360
Views
15
CrossRef citations to date
0
Altmetric
Reviews

Protein–protein interaction networks studies and importance of 3D structure knowledge

, &
Pages 511-520 | Published online: 09 Jan 2014

References

  • Feldman I, Rzhetsky A, Vitkup D. Network properties of genes harboring inherited disease mutations. Proc. Natl Acad. Sci. USA 105(11), 4323–4328 (2008).
  • Glaab E, Baudot A, Krasnogor N, Valencia A. Extending pathways and processes using molecular interaction networks to analyse cancer genome data. BMC Bioinformatics 11, 597 (2010).
  • Carlin LM, Evans R, Milewicz H et al. A targeted siRNA screen identifies regulators of Cdc42 activity at the natural killer cell immunological synapse. Sci. Signal. 4(201), ra81 (2011).
  • Bakal C, Linding R, Llense F et al. Phosphorylation networks regulating JNK activity in diverse genetic backgrounds. Science 322(5900), 453–456 (2008).
  • Yamada T, Bork P. Evolution of biomolecular networks: lessons from metabolic and protein interactions. Nat. Rev. Mol. Cell Biol. 10(11), 791–803 (2009).
  • Gursoy A, Keskin O, Nussinov R. Topological properties of protein interaction networks from a structural perspective. Biochem. Soc. Trans. 36(Pt. 6), 1398–1403 (2008).
  • Jonsson PF, Bates PA. Global topological features of cancer proteins in the human interactome. Bioinformatics 22(18), 2291–2297 (2006).
  • Rambaldi D, Giorgi FM, Capuani F, Ciliberto A, Ciccarelli FD. Low duplicability and network fragility of cancer genes. Trends. Genet. 24(9), 427–430 (2008).
  • Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabási AL. The human disease network. Proc. Natl Acad. Sci. USA 104(21), 8685–8690 (2007).
  • Karaoz U, Murali TM, Letovsky S et al. Whole-genome annotation by using evidence integration in functional-linkage networks. Proc. Natl Acad. Sci. USA 101(9), 2888–2893 (2004).
  • Nabieva E, Jim K, Agarwal A, Chazelle B, Singh M. Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics 21(Suppl. 1), i302–i310 (2005).
  • Benfey PN, Mitchell-Olds T. From genotype to phenotype: systems biology meets natural variation. Science 320(5875), 495–497 (2008).
  • Arabidopsis Interactome Mapping Consortium. Evidence for network evolution in an arabidopsis interactome map. Science 333(6042), 601–607 (2011).
  • Lee I, Seo YS, Coltrane D et al. Genetic dissection of the biotic stress response using a genome-scale gene network for rice. Proc. Natl Acad. Sci. USA 108(45), 18548–18553 (2011).
  • Kuzu G, Keskin O, Gursoy A, Nussinov R. Constructing structural networks of signaling pathways on the proteome scale. Curr. Opin. Struct. Biol. 22(3), 367–377 (2012).
  • Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40(Database issue):D109–D114 (2012).
  • Feng J, Kim ST, Liu W et al. An integrated analysis of germline and somatic, genetic and epigenetic alterations at 9p21.3 in glioblastoma. Cancer 118(1), 232–240 (2012).
  • Mathew JP, Taylor BS, Bader GD et al. From bytes to bedside: data integration and computational biology for translational cancer research. PLoS Comput. Biol. 3(2), e12 (2007).
  • Aloy P, Russell RB. Interrogating protein interaction networks through structural biology. Proc. Natl Acad. Sci. USA 99(9), 5896–5901 (2002).
  • Aloy P, Böttcher B, Ceulemans H et al. Structure-based assembly of protein complexes in yeast. Science 303(5666), 2026–2029 (2004).
  • Robinson CV, Sali A, Baumeister W. The molecular sociology of the cell. Nature 450(7172), 973–982 (2007).
  • Alber F, Dokudovskaya S, Veenhoff LM et al. Determining the architectures of macromolecular assemblies. Nature 450(7170), 683–694 (2007).
  • Mosca R, Céol A, Aloy P. Interactome3D: adding structural details to protein networks. Nat. Methods. 10(1), 47–53 (2012).
  • Meyer MJ, Das J, Wang X, Yu H. INstruct: a database of high-quality 3D structurally resolved protein interactome networks. Bioinformatics 29(12), 1577–1579 (2013).
