (2004).
  • Clayson ET, Kelly SA, Meier HL. Effects of specific inhibitors of cellular functions on sulfur mustard-induced cell death. Cell. Biol. Toxicol. 9(2), 165–175 (1993).
  • Brimfield AA, Zweig LM, Novak MJ, Maxwell DM. In vitro oxidation of the hydrolysis product of sulfur mustard, 2,2’-thiobis-ethanol, by mammalian alcohol dehydrogenase. J Biochem Mol. Toxicol, 12(6), 361–369 (1998).
  • Dolado I, Nebreda AR. AKT and oxidative stress team up to kill cancer cells. Cancer Cell, 14(6), 427–429 (2008).
  • Swami M. Therapeutics: Akt: a double-edged sword. Nat Rev Cancer 9(2), 76–77 (2008).
  • Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell 129(7), 1261–1274 (2007).
  • Essafi A, Gomes AR, Pomeranz KM et al. Studying the subcellular localization and DNA-binding activity of FoxO transcription factors, downstream effectors of PI3K/Akt. Methods Mol. Biol. 462, 201–211 (2009).
  • Vojtek AB, Taylor J, DeRuiter SL et al. Akt regulates basic helix-loop-helix transcription factor-coactivator complex formation and activity during neuronal differentiation. Mol. Cell. Biol. 23(13), 4417–4427 (2003).
  • Mendoza-Gamboa E, Siwak DR, Tari AM. The HER2/Grb2/Akt pathway regulates the DNA binding activity of AP-1 in breast cancer cells. Oncol. Rep. 12(4), 903–908 (2004).
  • Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC. Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat. Cell Biol. 3(3), 245–252 (2001).
  • Maga G, Hubscher U. Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J Cell Sci, 116(Pt 15), 3051–3060 (2003).
  • Ouyang W, Li J, Ma Q, Huang C. Essential roles of PI-3K/Akt/IKKbeta/NFkappaB pathway in cyclin D1 induction by arsenite in JB6 Cl41 cells. Carcinogenesis 27(4), 864–873 (2006).
  • Rössig L, Jadidi AS, Urbich C, Badorff C, Zeiher AM, Dimmeler S. Akt-dependent phosphorylation of p21(Cip1) regulates PCNA binding and proliferation of endothelial cells. Mol. Cell. Biol. 21(16), 5644–5657 (2001).
  • Dinarello CA. Proinflammatory cytokines. Chest, 118(2), 503–508 (2000).
  • Mas AE, Petitbarat M, Dubanchet S, Fay S, Ledée N, Chaouat G. Immune regulation at the interface during early steps of murine implantation: involvement of two new cytokines of the IL-12 family (IL-23 and IL-27) and of TWEAK. Am. J. Reprod. Immunol. 59(4), 323–338 (2008).
  • Ikeda R, Moriyama M, Nakade T, Tsugawa R, Suzuki K. The relationship between the production of interleukin-6 and the proliferating cell nuclear antigen (PCNA) expression in renal cell carcinoma. Hinyokika Kiyo 44(4), 233–238 (1998).
  • Hodge DR, Cho E, Copeland TD et al. IL-6 enhances the nuclear translocation of DNA cytosine-5-methyltransferase 1 (DNMT1) via phosphorylation of the nuclear localization sequence by the AKT kinase. Cancer Genomics Proteomics, 4(6), 387–398).
  • Berg DT, Gupta A, Richardson MA, O’Brien LA, Calnek D, Grinnell BW. Negative regulation of inducible nitric-oxide synthase expression mediated through transforming growth factor-beta-dependent modulation of transcription factor TCF11. J. Biol. Chem. 282(51), 36837–36844 (2007).
  • Li AG, Lu S-L, Han G, Hoot KE, Wang X-J. Role of TGFbeta in skin inflammation and carcinogenesis. Mol. Carcinog. 45(6), 389–396 (2006).
  • Penn JW, Grobbelaar AO, Rolfe KJ. The role of the TGF-β family in wound healing, burns and scarring: a review. Int. J. Burns. Trauma. 2(1), 18–28 (2012).
  • Suwanabol PA, Seedial SM, Zhang F et al. TGF-β and Smad3 modulate PI3K/Akt signaling pathway in vascular smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 302(11), H2211–H2219 (2012).
  • Band AM, Björklund M, Laiho M. The phosphatidylinositol 3-kinase/Akt pathway regulates transforming growth factor-{beta} signaling by destabilizing ski and inducing Smad7. J. Biol. Chem. 284(51), 35441–35449 (2009).
  • Chen RH, Chang MC, Su YH, Tsai YT, Kuo ML. Interleukin-6 inhibits transforming growth factor-beta-induced apoptosis through the phosphatidylinositol 3-kinase/Akt and signal transducers and activators of transcription 3 pathways. J. Biol. Chem. 274(33), 23013–23019 (1999).
  • Kanwar AJ, De D. Epidemiology and clinical features of atopic dermatitis in India. Indian J. Dermatol. 56(5), 471–475 (2011).
  • Shaw TE, Currie GP, Koudelka CW, Simpson EL. Eczema prevalence in the United States: data from the 2003 National Survey of Children’s Health. J. Invest. Dermatol. 131(1), 67–73 (2011).
  • Zafarghandi MR, Soroush MR, Mahmoodi M et al. Incidence of cancer in Iranian sulfur mustard exposed veterans: a long-term follow-up cohort study. Cancer Causes Control: CCC 24(1), 99–105 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.