  • Bockler B, Bateman A. Protein interactions in human genetic diseases. Genome Biol. 9(1), R9 (2008).
  • Wang X, Wei X, Thijssen B, Das J, Lipkin SM, Yu H. Three-dimensional reconstruction of protein networks provides insight into human genetic disease. Nat. Biotechnol. 30(2), 159–164 (2012).
  • Nishi H, Tyagi M, Teng S et al. Cancer missense mutations alter binding properties of proteins and their interaction networks. PLoS ONE 8(6), e66273 (2013).
  • Lees JG, Heriche JK, Morilla I, Ranea JA, Orengo CA. Systematic computational prediction of protein interaction networks. Phys. Biol. 8(3), 035008 (2011).
  • Hooda Y, Kim PM. Computational structural analysis of protein interactions and networks. Proteomics 12(10), 1697–1705 (2012).
  • Yue P, Li Z, Moult J. Loss of protein structure stability as a major causative factor in monogenic disease. J. Mol. Biol. 353(2), 459–473 (2005).
  • Studer RA, Dessailly BH, Orengo CA. Residue mutations and their impact on protein structure and function: detecting beneficial and pathogenic changes. Biochem. J. 449(3), 581–594 (2013).
  • Satoh T, Smith A, Sarde A et al. B-RAF mutant alleles associated with Langerhans cell histiocytosis, a granulomatous pediatric disease. PLoS ONE 7(4), e33891 (2012).
  • Keskin O, Ma B, Nussinov R. Hot regions in protein-protein interactions: the organization and contribution of structurally conserved hot spot residues. J. Mol. Biol. 345(5), 1281–1294 (2005).
  • Bogan AA, Thorn KS. Anatomy of hot spots in protein interfaces. J. Mol. Biol. 280(1), 1–9 (1998).
  • Liu J, Nussinov R. Allosteric effects in the marginally stable von Hippel-Lindau tumor suppressor protein and allostery-based rescue mutant design. Proc. Natl Acad. Sci. USA 105(3), 901–906 (2008).
  • Nussinov R, Tsai CJ. Allostery in disease and in drug discovery. Cell 153(2), 293–305 (2013).
  • Shan Y, Eastwood MP, Zhang X et al. Oncogenic mutations counteract intrinsic disorder in the EGFR kinase and promote receptor dimerization. Cell 149(4), 860–870 (2012).
  • Azam M, Seeliger MA, Gray NS, Kuriyan J, Daley GQ. Activation of tyrosine kinases by mutation of the gatekeeper threonine. Nat. Struct. Mol. Biol. 15(10), 1109–1118 (2008).
  • Blundell TL, Sibanda BL, Montalvão RW et al. Structural biology and bioinformatics in drug design: opportunities and challenges for target identification and lead discovery. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361(1467), 413–423 (2006).
  • Azzarito V, Long K, Murphy NS, Wilson AJ. Inhibition of -helix-mediated protein-protein interactions using designed molecules. Nat. Chem. 5, 161–173 (2013).
  • Kastritis PL, Bonvin AM. On the binding affinity of macromolecular interactions: daring to ask why proteins interact. J. R. Soc. Interface 10(79), 20120835 (2013).
  • Wells JA, McClendon CL. Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450(7172), 1001–1009 (2007).
  • Winter C, Henschel A, Tuukkanen A, Schroeder M. Protein interactions in 3D: from interface evolution to drug discovery. J. Struct. Biol. 179(3), 347–358 (2012).
  • Keskin O, Gursoy A, Ma B, Nussinov R. Principles of protein-protein interactions: what are the preferred ways for proteins to interact? Chem. Rev. 108(4), 1225–1244 (2008).
  • Engin HB, Gursoy A, Nussinov R, Keskin O. Network-based strategies can help mono- and poly-pharmacology drug discovery: a systems biology view. Curr. Pharm. Des. doi:10.2174/13816128113199990066 (2013) (Epub ahead of print).
  • Engin HB, Keskin O, Nussinov R, Gursoy A. A strategy based on protein-protein interface motifs may help in identifying drug off-targets. J. Chem. Inf. Model. 52(8), 2273–2286 (2012).
  • Csermely P, Korcsmáros T, Kiss HJM, London G, Nussinov R. Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review. Pharmacol. Ther. 138(3), 333–408 (2013).
  • Kuhn M, Al Banchaabouchi M, Campillos M, et al. Systematic identification of proteins that elicit drug side effects. Mol. Syst. Biol. 9, 663 (2013).
  • Wu TY, Jen MH, Bottle A et al. Ten-year trends in hospital admissions for adverse drug reactions in England 1999-2009. J. R. Soc. Med. 103(6), 239–250 (2010).
  • Yildirim MA, Goh KI, Cusick ME, Barabási AL, Vidal M. Drug-target network. Nat. Biotechnol. 25(10), 1119–1126 (2007).
  • Zhang Q, Petrey D, Norel R, Honig B. Protein interface conservation across structure space. Proc. Natl Acad. Sci. USA 107(24), 10896–10901 (2010).
  • Kundrotas PJ, Zhu Z, Janin J, Vakser IA. Templates are available to model nearly all complexes of structurally characterized proteins. Proc. Natl Acad. Sci. USA 109(24), 9438–9441 (2012).
  • Marti-Renom MA, Madhusudhan MS, Fiser A, Rost B, Sali A. Reliability of assessment of protein structure prediction methods. Structure 10(3), 435–440 (2001).
  • Schwede T. Protein modeling: what happened to the “protein structure gap”? Structure 21(9), 1531–1540 (2013).
  • Krogan NJ, Cagney G, Yu H et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084), 637–643 (2006).
  • Stumpf MPH, Thorne T, de Silva E et al. Estimating the size of the human interactome. Proc. Natl Acad. Sci. USA 105(19), 6959–6964 (2008).
  • Lehne B, Schlitt T. Protein-protein interaction databases: keeping up with growing interactomes. Hum. Genomics 3(3), 291–297 (2009).
  • Keshava Prasad TS, Goel R, Kandasamy K et al. Human protein reference database-2009 update. Nucleic Acids Res. 37, D767–D772 (2009).
  • Chatr Aryamontri A, Breitkreutz BJ, Heinicke S et al. The BioGRID interaction database: 2013 update. Nucleic Acids Res. 41, D816–D823 (2013).
  • Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D. The database of interacting proteins: 2004 update. Nucleic Acids Res. 32, D449–D451 (2004).
  • Kerrien S, Aranda B, Breuza L et al. The IntAct molecular interaction database in 2012. Nucleic Acids Res. 40, D841–D846 (2012).
  • Ceol A, Chatr Aryamontri A, Licata L et al. MINT, the molecular interaction database: 2009 update. Nucleic Acids Res. 38, D532–D539 (2009).
  • Franceschini A, Szklarczyk D, Frankild S et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41, D808–D815 (2013).
  • Braun P. Reproducibility restored – on toward the human interactome. Nat. Methods 10(4), 301–303 (2013).
  • Varjosalo M, Sacco R, Stukalov A et al. Interlaboratory reproducibility of large-scale human protein-complex analysis by standardized AP-MS. Nat. Methods 10(4), 307–314 (2013).
  • Havugimana PC, Hart GT, Nepusz T et al. A census of human soluble protein complexes. Cell 150(5), 1068–1081 (2012).
  • Braun P, Tasan M, Dreze M et al. An experimentally derived confidence score for binary protein-protein interactions. Nat. Methods 6(1), 91–97 (2009).
  • Jain S, Bader GD. An improved method for scoring protein-protein interactions using semantic similarity within the gene ontology. BMC Bioinformatics 11, 562 (2010).
  • Dazard JE, Saha S, Ewing RM. ROCS: A reproducibility index and confidence score for interaction proteomics studies. BMC Bioinformatics 13, 128(2012).
  • Hakes L, Pinney JW, Robertson DL, Lovell SC. Protein-protein interaction networks and biology – what’s the connection? Nat. Biotechnol. 26(1), 69–72 (2008).
  • Mosca R, Pons T, Céol A, Valencia A, Aloy P. Towards a detailed atlas of protein-protein interactions. Curr. Opin. Struct. Biol. doi:10.1016/j.sbi.2013.07.005 (2013) (Epub ahead of print).
  • von Mering C, Krause R, Snel B et al. Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417(6887), 399–403 (2002).
  • Orchard S, Kerrien S, Abbani S et al. Protein interaction data curation: the International Molecular Exchange (IMEx) consortium. Nat. Meth. 9(4), 345–350 (2012).
  • Orchard S. Molecular interaction databases. Proteomics 12(10), 1656–1662 (2012).
  • Gavin AC, Aloy P, Grandi P et al. Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084), 631–636 (2006).
  • de Juan D, Pazos F, Valencia A. Emerging methods in protein co-evolution. Nat. Rev. Genet. 14(4), 249–261 (2013).
  • Zhang QC, Petrey D, Deng L et al. Structure-based prediction of protein-protein interactions on a genome-wide scale. Nature. 490(7421), 556–560 (2012).
  • Berman HM. The protein data bank. Nucleic Acids Res. 28(1), 235–242 (2000).
  • Finn RD, Marshall M, Bateman A. iPfam: visualization of protein-protein interactions in PDB at domain and amino acid resolutions. Bioinformatics. 21(3), 410–412 (2005).
  • Stein A, Céol A, Aloy P. 3did: identification and classification of domain based interactions of known three-dimensional structure. Nucleic Acids Res. 39(Database issue), D718–D723 (2011).
  • Punta M, Coggill P, Eberhardt R et al. The Pfam protein families database. Nucleic Acids Res. 40(Database issue), D290–D301 (2012).
  • Vogel C, Teichmann S, Pereiraleal J. The relationship between domain duplication and recombination. J Mol Biol. 346(1), 355–365 (2005).
  • Eswar N, Webb B, Marti-Renom MA et al. Comparative protein structure modeling using MODELLER. Curr. Protoc. Protein Sci. Chapter 2, Unit 2.9 (2007).
  • Lewis TE, Sillitoe I, Andreeva A et al. Genome3D: a UK collaborative project to annotate genomic sequences with predicted 3D structures based on SCOP and CATH domains. Nucleic Acids Res. 41(Database issue), D499–D507 (2013).
  • Lees J, Yeats C, Redfern O, Clegg A, Orengo C. Gene3D: merging structure and function for a Thousand genomes. Nucleic Acids Res. 38(Database issue), D296–D300 (2010).
  • Shi J, Blundell TL, Mizuguchi K. FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol. 310(1), 243–257 (2001).
  • Gough J, Chothia C. SUPERFAMILY: HMMs representing all proteins of known structure. SCOP sequence searches, alignments and genome assignments. Nucleic Acids Res. 30(1), 268–272 (2002).
  • Bennett-Lovsey RM, Herbert AD, Sternberg MJE, Kelley LA. Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre. Proteins 70(3), 611–625 (2008).
  • Buchan DWA, Ward SM, Lobley AE, Nugent TCO, Bryson K, Jones DT. Protein annotation and modelling servers at University College London. Nucleic Acids Res. 38(Web Server issue), W563–W568 (2010).
  • Kar G, Gursoy A, Keskin O. Human cancer protein-protein interaction network: a structural perspective. PLoS Comput. Biol. 5(12), e1000601 (2009).
  • Tuncbag N, Gursoy A, Nussinov R, Keskin O. Predicting protein-protein interactions on a proteome scale by matching evolutionary and structural similarities at interfaces using PRISM. Nat. Protoc. 6(9), 1341–1354 (2011).
  • Zhang X, Perica T, Teichmann SA. Evolution of protein structures and interactions from the perspective of residue contact networks. Curr. Opin. Struct. Biol. pii: S0959-440X(13)00125-5 (2013).
  • Gao M, Skolnick J. Structural space of protein-protein interfaces is degenerate, close to complete, and highly connected. Proc. Natl Acad. Sci. USA 107(52), 22517–22522 (2010).
  • Lo Conte L, Chothia C, Janin J. The atomic structure of protein-protein recognition sites. J. Mol. Biol. 285(5), 2177–2198 (1999).
  • Keskin O, Ma B, Rogale K, Gunasekaran K, Nussinov R. Protein-protein interactions: organization, cooperativity and mapping in a bottom-up Systems Biology approach. Phys. Biol. 2(2), S24–S35 (2005).
  • Higurashi M, Ishida T, Kinoshita K. Identification of transient hub proteins and the possible structural basis for their multiple interactions. Protein Sci. 17(1), 72–78 (2008).
  • Keskin O, Nussinov R. Similar binding sites and different partners: implications to shared proteins in cellular pathways. Structure 15(3), 341–354 (2007).
  • Zhu X, Mitchell JC. KFC2: a knowledge-based hot spot prediction method based on interface solvation, atomic density, and plasticity features. Proteins 79(9), 2671–2683 (2011).
  • Jones S, Thornton JM. Protein-protein interactions: a review of protein dimmer structures. Prog. Biophys. Mol. Biol. 63(1), 31–65 (1995).
  • Kleinjung J, Fraternali F. POPSCOMP: an automated interaction analysis of biomolecular complexes. Nucleic Acids Res. 33(Web Server issue), W342–W346 (2005).
  • Davis F, Sali A. PIBASE: a comprehensive database of structurally defined protein interfaces. Bioinformatics 21(9), 1901–1907 (2005).
  • Mashiach E, Nussinov R, Wolfson HJ. FiberDock: a web server for flexible induced-fit backbone refinement in molecular docking. Nucleic Acids Res. 38(Web Server issue), W457–W461 (2010).
  • Kim P, Lu L, Xia Y, Gerstein M. Relating three-dimensional structures to protein networks provides evolutionary insights. Science. 314(5807), 1938–1941 (2006).
  • Butland G, Peregrín-Alvarez JM, Li J et al. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature. 433(7025), 531–537 (2005).
  • Ho H, Milenkovic T, Memisevic V, Aruri J, Przulj N, Ganesan AK. Protein interaction network topology uncovers melanogenesis regulatory network components within functional genomics datasets. BMC Syst. Biol. 4(1), 84 (2010).
  • David A, Razali R, Wass MN, Sternberg MJE. Protein-protein interaction sites are hot spots for disease-associated nonsynonymous SNPs. Hum. Mutat. 33(2), 359–363 (2011).
  • Guo Y, Wei X, Das J et al. Dissecting disease inheritance modes in a three- dimensional protein network challenges the guilt-by-association principle. Am. J. Hum. Genet. 93(1), 78–89 (2013).
  • Patil A, Kinoshita K, Nakamura H. Hub promiscuity in protein-protein interaction networks. Int. J. Mol. Sci. 11(4), 1930–1943 (2010).
  • Tyagi M, Shoemaker BA, Bryant SH, Panchenko AR. Exploring functional roles of multibinding protein interfaces. Protein Sci. 18(8), 1674–1683 (2009).
  • Dasgupta B, Nakamura H, Kinjo AR. Distinct roles of overlapping and nonoverlapping regions of hub protein interfaces in recognition of multiple partners. J. Mol. Biol. 411(3), 713–727 (2011).
  • Fornili A, Pandini A, Lu H, Fraternali F. Specialized dynamical properties of promiscuous residues revealed by simulated conformational ensembles. J. Chem. Theory Comput. (2013) (Epub before print).
  • Zen A, Micheletti C, Keskin O, Nussinov R. Comparing interfacial dynamics in protein-protein complexes: an elastic network approach. BMC Struct. Biol. 10, 26 (2010).
  • Spitzer R, Cleves A, Jain A. Surface-based protein binding pocket similarity. Proteins 79(9), 2746–2763 (2011).
  • Wass MN, Fuentes G, Pons C, Pazos F, Valencia A. Towards the prediction of protein interaction partners using physical docking. Mol. Syst. Biol. 7, 469 (2011).
  • 1000 Genomes Project Consortium, Abecasis GR, Altshuler D, Auton A et al. A map of human genome variation from population-scale sequencing. Nature 467(7319), 1061–1073 (2010).
  • International HapMap Consortium. The international hapMap project. Nature 426(6968), 789–796 (2003).
  • Sherry ST, Ward MH, Kholodov M et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29(1), 308–311 (2001).
  • Hamosh A. Online mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 33(Database issue), D514–D517 (2004).
  • Forbes SA, Bindal N, Bamford S, et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 39(Database issue), D945–D950 (2011).
  • Stenson PD, Ball EV, Mort M et al. Human gene mutation database (HGMD): 2003 update. Hum. Mutat. 21(6), 577–581 (2003).
  • Stefl S, Nishi H, Petukh M, Panchenko AR, Alexov E. Molecular mechanisms of disease-causing missense mutations. J. Mol. Biol. 425(21), 3919–3936 (2013).
  • Higueruelo AP, Jubb H, Blundell TL. Protein-protein interactions as druggable targets: recent technological advances. Curr. Opin. Pharmacol. 13(5), 791–796 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.